Skip to main content
Log in

Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units

  • Structural Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Paleomagnetic results cannot be applied in global and regional tectonic reconstructions unless the paleosecular variation has been adequately averaged. However, how many sampling sites and samples are enough to calculate a reliable paleopole remains debated. Based on the relation among the sampling sites N, the precision parameter k, the virtual geomagnetic pole scatter s, and the confidence limit A95 of the paleopole, we find that 20 sites (samples) or more are required to yield a paleopole with an A95 ≈ 5° based on a review of available paleomagnetic results from the Lhasa, Qiangtang and Tethyan Himalaya. Random samplings of Jurassic virtual geomagnetic poles from the Sangri area show that the Fisher mean pole with neglectable angle deviation can be obtained when sampling sites increase to 20. High-quality paleomagnetic results, with sites/samples number N/n ⩾ ∼20–30, show that the Qiangtang, Lhasa, and Tethyan Himalaya moved northward in the Late Permian-Middle Triassic, Jurassic, and Cretaceous, respectively, and then accreted to Asia in the Late Triassic, Late Jurassic-Early Cretaceous and Paleocene-Early Eocene, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Besse, J., Courtillot, V., 2002. Apparent and True Polar Wander and the Geometry of the Geomagnetic Field over the Last 200 Myr. Journal of Geophysical Research: Solid Earth, 107(B11):EPM6–1. https://doi.org/10.1029/2000jb000050

    Article  Google Scholar 

  • Bian, W. W., Yang, T. S., Peng, W. X., et al., 2021. Paleomagnetic Constraints on the India-Asia Collision and the Size of Greater India. Journal of Geophysical Research: Solid Earth, 126(6):e2021jb021965. https://doi.org/10.1029/2021jb021965

    Google Scholar 

  • Biggin, A. J., van Hinsbergen, D. J. J., Langereis, C. G., et al., 2008. Geomagnetic Secular Variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1/2/3/4):3–19. https://doi.org/10.1016/j.pepi.2008.07.004

    Article  Google Scholar 

  • Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific, Boston. 319

    Google Scholar 

  • Cao, Y., Sun, Z. M., Li, H. B., et al., 2017. New Late Cretaceous Paleomagnetic Data from Volcanic Rocks and Red Beds from the Lhasa Terrane and Its Implications for the Paleolatitude of the Southern Margin of Asia Prior to the Collision with India. Gondwana Research, 41:337–351. https://doi.org/10.1016/j.gr.2015.11.006

    Article  Google Scholar 

  • Chen, S. S., Shi, R. D., Gong, X. H., et al., 2017. A Syn-Collisional Model for Early Cretaceous Magmatism in the Northern and Central Lhasa Subterranes. Gondwana Research, 41:93–109. https://doi.org/10.1016/j.gr.2015.04.008

    Article  Google Scholar 

  • Chen, Y. F., Ding, L., Li, Z. Y., et al., 2020. Provenance Analysis of Cretaceous Peripheral Foreland Basin in Central Tibet: Implications to Precise Timing on the Initial Lhasa-Qiangtang Collision. Tectonophysics, 775:228311. https://doi.org/10.1016/j.tecto.2019.228311

    Article  Google Scholar 

  • Cogné, J. P., 2003. PaleoMac: A Macintosh™ Application for Treating Paleomagnetic Data and Making Plate Reconstructions. Geochemistry, Geophysics, Geosystems, 4(1):1007. https://doi.org/10.1029/2001gc000227

    Article  Google Scholar 

  • Cogné, J. P., Besse, J., Chen, Y., et al., 2013. A New Late Cretaceous to Present APWP for Asia and Its Implications for Paleomagnetic Shallow Inclinations in Central Asia and Cenozoic Eurasian Plate Deformation. Geophysical Journal International, 192(3):1000–1024. https://doi.org/10.1093/gji/ggs104

    Article  Google Scholar 

  • Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J., et al., 2011. Geomagnetic Secular Variation and the Statistics of Palaeomagnetic Directions. Geophysical Journal International, 186(2):509–520. https://doi.org/10.1111/j.1365-246x.2011.05050.x

    Article  Google Scholar 

  • Dewey, J. F., Shackleton, R. M., Chang, C. F., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society, 327(1594):379–413. https://doi.org/10.1098/rsta.1988.0135

    Google Scholar 

  • Fisher, R., 1953. Dispersion on a Sphere. Proceedings of the Royal Society of London, 217(1130):295–305. https://doi.org/10.1098/rspa.1953.0064

    Article  Google Scholar 

  • Gerritsen, D., Vaes, B., van Hinsbergen, D. J. J., 2022. Influence of Data Filters on the Position and Precision of Paleomagnetic Poles: What is the Optimal Sampling Strategy. Geochemistry, Geophysics, Geosystems, 23(4):e2021gc010269. https://doi.org/10.1029/2021gc010269

    Article  Google Scholar 

  • Guan, C., Yan, M. D., Zhang, W. L., et al., 2021. Paleomagnetic and Chronologic Data Bearing on the Permian/Triassic Boundary Position of Qamdo in the Eastern Qiantang Terrane: Implications for the Closure of the Paleo-Tethys. Geophysical Research Letters, 48(6):e2020gl092059. https://doi.org/10.1029/2020gl092059

    Article  Google Scholar 

  • Huang, K. N., Opdyke, N. D., Li, J. G., et al., 1992. Paleomagnetism of Cretaceous Rocks from Eastern Qiangtang Terrane of Tibet. Journal of Geophysical Research: Solid Earth, 97(B2):1789–1799. https://doi.org/10.1029/91jb02747

    Article  Google Scholar 

  • Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017a. Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 122(2):808–825. https://doi.org/10.1002/2016jb013662

    Article  Google Scholar 

  • Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017b. Reply to Comment by Z. Yi et al. on “Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision”. Journal of Geophysical Research: Solid Earth, 122(7):4859–4863. https://doi.org/10.1002/2017jb014447

    Article  Google Scholar 

  • Huang, W. T., Dupont-Nivet, G., Lippert, P. C., et al., 2015. Can a Primary Remanence be Retrieved from Partially Remagnetized Eocence Volcanic Rocks in the Nanmulin Basin (Southern Tibet) to Date the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 120(1):42–66. https://doi.org/10.1002/2014jb011599

    Article  Google Scholar 

  • Johnson, C. L., Constable, C. G., Tauxe, L., et al., 2008. Recent Investigations of the 0–5 Ma Geomagnetic Field Recorded by Lava Flows. Geochemistry, Geophysics, Geosystems, 9(4):Q04032. https://doi.org/10.1029/2007gc001696

    Article  Google Scholar 

  • Koymans, M. R., Langereis, C. G., Pastor-Galan, D., et al., 2016. Paleomagnetism. org: An Online Multi-Platform Open Source Environment for Paleomagnetic Data Analysis. Computers & Geosciences, 93:127–137. https://doi.org/10.1016/j.cageo.2016.05.007

    Article  Google Scholar 

  • Li, Z. Y., Ding, L., Lippert, P., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44:727–730. https://doi.org/10.1130/g38030.1

    Article  Google Scholar 

  • Linder, J., Gilder, S. A., 2012. Latitude Dependency of the Geomagnetic Secular Variation S Parameter: A Mathematical Artifact. Geophysical Research Letters, 39(2):L02308. https://doi.org/10.1029/2011gl050330

    Article  Google Scholar 

  • Ma, Y. M., Wang, Q., Wang, J., et al., 2019. Paleomagnetic Constraints on the Origin and Drift History of the North Qiangtang Terrane in the Late Paleozoic. Geophysical Research Letters, 46(2):689–697. https://doi.org/10.1029/2018gl080964

    Article  Google Scholar 

  • Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2018. A Stable Southern Margin of Asia during the Cretaceous: Paleomagnetic Constraints on the Lhasa-Qiangtang Collision and the Maximum Width of the Neo-Tethys. Tectonics, 37(10):3853–3876. https://doi.org/10.1029/2018tc005143

    Article  Google Scholar 

  • Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows from the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122(11):8786–8809. https://doi.org/10.1002/2017jb014743

    Article  Google Scholar 

  • Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6:21605. https://doi.org/10.1038/srep21605

    Article  Google Scholar 

  • Ma, Y. M., Yang, T. S., Yang, Z. Y., et al., 2014. Paleomagnetism and U−Pb Zircon Geochronology of Lower Cretaceous Lava Flows from the Western Lhasa Terrane: New Constraints on the India-Asia Collision Process and Intracontinental Deformation within Asia. Journal of Geophysical Research: Solid Earth, 119(10):7404–7424. https://doi.org/10.1002/2014jb011362

    Article  Google Scholar 

  • Matthews, K. J., Maloney, K. T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146:226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

    Article  Google Scholar 

  • McElhinny, M. W., McFadden, P. L., 1997. Palaeosecular Variation over the Past 5 Myr Based on a New Generalized Database. Geophysical Journal International, 131(2):240–252. https://doi.org/10.1111/j.1365-246x.1997.tb01219.x

    Article  Google Scholar 

  • McFadden, P. L., Merrill, R. T., McElhinny, M. W., et al., 1991. Reversals of the Earth’s Magnetic Field and Temporal Variations of the Dynamo Families. Journal of Geophysical Research: Solid Earth, 96(B3):3923–3933. https://doi.org/10.1029/90jb02275

    Article  Google Scholar 

  • Meert, J. G., Pivarunas, A. F., Evans, D. A. D., et al., 2020. The Magnificent Seven: A Proposal for Modest Revision of the Quality Index. Tectonophysics, 790:228549. https://doi.org/10.1016/j.tecto.2020.228549

    Article  Google Scholar 

  • Meng, J., Zhao, X. X., Wang, C. S., et al., 2018. Palaeomagnetism and Detrital Zircon U−Pb Geochronology of Cretaceous Redbeds from Central Tibet and Tectonic Implications. Geological Journal, 53(5):2315–2333. https://doi.org/10.1002/gj.3070

    Article  Google Scholar 

  • Meng, J., Gilder, S. A., Li, Y. L., et al., 2020. Expanse of Greater India in the Late Cretaceous. Earth and Planetary Science Letters, 542:116330. https://doi.org/10.1016/j.epsl.2020.116330

    Article  Google Scholar 

  • Meng, J., Gilder, S. A., Wang, C. S., et al., 2019. Defining the Limits of Greater India. Geophysical Research Letters, 46(8):4182–4191. https://doi.org/10.1029/2019gl082119

    Article  Google Scholar 

  • Patzelt, A., Li, H. M., Wang, J. D., et al., 1996. Palaeomagnetism of Cretaceous to Tertiary Sediments from Southern Tibet: Evidence for the Extent of the Northern Margin of India Prior to the Collision with Eurasia. Tectonophysics, 259(4):259–284. https://doi.org/10.1016/0040-1951(95)00181-6

    Article  Google Scholar 

  • Song, C., Wang, J., Fu, X., et al., 2012. Late Triassic Paleomagnetic Data from the Qiangtang Terrane of Tibetan Plateau and Their Tectonic Significances. Journal of Jilin University: Earth Science Edition, 42(2):526–535 (in Chinese with English Abstract)

    Google Scholar 

  • Song, P. P., Ding, L., Lippert, P. C., et al., 2020. Paleomagnetism of Middle Triassic Lavas from Northern Qiangtang (Tibet): Constraints on the Closure of the Paleo-Tethys Ocean. Journal of Geophysical Research: Solid Earth, 125(2):e2019jb017804. https://doi.org/10.1029/2019jb017804

    Google Scholar 

  • Song, P. P., Ding, L., Li, Z. Y., et al., 2015. Late Triassic Paleolatitude of the Qiangtang Block: Implications for the Closure of the Paleo-Tethys Ocean. Earth and Planetary Science Letters, 424:69–83. https://doi.org/10.1016/j.epsl.2015.05.020

    Article  Google Scholar 

  • Sun, Z. M., Pei, J. L., Li, H. B., et al., 2012. Palaeomagnetism of Late Cretaceous Sediments from Southern Tibet: Evidence for the Consistent Palaeolatitudes of the Southern Margin of Eurasia Prior to the Collision with India. Gondwana Research, 21(1):53–63. https://doi.org/10.1016/j.gr.2011.08.003

    Article  Google Scholar 

  • Sun, Z. M., Jiang, W., Pei, J. L., et al., 2008. New Early Cretaceous Paleomagnetic Data from Volcanic of the Eastern Lhasa Block and Its Tectonic Implications. Acta Petrologica Sinica, 24(7):1621–1626 (in Chinese with English Abstract)

    Google Scholar 

  • Tan, X. D., Gilder, S., Kodama, K. P., et al., 2010. New Paleomagnetic Results from the Lhasa Block: Revised Estimation of Latitudinal Shortening across Tibet and Implications for Dating the India-Asia Collision. Earth and Planetary Science Letters, 293(3/4):396–404. https://doi.org/10.1016/j.epsl.2010.03.013

    Article  Google Scholar 

  • Tauxe, L., Kent, D., 2004. A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: Was the Ancient Magnetic Field Dipolar. Geophysical Monograph, 145:101–115. https://doi.org/10.1029/145gm08

    Google Scholar 

  • Tauxe, L., Banerjee, S. K., Butler R. F., et al., 2018. Essentials of Paleomagnetism: Fifth Web Edition. Scripps Institution of Oceanography, LaJolla

    Google Scholar 

  • Tauxe, L., 1993. Sedimentary Records of Relative Paleointensity of the Geomagnetic Field: Theory and Practice. Reviews of Geophysics, 31(3):319–354. https://doi.org/10.1029/93rg01771

    Article  Google Scholar 

  • Tong, Y. B., Yang, Z. Y., Pei, J. L., et al., 2017. Paleomagnetism of the Upper Cretaceous Red-Beds from the Eastern Edge of the Lhasa Terrane: New Constraints on the Onset of the India-Eurasia Collision and Latitudinal Crustal Shortening in Southern Eurasia. Gondwana Research, 48:86–100. https://doi.org/10.1016/j.gr.2017.04.018

    Article  Google Scholar 

  • Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3/4):325–368. https://doi.org/10.1016/j.earscirev.2012.06.007

    Article  Google Scholar 

  • van der Voo, R., 1990. The Reliability of Paleomagnetic Data. Tectonophysics, 184(1): 1–9. https://doi.org/10.1016/0040-1951(90)90116-p

    Article  Google Scholar 

  • van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109(20):7659–7664. https://doi.org/10.1073/pnas.1117262109

    Article  Google Scholar 

  • van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 116(B6):B06101. https://doi.org/10.1029/2010jb008051

    Article  Google Scholar 

  • Yan, M. D., Zhang, D. W., Fang, X. M., et al., 2016. Paleomagnetic Data Bearing on the Mesozoic Deformation of the Qiangtang Block: Implications for the Evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292–316. https://doi.org/10.1016/j.gr.2016.01.012

    Article  Google Scholar 

  • Yang, T. S., Jin, J. J., Bian, W. W., et al., 2019. Precollisional Latitude of the Northern Tethyan Himalaya from the Paleocene Redbeds and Its Implication for Greater India and the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 124(11):10777–10798. https://doi.org/10.1029/2019jb017927

    Article  Google Scholar 

  • Yang, T. S., Ma, Y. M., Bian, W. W., et al., 2015. Paleomagnetic Results from the Early Cretaceous Lakang Formation Lavas: Constraints on the Paleolatitude of the Tethyan Himalaya and the India-Asia Collision. Earth and Planetary Science Letters, 428:120–133. https://doi.org/10.1016/j.epsl.2015.07.040

    Article  Google Scholar 

  • Yang, T. S., Ma, Y. M., Zhang, S. H., et al., 2015. New Insights into the India-Asia Collision Process from Cretaceous Paleomagnetic and Geochronologic Results in the Lhasa Terrane. Gondwana Research, 28(2):625–641. https://doi.org/10.1016/j.gr.2014.06.010

    Article  Google Scholar 

  • Yang, X. F., Cheng, X., Zhou, Y. N., et al., 2017. Paleomagnetic Results from Late Carboniferous to Early Permian Rocks in the Northern Qiangtang Terrane, Tibet, China, and Their Tectonic Implications. Science China Earth Sciences, 60(1):124–134. https://doi.org/10.1007/s11430-015-5462-7

    Article  Google Scholar 

  • Yi, Z., Appel, E., Huang, B., et al., 2017. Comment on “Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision” by Huang et al. Journal of Geophysical Research — Solid Earth, 122(7):4852–4858

    Article  Google Scholar 

  • Yi, Z., Huang, B. C., Chen, J. S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China: Implications to Onset of the India-Asia Collision and Size of Greater India. Earth and Planetary Science Letters, 309:153–165. https://doi.org/10.1016/j.epsl.2011.07.001

    Google Scholar 

  • Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 49(2):e2021gl096902. https://doi.org/10.1029/2021gl096902

    Article  Google Scholar 

  • Yuan, J., Yang, Z. Y., Deng, C. L., et al., 2021. Rapid Drift of the Tethyan Himalaya Terrane before Two-Stage India-Asia Collision. National Science Review, 8(7):nwaa173. https://doi.org/10.1093/nsr/nwaa173

    Google Scholar 

  • Zhang, J., 2017. Zircon U−Pb Geochronology and Paleomagnetism of Late Permian Nayixiong Formation Volcanic Rocks in the Northern Qiangtang-Qamdo Block of the Tibetan Platesau: [Dissertation]. Northwest University, Xi’an (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, Y., Huang, B. C., Zhao, Q., 2019. New Paleomagnetic Positive Proof of the Rigid or Quasi-Rigid Greater Indian Plate during the Early Cretaceous. Chinese Science Bulletin, 64(21):2225–2244 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhang, Y. C., Shi, G. R., Shen, S. Z., 2013. A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24(1):55–76. https://doi.org/10.1016/j.gr.2012.06.010

    Article  Google Scholar 

  • Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7–17. https://doi.org/10.1016/j.lithos.2015.06.023

    Article  Google Scholar 

Download references

Acknowledgments

Five anonymous reviewers are grateful for their constructive comments. We thank Kaixian Qi for his help in this study. We also thank Huapei Wang and Jun Meng for their suggestions. This work is supported by the National Natural Science Foundation of China (Nos. 41802242 and 42174089). The final publication is available at Springer via https://doi.org/10.1007/s12583-022-1721-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Ruan, W., Niu, C. et al. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. J. Earth Sci. 33, 1072–1080 (2022). https://doi.org/10.1007/s12583-022-1721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-022-1721-2

Key Words

Navigation