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ABSTRACT: The Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in
the southern margin of the North China Craton (NCC), and hosts voluminous magmatism and signifi‐
cant U-REE-Mo-Cu-Fe polymetallic mineralization. However, geochronological framework of the vari‐
ous mineralization phases in this region is poorly understood. Here, we present new Re-Os isochron ag‐
es on magnetite from the Caotan Fe deposit (2 675 ± 410 Ma, MSWD = 0.55), and on pyrite from the
Jialu REE deposit (2 127 ± 280 Ma, MSWD = 1.9) and Yuejiawa Cu deposit (418 ± 23 Ma, MSWD =
11.5), and Re-Os weighted average model age on pyrite from the Taoyuan Mo-U deposit (235 ± 14 Ma,
MSWD = 0.17). These ages, combined with regional geology and mineralization ages from other depos‐
its, suggest that mineralization in the Huayangchuan ore belt lasted from the Neoarchean to the Late
Mesozoic. The mineralization corresponds to regional tectono-magmatic events, including the Neoar‐
chean alkali magmatism (REE mineralization), Paleoproterozoic plagioclase-amphibolite emplacement
(Fe mineralization), Paleoproterozoic pegmatite magmatism (U mineralization), Paleozoic Shangdan
oceanic slab subduction-related arc magmatism (Cu mineralization), Early Mesozoic Paleo-Tethys
Ocean subduction-related arc magmatism (Mo-U mineralization), and Late Mesozoic Paleo-Pacific oce‐
anic plate subduction direction change-related Mo(-Pb) mineralization. We proposed that the Huayang‐
chuan ore belt has undergone prolonged metallogenic evolution, and the magmatism and associated
mineralization were controlled by regional geodynamic events.
KEY WORDS: Re-Os dating, U-REE-Mo-Cu-Fe mineralization, Huayangchuan ore belt, extra-long
metallogenic history, Qinling Orogen, geochemistry.

0 INTRODUCTION
Accurate determination of mineralization timing is a criti‐

cal aspect in ore deposit research (Tan et al., 2006). Rhenium
and osmium are siderophile and thiophile elements and show
contrasting geochemical behavior in magmatism (Zhang and
Gao, 2012). They are mainly enriched in many sulfides (e.g.,
molybdenite, pyrite, chalcopyrite, arsenopyrite, pyrrhotite) and
magnetite, and are resistant to post-magmatic hydrothermal or

metamorphic disturbance. This allows the Re-Os isotopic sys‐
tematics to be reliable in dating metallic minerals and trace the
metal origin (Wang et al., 2019; Zeng, et al., 2019; Huang et
al., 2014; Jiang et al., 2000 and references therein).

The Huayangchuan ore belt has undergone multi-stage
magmatism (Yang et al., 2019; Xue et al., 2018; Ding et al.,
2016, 2011; Zhang et al., 2015; Hu et al., 2012; Qi et al., 2012;
Jiao et al., 2010; Zhao et al., 2010; Zhu et al., 2008) and hosts
diverse commodities, including mainly Mo, Cu, Fe, U and
REEs (Gao et al., 2019; He et al., 2016; Yuan et al., 2014;
Stein et al., 1997; Huang et al., 1995). However, apart from the
Huayangchuan U-polymetallic, Huanglongpu carbonatite-relat‐
ed Mo, and Jinduicheng porphyry Mo deposits, other REE, Fe
and Cu mineralization occurrences in this belt are poorly docu‐
mented, such as the Caotan Fe, Yuejiawa Cu, Taoyuan Mo-U,
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and Jialu REE deposits. Previous studies proposed that the min‐
eralization mainly occurred in the Mesozoic, which is doubtful
considering the multiphase magmatism and complex geologi‐
cal evolution of this region.

In this contribution, we summarize the geological informa‐
tion of various deposits in the Huayangchuan ore belt, most of
which being firstly documented in this study, and present new
Re-Os isotopic ages of pyrite and magnetite in these deposits.
Integrating our new geochronological results and published
ones from well-known deposits in this belt, we demonstrate
that mineralization in this area comprises at least six phases
and discuss the relationship between mineralization and region‐
al tectonic evolution.

1 GEOLOGICAL SETTING
1.1 Regional Geology

The Qinling Orogen, bounded by the Sanmenxia-Baofeng
fault to the north and the Longmenshan-Dabashan fault to the
south, has experienced a prolonged continental divergence and
convergence between the North China Craton (NCC) and the
Yangtze Craton (YZC) (Fig. 1a; Xue et al., 2020; Bao et al.,

2014). From north to south, the orogen can be divided into the
southern margin of NCC, North Qinling belt, South Qinling
belt, and the northern margin of YZC by the Luonan-Luanchuan
fault, and Shangdan and Mianlue sutures, respectively (Fig. 1b;
Dong et al., 2011; Zhang et al., 1995).

The Huayangchuan U-REE-Mo-Cu-Fe ore belt is located
in the southern margin of the NCC, which consists mainly of
the Archean-Paleoproterozoic basement of the Taihua Group
and Proterozoic volcanic-sedimentary cover of the Xiong’er,
Guandaokou and Luanchuan groups (Zhang et al., 1995). The
Taihua Group is traditionally separated into upper and lower
units by the 2.3 Ga boundary: The lower unit is mainly com‐
posed of amphibolites, gneisses and minor granulites, whilst
the upper unit consists of garnet-sillimanite gneisses, graphite
gneisses, marbles, quartzites, banded iron formations (BIFs),
and minor mafic granulites and amphibolites (Cai et al., 2020).
The Paleo-Mesoproterozoic Xiong’er Group comprises mainly
mafic to felsic volcanic rocks with minor sedimentary and py‐
roclastic rocks, with zircon U-Pb ages of 1.78-1.45 Ga (Cai et
al., 2020). The Mesoproterozoic Guandaokou Group consists of
low-grade metamorphosed terrigenous clastic rocks and marine
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Figure 1. (a) Tectonic map of China showing the location of the Qinling Orogen (after Chen et al., 2010); (b) tectonic subdivision of the Qinling Orogen (after

Yang et al., 2019); (c) simplified geological map of the Huayangchuan ore belt (after Huang et al., 1984).
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carbonates. The Neoproterozoic Luanchuan Group comprises
siliceous/carbonaceous slates, quartzites and marbles (Cao et al.,
2017). Intrusive rocks are widespread in the southern NCC mar‐
gin, including the Archean gneissic tonalite-trondhjemite-
granodiorite (TTG) suite (e.g., Taiyuling and Wengchapu;
Zheng et al., 2020a, b), Paleoproterozoic-Mesoproterozoic
granites (Yuantou and Huayangchuan A-type granites, Xiaohe
gneissic granite; Deng et al., 2019; Xue et al., 2018; Li, 2011)
and mafic dyke swarms (Bi et al., 2011; Wang et al., 2008),
Mesozoic carbonatite dykes (Huangyanchuan and Huanglong‐
pu; Zheng et al., 2020a, b), and granitoid batholiths (Huashan
and Laoniushan; Yang et al., 2019; Hu et al., 2012). Major re‐
gional structures in the southern NCC margin include a series
of nearly EW-trending faults, superimposed by NE-trending
secondary faults and fractures (Zheng et al., 2020a, b), which
control the distribution of some deposits. Apart from dozens of
medium to large Au deposits in the northeastern part of the
southern NCC margin, there are also various other types of de‐
posits in the southwestern part of the margin, including porphy‐
ry Mo (Jinduicheng and Shijiawan), carbonatite-related Mo
(Huanglongpu), U-polymetallic (Huayangchuan), Mo-U
(Taoyuan), Fe (Caotan), Cu (Yuejiawa), and REE (Jialu) ones.

1.2 Geology of Representative Deposits in the Huayang-
chuan Ore Belt
1.2.1 Jialu REE deposit

The Jialu deposit is located in the eastern part of the
Huayangchuan ore belt (Fig. 1c). The deposit was first discov‐
ered in the early 1970s, and contains a reserve of 401.84 t
(Y2O3 + Yb2O3) @ 0.06% (Huang et al., 1972, unpubl. report).

Stratigraphic units at Jialu comprise mainly the Neoarchean-
Proterozoic high-grade metamorphic Taihua Group and Quater‐
nary sediments. The Taihua Group contains mainly (hornblende-
biotite) plagiogneiss. These metamorphic rocks are character‐
ized by obvious fold deformation. Intrusive rocks at Jialu con‐
tain mainly granite stocks and dykes of granitic pegmatite, sy‐
enite porphyry, diabase and lamprophyre. Three major sets of
faults (NE-, NW- and ENE-trending) have been identified. The
orebodies are distributed along the NE-/ENE-trending faults,
and are often crosscut by the NW-trending faults (Fig. 2a;
Huang et al., 1972, unpubl. report).

Based on the orebody occurrence and spatial distribution,
the Jialu REE deposit can be divided into the western and east‐
ern ore section, with the former being more important (Fig.
2a). The orebodies were strictly controlled by the distribution
of quartz-calcite veins (probably carbonatite dykes), which con‐
tain minor coarse-grained pyrite (Fig. 3a). The pyrite is euhe‐
dral cubic and distributes among the calcite with straight
boundary (Fig. 3b), indicating that they were formed simultane‐
ously. Hydrothermal alterations around the orebodies include
K-feldspar-albite and quartz-barite alterations (Fig. 3c). Ore
minerals include mainly bastnaesite, parasite, xenotime, and
monazite (Huang et al., 1972, unpubl. report).

1.2.2 Caotan Fe deposit
The Caotan Fe deposit is located south of the Gangou-

Wengyuling syncline, 1 km northwest of the Huayangchuan de‐
posit (Fig. 1c). The deposit contains a reserve of 65 208 t Fe @
42%. Exposed strata at Caotan include mainly the Taihua
Group (upper unit) and Quaternary sediments (Fig. 2b; Bai et
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Figure 2. Simplified geological map of (a) Jialu REE deposit (after Huang et al., 1972, unpubl. report); (b) Caotan Fe deposit (after Bai et al., 2002, unpubl. re‐

port); (c) Yuejiawa Cu deposit (after Liu, 2002, unpubl. report); (d) Taoyuan Mo-U deposit (after Peng et al., 1983, unpubl. report).
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al., 2002, unpubl. report). The Taihua Group (upper unit) con‐
tains medium-high-grade gneiss, consisting of hornblende pla‐
giogneiss with minor biotite plagiogneiss interlayer and mig‐
matite. The Jurassic-Cretaceous Huashan granitic intrusions
(233-132 Ma) occurred in the northern part of the Caotan de‐
posit (Yang et al., 2019; Hu et al., 2012; Guo et al., 2009 and
reference therein).

The Caotan Fe deposit is hosted in the Taihua Group (up‐
per part) hornblende plagiogneiss, and the orebodies are often
lenticular-shaped (Fig. 2b). The ores are mainly massive,
crumby, disseminated, or lamellar. Major metallic minerals in‐
clude magnetite with accessory chalcopyrite and pyrite, whilst
non-metallic minerals include mainly calcite, tremolite, musco‐
vite, chlorite (Figs. 3d, 3e), and minor phlogopite. Calcite +
pyrite + chalcopyrite veins crosscut the magnetite (Fig. 3e) and
ilmenite crystalized from magnetite (Fig. 3f).

1.2.3 Yuejiawa Cu deposit
The Yuejiawa Cu deposit is located 1 km northeast of the

Huayangchuan deposit and north of the Huayangchuan ductile
shear zone, which is composed of tectonic schist and augen

gneiss (Fig. 1c; Guo et al., 2008). The deposit contains a metal
reserve of 8 642 t Cu @ 1.49%. Exposed stratigraphy at Yuejia‐
wa comprises the Taihua Group biotite ± hornblende plagiog‐
neiss, and biotite-monzonitic migmatite (Fig. 2c; Liu, 2002, un‐
publ. report). The Paleoproterozoic Huayangchuan and Yuan‐
tou granites (~1.8 Ga) were reported locally (Deng et al., 2019;
Yang et al., 2019; Xue et al., 2018).

Mineralization at Yuejiawa occurred mainly in quartz-
sulfide veins and minor in granitic veinlets and cataclastic
gneiss, which is strictly controlled by the NW-/NE-trending
faults (Fig. 2c). A total of eight orebodies have been identified.
Extensive hydrothermal alterations around the orebodies in‐
clude quartz, calcite, pyrite, epidote, sericite, and chlorite (Fig.
3g), with the former three being mineralization-related (Fig.
3h). The ores are mainly massive, vein, disseminated or (local‐
ly) brecciated. Ore minerals comprise dominantly chalcopyrite
(Fig. 3i) and minor bornite, with textures being anhedral-
subhedral and poikilitic (Liu, 2002, unpubl. report). Euhedral-
subhedral pyrite shows straight boundary with chalcopyrite
(Fig. 3i), indicating that they were co-precipitated.

Figure 3. Representative photographs and photomicrographs of mineral assemblages of Jialu REE deposit (a)-(c); Caotan Fe deposit (d)-(f); Yuejiawa Cu de‐

posit (g)-(i); and Taoyuan Mo-U deposit (j)-(l). Mag. Magnetite; Ilm. ilmenite; Hem. hematite; Py. pyrite; Ccp. chalcopyrite; Mo. molybdenite; Kfs. K-feldspar;

Qtz. quartz; Cal. calcite; Brt. barite; Tr. tremolite; Ep. epidote.
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1.2.4 Taoyuan Mo-U deposit
The Taoyuan Mo-U deposit is located 3 km southwest of

the Huanglongpu Mo deposit (Fig. 1c), and contains a reserve
of 24 347.4 t Mo @ 0.08% (U resource data are confidential).
Stratigraphic units at Taoyuan comprise the Proterozoic
Xiong’er and Gaoshanhe groups (Fig. 2d; Peng et al., 1983;
unpubl. report). The Xiong’er Group is composed of (basaltic-)
andesite, andesite porphyrite, tuff and phyllitic tuffaceous slate.
The Gaoshanhe Group consists of tuffaceous slate and meta-
quartz sandstone. Medium-grained biotite monzogranite, gran‐
ite porphyry and minor diabase dykes locally intruded the
Xiong’er and Gaoshanhe groups.

Major structures at Taoyuan include a series of NE-
trending and two NW-trending faults (Fig. 2d). Two lenticular
Mo-U orebodies have been found in the Gaoshanhe Group,
which are strictly controlled by the NE-trending faults. Miner‐
alization is often developed in quartz-sulfide veins (Fig. 3j).
Hydrothermal alterations at Taoyuan include K-feldspar, hema‐
tite, pyrite, biotite, sericite, limonite and silicification (Figs. 3k,
3l). Metallic minerals include mainly molybdenite, pyrite, chal‐
copyrite, galena, pitchblende, coffinite, and uranium blacks
(Peng et al., 1983; unpubl. report), with the molybdenite com‐
monly coexisting with pyrite (Fig. 3k). The ores occur mainly
as veinlet and stockwork, and locally breccia.

2 SAMPLING AND ANALYTICAL METHODS
Based on detailed field geological investigation and macro/

microscopic textural observations, four pyrite samples from Ji‐
alu, four pyrite samples from Yuejiawa, and four magnetite
samples from Caotan of the main ore stage were collected to
constrain the formation ages of these deposits. For the Taoyuan
deposit, due to strong weathering of the surface samples, the
purity of separated molybdenite is not sufficient for Re-Os dat‐
ing, thus only two pyrite samples were Re-Os dated. The pyrite
and magnetite grains were separated by heavy liquid and mag‐
netic techniques, respectively. They were then purified by
hand-picking under a binocular microscope and examined us‐
ing X-ray to ensure 99% purity. Before the analysis, the pyrite
and magnetite samples were crushed and powdered to 40-60
mesh using an agate mortar.

Pyrite and magnetite Re-Os dating was carried out at the
State Key Laboratory of Continental Dynamics, Northwest
University (NWU). Approximately 0.5-2.0 g of the pyrite and
magnetite powder were weighed and placed into Carius tubes.
Appropriate amounts of the individual 185Re and 190Os spike so‐
lutions, 2.5 mL concentrated HCl and 7.5 mL concentrated
HNO3 were accurately measured and carefully added. Then,
the bottom parts of the Carius tubes were chilled in a bath con‐
taining a freezing liquid nitrogen and ethanol mixture. When
the liquid in the Carius tubes was frozen completely, the top of
Carius tubes were carefully sealed using a natural gas torch,
and then placed in a stainless-steel jacket and heated in an ov‐
en at 230 °C for 24 h. After dissolution, the Carius tubes were
again chilled in the liquid nitrogen-ethanol bath before open‐
ing. After thawing, the contents were poured into 50 mL centri‐
fuge tubes to allow precipitation of the residual solids. The su‐
pernatant solutions were transferred into 33 mL PFA vials and
subjected to Os solvent extraction by CCl4, followed by back-

extraction into concentrated HBr at room temperature. The ex‐
tracted Os fraction was further purified by micro-distillation
and loaded onto 99.999% Pt filaments, then Ba(OH)2 emitter
solution was loaded on top of the sample to enhance the ion
emission (Birck et al., 1997). After the Os extraction, the re‐
maining Re-bearing solutions were evaporated to dryness, and
the residues were dissolved in 1 mL HCl (6 mol/L). The solu‐
tions were again evaporated to dryness, and the residues were
re-dissolved in 10 mL HCl (1 mol/L) on a hot plate at 80 °C
for 50 minutes. Bio-Rad Poly-Prep columns filled with 2.0 mL
pre-cleaned anion exchange resin were used for the Re separa‐
tion and purification (Morgan and Walker, 1989). Isotopic com‐
positions of the purified Re factions were measured using ICP-
MS. The Os isotopes were measured with a Thermo Finnigan
Triton thermal ionization mass spectrometer in negative ioniza‐
tion mode (N-TIMS). Detailed analytical procedures are as
those described in Li et al. (2014). Uncertainties were deter‐
mined by the uncertainties of the blank at the 2σ level. The
187Re decay constant of 1.666 × 10-11 a-1 (Smoliar et al., 1996)
and Re-Os isochron ages were calculated using Isoplot ver. 3.0
(Ludwig, 2003).

3 RESULTS
The total Re and Os concentrations in the Jialu pyrite are

of 27.70 ppt-90.40 ppt and 4.15 ppt-82.80 ppt, respectively,
with 187Re/188Os = 5.31-64.90 and 187Os/188Os = 0.20-2.90 (Ta‐
ble 1). The low ratios of 187Re/188Os (<5 000) and 187Os/188Os
(<50) indicate that these samples are typical magmatic sulfides
and the traditional 187Re/188Os versus 187Os/188Os isochron ages
are appropriate for them (Stein et al., 2000). Four pyrite sam‐
ples yielded a well-defined 187Re/188Os versus 187Os/188Os iso‐
chron age of 2 675 ± 410 Ma (MSWD = 0.55; initial 187Os/188Os
ratio = -0.041 ± 0.040; Fig. 4a), and plot closely along the Re-
Os isochron, indicating that the dates are credible.

The Caotan magnetite samples have total Re and Os con‐
centrations of 17.90 ppt-26.70 ppt and 0.82 ppt-2.05 ppt, re‐
spectively, with 187Re/188Os = 62.70-702.00 and 187Os/188Os =
3.91-29.40 (Table 1). They also have low ratios of 187Re/188Os
and 187Os/188Os, indicating that the magnetite samples are typi‐
cal oxides and the traditional 187Re/188Os versus 187Os/188Os iso‐
chron ages are suitable for them (Stein et al., 2000). Four mag‐
netite samples yielded a well-defined Re-Os isochron age of
2 127 ± 208 Ma (MSWD = 1.9), with an initial 187Os/188Os ratio
of 1.61 ± 0.46 (Fig. 4b). According to the isotope equation of
Walker et al. (1994) and Selby et al. (2007), the calculated
magnetite individual model ages range from 2 929 to 2 124 Ma
(Table 1), with a weighted average model age of 2 105 ± 380
Ma. This is consistent with the isochron age of 2 127 ± 208
Ma, suggesting that the 187Re/188Os versus 187Os/188Os isochron
age is robust.

The Yuejiawa pyrite samples contain relatively high Re
(1 637.00 ppt-8 021.00 ppt) but low Os (5.83 ppt-27.90 ppt)
contents, with 187Re = 1 025.00 ppt-5 021.00 ppt and 187Os =
8.27 ppt-36.50 ppt. These features are similar to the molybde‐
nite samples, with over half of 187Os in the total Os, indicating
that the pyrite are low level highly radiogenic minerals (LLHR
minerals; Stein et al., 2000). Thus, the traditional 187Re versus
187Os isochron age is likely suitable. Four pyrite samples yield‐
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ed a well-constrained 187Re versus 187Os isochron age of 418 ±
23 Ma (MSWD = 11.5; initial 187Os/188Os = 1.2 ± 1.5; Fig. 4c).
Using the isotope equation of tmodel = ln (187Os/187Re + 1)/λ,
where λ = 1.666 8×10-11 (Selby et al., 2007; Smoliar et al.,
1996), the calculated individual pyrite model ages range from
480 to 426 Ma, with the weighted average model age of 440 ±
36 Ma. The consistency between the weighted average model
age and 187Re versus 187Os isochron age indicates that the latter
is reliable.

The Taoyuan pyrite samples also have high Re (9 093.00
ppt-9 104.00 ppt) and low Os (23.70 ppt-23.80 ppt) concentra‐
tions, similar to the Yuejiawa pyrites and can be defined as the
LLHR mineral. However, the 187Re versus 187Os isochron age is
not available due to only two samples. Previous studies sug‐
gested that the Re-Os model age can be preferred for dating
LLHR samples (Selby et al., 2009; Stein et al., 2000). Thus, we
consider that the Re-Os model age can represent the timing of
Taoyuan pyrite mineralization. The two pyrite samples have
187Os/187Re = 0.004 173 and 0.004 158, with corresponding
model age of 238 and 233 Ma, respectively, yielding a weight‐
ed average model age of 235 ± 14 Ma (MSWD = 0.17;
Fig. 4d).

4 DISCUSSION
4.1 Archean REE Mineralization

Previous studies suggested that the Jialu is a medium-high
temperature quartz-carbonatite-type REE deposit (Huang et al.,
1972; unpubl. report). Our observations show that the pyrite is
intergrown with quartz and calcite (Figs. 3a, 3b), and thus the
pyrite age can represent the quartz-carbonatite vein intrusion
age. Considering that the REE mineralization commonly oc‐
curs in these veins, similar to many other carbonatite-hosted

REE deposits (e.g., the giant Bayan Obo REE deposit; Li et al.,
2021), we infer that the Jialu REE mineralization occurred at
ca. 2 675 Ma.

This Neoarchean ore-forming age at Jialu is broadly co‐
eval with the widespread TTG magmatism (ca. 2 802-2 506
Ma) in the Xiaoqinling District (Jia, 2016), which were mainly
derived from the juvenile crust source and represent the Meso-
Neoarchean NCC crustal growth (Jia et al., 2020; Diwu et al.,
2018). This implies that the tectonic events in ca. 2.8-2.5 Ga
may have formed both voluminous magmatic rocks and alkali-
magmatism-related REE mineralization. Our new age data and
published ones indicate that the Jialu REE deposit may repre‐
sent the earliest mineralization event in the Xiaoqinling dis‐
trict, yet there is no other analogical quartz-carbonatite-type
REE deposit reported, and the adjacent Huayangchuan and
Huanglongpu carbonatites were dated to be ca. 220-200 Ma
(Fig. 5; Zheng et al., 2020a, b; Song et al., 2016). Therefore,
any genetic link between these carbonatite-related deposits in
this region remains unclear.

4.2 Proterozoic Fe and U Mineralization
The Caotan Fe deposit is mainly composed of magnetite,

calcite and some tremolite (Fig. 3d), which is distinct from typ‐
ical BIFs. The distinction is also evidenced from the ilmenite
precipitating from magnetite and calcite-sulfide veinlets cross‐
cutting magnetite (Figs. 3e, 3f). These features are partially
similar to skarn-type Fe deposit. Four Caotan magnetite sam‐
ples yielded Re-Os isochron age of 2 127 ± 208 Ma (MSWD =
1.9) and weighted average model age of 2 105 ± 380 Ma, im‐
plying that the mineralization occurred in the Paleoproterozoic.

Similar Paleoproterozoic ages were reported for the TTG
rocks, dioritic gneiss, and the plagioclase-amphibolite in the
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Xiaoqinling District (ca. 2 360-2 240 Ma, peak 2 310 Ma) (Di‐
wu et al., 2018; Jia, 2016). Some younger zircons (ca. 2 192-
2 152 Ma) from the TTG rocks were interpreted to be late mag‐
matic (Jia, 2016), and thus the Caotan Fe mineralization was
likely caused by the 2.3-2.2 Ga magmatism (probably forming
the protolith of plagioclase amphibolite), which was resulted
from the crustal reworking and reconstruction in the Xiaoqin‐
ling District (Diwu et al., 2018; Jia, 2016). Given the 2.45-
2.20 Ga global magmatic quiescence (Condie and Aster, 2010;
Condie et al., 2009), the coeval Caotan Fe mineralization and
associated magmatism may have some important implications
for the evolution of the Qinling Orogen.

Moreover, 1.9-1.8 Ga metamorphic zircons are common
in the Taihua Complex (Diwu et al., 2018), coeval with the ca.
1.9-1.8 Ga regional metamorphic event in the NCC (Jia,
2016). This metamorphic event is also accompanied by some ~
1.8 Ga pegmatite-hosted U deposits in the NCC, including the
Lianshanguan, Wengquangou, Pinglu 405, and Hongshiquan
(Jiang et al., 2020 and reference therein). This indicates that
the ~1.8 Ga uranium mineralization occurred widely in the
NCC, which is also supported by the discovery of the Huayang‐
chuan K-feldspar pegmatite bearing U (-REE) mineralization
in the Xiaoqinling District (Fig. 5; Jiang et al., 2020).

4.3 Paleozoic Cu Mineralization
The Yuejiawa Cu mineralization is fault-controlled and oc‐

curs mainly in quartz-sulfide veins, with coexisting pyrite and
chalcopyrite (Fig. 3i). Thus, the Late Silurian-Early Devonian
pyrite Re-Os isochron age (418 ± 23 Ma) can approximate the
Cu mineralization age. However, no coeval magmatism was re‐
ported in the southern NCC margin. Considering the Shangdan
oceanic slab may have subducted underneath the North Qinling
belt in the Early Paleozoic, forming many arc-related gabbroic
and granitic intrusions with ages of ca. 514-420 Ma (Dong and
Santosh, 2016), we infer that the Yuejiawa Cu mineralization

(in the southern NCC margin) was formed by far-field effect of
the Shangdan Ocean closure. This is supported by the neighbor‐
ing Huayangchuan ductile shear zone (active at ca. 419-417
Ma), which was interpreted to be resulted from the tectonic de‐
formation of Caledonian North Qinling orogeny (Guo et al.,
2008). The adjacent location and highly similar age between
the Yuejiawa Cu mineralization and the Huayangchuan ductile
shear zone suggest that they may have been genetically related
to the Early Devonian North Qinling orogeny.

4.4 Mesozoic Mo, U and Pb Mineralization
The Taoyuan Mo-U deposit is hosted by the Gaoshanhe

Group meta-quartz sandstone and controlled by NE-trending
faults. The molybdenite and pyrite are often intergrown, indi‐
cating that they are coeval (Fig. 3k). Thus, the calculated pyrite
weighted average model age of ca. 235 ± 14 Ma can represent
the timing of Mo-U mineralization. This age is broadly similar
to the mineralization ages of the Huayangchuan U-polymetallic
(209-181 Ma; Zheng et al., 2020a; Qiu et al., 1993; Yu,1992),
Huanglongpu Mo (231-206 Ma; Song et al., 2016; Stein et al.,
1997; Huang et al., 1995, 1984), and Xigou Mo (212.4 Ma; Yu‐
an et al., 2014) deposits. Moreover, the Wenyu hornblende
monzogranite (205 ± 2 Ma) and Huayangchuan granodiorite
(233.3 ± 1.4 Ma) in the Huashan pluton (Yang et al., 2019; Hu
et al., 2012), and the adamellite (223 ± 1 Ma), granodiorite
(222 ± 1 Ma), and coarse-grained biotite monzogranite (214 ±
1 Ma) in the Laoniushan pluton (Qi et al., 2012) all have simi‐
lar ages. These magmatic and mineralization ages coincide
broadly with the Triassic NCC-YZC continental collision (Zhu
et al., 2011), which occurred after the westward zipper-like clo‐
sure of the Qinling Paleo-Tethyan Ocean in ca. 230-200 Ma
(Zhu et al., 2011; Chen, 2010). Thus, we infer that the Late Tri‐
assic intra-continental Qinling orogeny has formed these volu‐
minous magmatism and widespread Mo-U mineralization.

Subsequently, the Qinling Orogen underwent a tectonic
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transition due to the Paleo-Pacific subduction direction change
(from NS- to EW-directed) at ~145 Ma (Lu, 1998; Zhao et al.,
1994; Ren, 1991), accompanied by extensive magmatism well
dated to be ca. 160-110 Ma (Yang et al., 2019; Wang et al.,
2013). Coeval mineralization also occurred in the Xiaoqinling
District, including the Shijiawan (141 ± 0.6 Ma; Zhao et al.,
2013) and Jinduicheng (143.7 ± 3 Ma; Jiao et al., 2010) por‐
phyry Mo deposits, and the overprinting mineralization in the
Huayangchuan U-polymetallic deposit (~129 Ma; Zheng et al.,
2020a; Gao et al., 2019).

4.5 Extra-Long Metallogenic History of the Huayang-
chuan Ore Belt

Ore deposits in the Huayangchuan ore belt yielded radio‐
metric ages ranging from the Neoarchean to the Late Mesozo‐
ic, showing an extra-long metallogenic history. They have dis‐
tinctive geological features or are hosted by different litholo‐
gies, and their formation was likely all related to the regional
multistage tectono-magmatic evolution (Fig. 5).

The Archean Jialu quartz-carbonatite-type REE mineral‐
ization is closely related to the ~2 675 Ma alkali magmatism,
resulting from the NCC crustal growth. The REE mineraliza‐
tion may have resulted from the extensive fractionation of car‐
bonatite magma and the metasomatism by late carbonatite
magmatic-hydrothermal fluid, and the ore-forming material
was mainly derived from the carbonatite magma, similar to the
Bayan Obo and Maoniuping REE deposits (Fan et al., 2020).
The Paleoproterozoic Caotan Fe deposit and the early-stage U
mineralization at Huayangchuan may have had genetic link
with the ~2.3 Ga plagioclase amphibolite and ~1.8 Ga pegma‐
tite, respectively, which were likely generated by the NCC
crustal reworking and the subsequent regional metamorphism.
The Caotan Fe deposit is probably skarn-type, whose ore-
forming material was mainly sourced from intermediate-mafic
magmas, whilst the Huayangchuan U mineralization at this
stage is probably pegmatite-type. The Paleozoic Yuejiawa
quartz-sulfide vein-type Cu deposit (418 ± 23 Ma) has similar
formation age to the Tongyu (Cu-Zn; 448 ± 23 and 390 ± 19
Ma) and Laochang (Pb-Zn-Cu; 440-406 Ma) VHMS deposits
in the North Qinling belt, which may have also related to the
north-dipping subduction of the Shangdan oceanic slab in the
Early Paleozoic (Yan et al., 2017; Xiong et al., 2016). The simi‐
lar tectonic background indicates that the ore-forming material
at Yuejiawa may have derived from partial melting of the man‐
tle wedge, similar to the Tongyu Cu deposit (Xiong et al., 2016).
The Early Mesozoic Taoyuan quartz-sulfide vein-type Mo-U de‐
posit has similar mineralization age to the Huayangchuan,
Huanglongpu and Xigou deposits, which may have caused by
the final closure of Qinling Paleo-Tethys Ocean. Their ore-
forming fluids were interpreted to be sourced from the deep
source or upper mantle (Dai et al., 2018; Huang et al., 2009).
However, the Late Mesozoic Jinduicheng and Shijiawan por‐
phyry Mo deposits may have associated with subduction of the
Paleo-Pacific oceanic plate, and the ore-forming material was
mainly lower crust-derived (Zhao et al., 2013; Jiao et al., 2010).

5 CONCLUSIONS
(1) Pyrite and magnetite Re-Os dating yielded very differ‐

ent ages for the mineralization at the Jialu REE (~2 675 Ma),
Caotan Fe (~2 127 Ma), Yuejiawa Cu (~418 Ma), and Taoyuan
Mo-U (~235 Ma) deposits in the Huayangchuan ore belt.

(2) Mineralization in the Huayangchuan ore belt displays
an extra-long metallogenic history, and likely occurred in re‐
sponse to regional tectono-magmatic events.
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