
REVIEW

Visualization of the spatial and temporal dynamics of MAPK
signaling using fluorescence imaging techniques

Taichiro Tomida

Received: 1 July 2014 / Accepted: 7 August 2014 / Published online: 22 August 2014

� The Physiological Society of Japan and Springer Japan 2014

Abstract Conserved mitogen-activated protein kinase

(MAPK) signaling pathways are major mechanisms

through which cells perceive and respond properly to their

surrounding environment. Such homeostatic responses

maintain the life of the organism. Since errors in MAPK

signaling pathways can lead to cancers and to defects in

immune responses, in the nervous system and metabolism,

these pathways have been extensively studied as potential

therapeutic targets. Although much has been studied about

the roles of MAPKs in various cellular functions, less is

known regarding regulation of MAPK in living organisms.

This review will focus on the latest understanding of the

dynamic regulation of MAPK signaling in intact cells that

was revealed by using novel fluorescence imaging tech-

niques and advanced systems-analytical methods. These

techniques allowed quantitative analyses of signal trans-

duction in situ with high spatio-temporal resolution and

have revealed the nature of the molecular dynamics that

determine cellular responses and fates.

Keywords MAPK � Fluorescence imaging � Systems

analysis � Environmental response

Introduction

Intracellular signaling events in cells of living organisms

regulate a vast array of cellular functions to maintain the

life of the organisms. Cells must obtain proper infor-

mation about the microenvironment surrounding them

and adapt to this by inducing gene expression, cellular

proliferation, differentiation or even cell death. Cells

sense chemical or physical environments, pass this

information to the inside of cells through the plasma

membrane, process information according to the cellular

context and induce a proper cellular response during the

decision-making process.

Accumulating evidence based on genetic and molecular

biological studies has proven that a large number of mol-

ecules are involved in this process. More recent progress in

high-throughput analysis of cellular signaling molecules

has added evidence of complex connections and regula-

tions among molecules that comprise a huge intracellular

signaling network whose regulation is far beyond our

imagination. Due to the technical limitations of the previ-

ous methods used for analysis, how those molecules

behave in cells of living intact animals has long been

unknown.

In the last 3 decades, application of fluorescent

proteins in analyzing intracellular signaling by fluo-

rescence imaging has been steadily developed and

improved. As a consequence, the spatiotemporal

dynamic behaviors of these signaling molecules are

finally beginning to be unraveled. The aim of this

review is to survey recent advancements in our

understanding of the regulation and function of the

dynamically behaving signaling molecules that occur

in vivo. Based on recent studies on MAPK signaling

dynamics, how and why cells utilize such dynamic

signaling will be described. The imaging methods

indispensable for analyzing the dynamic signaling

in vivo will be also introduced in this review.
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Versatile MAPK signaling in eukaryotes

A conserved three-tiered cascade of kinases

Signaling by the MAPK family is a major mechanism

through which cells respond to a variety of stimuli from the

extracellular environment [1, 2]. Molecules that comprise

the core of MAPK signaling are evolutionarily conserved

among eukaryotes from yeasts to mammals. MAPKs are

activated via a three-tiered cascade of kinases, which is

composed of a MAPK, a MAPK kinase (MAP2K) and a

MAPK kinase-kinase (MAP3K). Several subfamilies of

MAPK cascades coexist in mammalian cells: the growth-

promoting extracellular signal-regulated kinase (ERK)

family and growth-suppressing stress-activated protein

kinase (SAPK) families, namely the c-jun N-terminal kinase

(JNK) and p38 families. The relatively recently discovered

ERK5 is also ubiquitously expressed in mammalian cells. In

addition, atypical MAPK families (ERK3/4, ERK7/8) that

have distinct regulation and functions were also discovered.

Although we mainly focus on conventional MAPKs in this

review, interested readers are encouraged to consult com-

prehensive reviews [3, 4].

Regulation of MAPK subfamilies

Of these MAPK family cascades, the ERK family cas-

cade is the best studied. In the ERK cascade, a cell

surface receptor is first stimulated by a growth factor

(i.e., a mitogen). The activated receptor (typically a

tyrosine kinase-type receptor such as epidermal growth

factor receptor, fibroblast growth factor receptor or

platelet-derived growth factor receptor) then induces

activation of the small G protein Ras, which activates

the MAP3K Raf. Activated Raf then phosphorylates its

cognate MAP2Ks (MEK1/2), which subsequently phos-

phorylate a downstream MAPKs (ERK1/2). In this

manner, information from growth factors or mitogens

outside the cells is transmitted to the cytoplasm and the

nucleus in the form of activated ERK.

The JNK and p38 MAPK family cascades are initiated

by physiological mediators such as transforming growth

factor-ß (TGF-ß), tumor necrosis factor-a (TNF-a) and

interleukin-1ß (IL-1ß) as well as by environmental

(physical and chemical) stresses such as ultraviolet light,

gamma rays, translation inhibitors, hyperosmotic stress

and oxidative stress. Similarly to the ERK cascade, small

GTPases act upstream of the p38 and JNK cascades, but

in these cases the relevant GTPases are Cdc42, Rac and

Rho. The specific stress-activated MAP2Ks are activated

by diverse MAP3Ks including MEKK1/2/3, MTK1,

TAK1, ASKs, MLKs and TAOs [5]. The p38 kinase is

activated mainly by the MKK3 and MKK6 MAP2Ks,

whereas JNK is activated by the MKK4 and MKK7

MAP2Ks. Involvement of a large number of upstream

stress MAP3Ks in these cascades presumably reflects the

diversity of the physiological mediators and stress stimuli

that activate these cascades [6]. However, the molecular

mechanisms by which various stress stimuli activate

MAP3K are still largely unknown. Many of the stress

MAP3Ks are shared in the JNK and p38 pathways, and

some of them (MEKK2/3) are also commonly utilized in

the ERK5 pathway. Actually, ERK5 can respond to

several types of stresses as well as to growth factors [4]

(Fig. 1).

Specific docking domains and scaffold proteins

The specificity of a signaling cascade should be main-

tained throughout the cascade. It is therefore of interest

to determine how the signal of an activated MAP3K is

correctly transmitted to its cognate MAP2K and MAPK

and how closely related (homologous) MAP2Ks and

MAPKs are discriminated against. In general, the inter-

action between the catalytic center of a kinase and

phospho-acceptor site of a substrate is an important

factor for determining the specificity of their interaction.

Indeed, mammalian MAPKs specifically phosphorylate a

Ser/Thr-Pro motif in their substrates, and MAP2Ks

phosphorylate threonine and tyrosine residues in the Thr-

Glu-Tyr, Thr-Gly-Tyr or Thr-Pro-Tyr motifs of their

substrates [7, 8]. In addition to the substrate site speci-

ficity, several other mechanisms ensure a specific kinase-

substrate interaction in the MAPK cascades. A docking

domain located at the C-terminus of MAP2Ks (the DVD

domain) allows specific interaction between MAP3Ks

and their cognate MAP2Ks [9]. Similarly, a conserved

CD docking domain of MAPKs binds to the MAPK-

binding domain (the D-domain) of the MAP2Ks, MAPK

phosphatases and MAPK substrates [10]. In addition to

the D-domain, ERK-MAPK recognizes another docking

motif (DEF domain), and both the D-domain and DEF

domain contribute to binding specificity to ERK [4]. In

fact, the fidelity of the signaling cascade can be achieved

by specific docking interactions between the kinases and

their substrates [11–14]. Specific physical interactions

between components of the cascade can also be achieved

by scaffold proteins. Scaffold proteins, such as KSR-1

and ß-arrestin, bind the MAPK, MAP2K and MAP3K of

a particular cascade and bring them together to form a

functional signaling complex [15–17]. The scaffold

complexes may also include upstream GTPases and

cytoskeletal components as well as cell surface receptors

[18–20].
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Visualization of signal transduction

Monitoring the dynamics of signaling molecules using

fluorescent proteins

Rapid advances in fluorescence technology have made a

new trend in biological studies toward analysis of the

behavior of a molecule in live cells, tissues and organisms

under physiologically relevant conditions instead of ana-

lysis using fixed samples. In particular, the use and appli-

cation of fluorescent proteins (FPs) have been significantly

improved in recent years so that FPs are now indispensable

tools to study intracellular signal transduction. We will

therefore first describe FP-based imaging methods.

Signaling molecules often change their properties upon

activation, including changes in subcellular localization,

protein-protein interaction (or interaction with other mol-

ecules such as DNA or RNA) and protein conformation. In

addition, changes in the status of post-transcriptional

modifications (such as phosphorylation, acetylation,

glycosylation or ubiquitination) are also frequent events in

signal activation. For example, ERK resides in the cyto-

plasm in its resting state, but translocates into the nucleus

upon activation by MEK. To monitor the ERK localization

in cells, an approach is to exogenously express an ERK-

green fluorescent protein (GFP) fusion protein in cells and

to obtain time-lapse fluorescence images in real time [21,

22]. Similarly, changes in the subcellular distribution of

almost any molecule can be monitored using a fairly simple

method (Fig. 2a). Currently, a variety of FP colors has been

developed whose range spans almost all visible wave-

lengths [23] as well as invisible ones near infrared [24, 25].

The wide selection of FPs allows multiplex analyses by

using several differently labeled molecules simultaneously

[26]. FPs with unusual photo-physical properties have also

been developed. Ando and colleagues, for example,

developed a reversible light-switchable FP (Dronpa) [27].

By using Dronpa, they succeeded in measuring the rates of

ERK nuclear import and export separately, a difficult

problem to address using previous methods. More recently,
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Fig. 1 Schematic diagrams of conventional MAPK signaling cas-

cades. Mammalian cells simultaneously express several subfamilies

of MAPK cascades. They include the growth-promoting extracellular-

signal regulated kinase (ERK) family and the growth-suppressing

stress-activated protein kinase (SAPK) families, the JNK and p38, and

the relatively recently discovered ERK5. The ERK family cascade

consists of a three-tired kinase cascade of a MAP3K (Raf), MAP2K

(MEK) and MAPK (ERK). Activation of a small-G protein Ras

triggers the activation of Raf and thus begins the cascade. Similarly, a

wide variety of stresses activates the SAPK cascades via diverse stress

MAP3Ks and their activators. Although there are at least 14 stress

MAP3Ks, many fewer MAP2Ks (MKK3/4/6/7) and MAPKs (p38a/ß/

c/d and JNK1/2/3) function in the stress response pathway. The

activators of stress MAP3Ks include the small-G proteins (Rac, Rho

and Cdc42), TRAFs and GADD45s. The MEK5-ERK5 pathway is

also activated by several types of stresses and growth factors and

shares some stress MAP3Ks (MEKK2/3) with JNK and p38. Arrows

indicate the activation signal. Abbreviations used in this figure are as

follows: MEK MAPK/ERK kinase, MEKK MEK kinase, MLK mixed-

lineage kinase, TAK1 transforming growth factor ß-activated kinase,

MTK1 MAP three kinase 1, ASK apoptosis signal-regulating kinase,

TAO thousand and one amino-acid kinase, Tpl tumor progression

locus, TRAF tumor necrosis factor receptor-associated factor, GADD

growth arrest and DNA damage-inducible protein
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super-resolution imaging techniques using the light-

switchable FP have been developed, and the techniques

permit us to achieve image resolution at *20 nm beyond

the diffraction limit [28]. The invention and use of novel

FPs [29] have therefore enabled much deeper understand-

ing of how intracellular molecules are dynamically regu-

lated in a cell.

FP-based FRET imaging

Signaling events are often accompanied by intermolecular

interactions. Thus, methods have been devised based on the

Förster resonance energy transfer (FRET) to determine

how protein-protein interactions occur in situ [30]. FRET is

a phenomenon in which an excited donor fluorophore

transmits its energy to a neighboring acceptor fluorophore

without irradiative emission, thereby inducing fluorescence

emission from the acceptor fluorophore. Therefore, FRET

allows optical measurement of changes in the distance

between two molecules. For example, when cyan FP and

yellow FP are positioned close together, the light-excited

cyan FP (donor), instead of emitting blue radiation, trans-

fers the energy to the yellow FP (acceptor), which then

emits yellow light. The efficiency of FRET is mainly

determined by three factors under the given experimental

conditions: (1) the distance between the donor and accep-

tor, (2) the orientation factor, which is determined by the

directions of the emission transition dipole of the donor and

the absorption transition dipole of the acceptor, and (3) the

spectral overlap of emission and excitation wavelengths of

the two fluorophores (see review [30] for details). By

expressing FP-fused target proteins in living cells, changes

in the distances (and orientations) of the target molecules

can be optically measured as a change in FRET efficiency

(Fig. 2b). Importantly, FRET efficiency is inversely pro-

portional to the sixth power of the distance and highly

sensitive to distance changes in the range of 1–10 nm.

Since this distance range is also suitable for detecting

conformational changes within proteins, a change in the

intramolecular conformation can be detected by FRET

analysis by fusing both donor and acceptor FPs to the same

target protein (Fig. 2c).

Monitoring the endogenous activity of the signaling

molecules using FRET biosensors

Sophisticated FRET-based biosensors have been developed

that allow detection of endogenous activities of signaling
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Fig. 2 FP-based analysis of cellular signaling. The behavior of a

molecule in a living cell can be analyzed using fluorescent proteins

(FPs). a A subcellular localization (or translocation) of a protein can

be visualized by expressing FP-fused protein in cells. b The

intermolecular interaction can be optically measured as changes in

the FRET efficiency between two fused FPs, respectively, to the two

target proteins. c The intramolecular protein conformational change

can be detected by measuring the FRET efficiency between two FPs

fused to the same target protein. d Measurement of protein kinase

activity by a FRET-based sensor. The sensor includes a

phosphorylation site specific to the kinase and the phospho-amino

acid binding domain as well as two FPs located, respectively, at the N

and C termini. Phosphorylation of the substrate region by an

endogenous kinase allows it to bind to the phospho-amino acid

binding domain within the sensor, and the resulting intramolecular

conformational change between two FPs can be detected as an

increase in FRET efficiency. Similarly, other post-translational

modifications, such as glycosylation, methylation and ubiquitination,

can also be visualized by including a specific binding domain for the

modified peptide in place of the phospho-amino acid binding domain

40 J Physiol Sci (2015) 65:37–49

123



molecules. Biosensors for Ca2? [31], PKA [32] and small

GTPases [33, 34] were some of the earliest sensors to be

developed. Small GTPase sensors have been useful for

analysis of MAPK activation. The active GTP-bound form

of the small GTPase Ras binds to and activates the MAP3K

Raf. Thus, activation of Ras can be detected by monitoring

the Ras-Raf interaction. In 2001, Mochizuki and colleagues

developed a single-molecule FRET sensor for Ras activa-

tion that consists of yellow FP, Ras, Raf and cyan FP

connected in series with optimized amino acid linkers.

Using this sensor, they succeeded in visualizing growth

factor-dependent Ras activation in living cells [33]. Soon

thereafter, biosensors for endogenous kinase activity were

reported [35]. Kinase activity sensors in general include a

phosphorylation site specific to the kinase linked in tandem

to the phospho-amino acid binding domain and two FPs

(cyan and yellow) at the N and C termini, respectively

(Fig. 2d). Phosphorylation of the substrate site by endog-

enous kinase allows it to bind to the phospho-amino acid

binding domain in the sensor, which leads to a closer

association between the FPs. Thus, endogenous kinase

activity can be measured as an increase in FRET efficiency.

Kinase activity sensors for ERK (i.e., ERKus [36], EKAR

[37] and ERKy [38]) and JNK (i.e., dJUN-FRET [39],

JNKAR1 [40] and JuCKY [41] ) have been reported. A

reporter for stress-responsive MAP3K (SAP3K) was also

developed in a similar manner, but it included a modifi-

cation to the general kinase reporter [42]. In the SAP3 K

reporter, the C-lobe region of a MAP2K (MKK6) was used

instead of the short substrate peptide in the MAPK reporter

because inclusion of the MAP3K-specific docking site in

the C-lobe region of MAP2K increases the efficiency and

specificity of MAP3K-dependent phosphorylation [9].

Representative FRET-based observations on MAPKs and

their related signaling are summarized in Table 1.

Advanced methods for the generation and use of FRET

sensors

Development of a FRET sensor is a laborious process

since even a single amino-acid substitution might greatly

affect its properties because of the high sensitivity of the

FRET efficiency to the distance between the FPs and

their relative orientation. To mitigate this difficulty,

methods have been reported that rationally design FRET

sensors or optimize their sensitivity. These include

modification of the FPs themselves [43–47] and optimi-

zation of the arrangement of domains and linker regions

in between the FPs [48–50]. An increasing number of

FP-based FRET reporters now allow detection of a

variety of molecular activities as well as a variety of

environmental factors such as membrane potential [51–

53], pH [54], temperature [55] and Redox states [56–59].

For the list of recently developed sensors, see the com-

prehensive reviews [60, 61].

To determine how cells recognize and properly adapt to

their surrounding environment, multiparametric analysis

will be helpful for understanding how environmental

information is transduced from one molecule to another.

For this, several methods have also been developed that

allow simultaneous imaging of one FRET sensor together

with a second FRET sensor [62–65] (for a review, see

[66]).

It should be noted that the FRET signal might result in

false negatives attributed to the inadequate orientation of

the FPs even when the two FP-fused proteins are inter-

acting and the donor and acceptor are in close proximity.

Conversely, intrinsic weak affinity of FPs for each other

may cause a false-positive FRET signal especially when

the effective concentration of the sensor is increased, for

example, by anchoring the sensor to the microdomain of

the plasma membrane [43]. The FP fused protein becomes

substantially larger than the corresponding endogenous

protein, and the attached FP might interrupt naturally

occurring protein-protein interactions. As for any other

kind of sensor, it is important to confirm that the sensor

selectively and accurately reports the status of endogenous

protein activity. It should be additionally emphasized that

the observed signal results from mutual interactions

between the sensor and the endogenous signaling mole-

cules, hence suffer from the artifact attributed to the

expression of the sensor by itself. For example, the intra-

cellular signaling might be perturbed by the stoichiometric

changes due to overexpression of the sensor.

The advantages of FP-based FRET over other reporters

(i.e., chemical fluorescent dyes) are that these genetically

encoded sensors can be easily transferred into target cells

by means of virus infection, DNA (RNA) transfection or

electroporation not only in cultured cells, but also in intact

animal cells, and that their expression can be precisely

controlled using tissue-specific or inducible promoters.

Spatial regulation of MAPK

Stimulus-specific distinction in the MAPK activation

locus

Important questions in MAPK signaling are how MAPKs

discriminate between types of stimuli and how they induce

a proper adaptive response. FRET studies have revealed the

importance of the localization of signaling proteins to

appropriate subcellular compartments for their function.

Uhlik and colleagues analyzed how intracellular p38 sig-

naling is initiated in cells during hyperosmotic sorbitol

stimulation [67]. For this, they explored protein-protein
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interactions of signaling components in situ by FRET

imaging. They showed that MEKK3 (MAP3K) forms a

complex with a novel scaffold protein (OSM) in the

cytoplasm and that this complex rapidly moves to actin-

containing membrane ruffles upon hyperosmotic sorbitol

cellular stimulation, where Rac-MEKK3–MKK3 was

activated in a series upstream of p38. This study suggested

that signaling proteins can be activated only at a specific

locus depending on the type of stress applied to the cell.

Consistent with this idea, live-cell imaging of stress-

MAP3K activity using a novel FRET reporter showed that

hyperosmotic stress induced MAP3K activity mainly in the

plasma membrane, whereas ultraviolet light or a ribotoxic

protein synthesis inhibitor induced MAP3K activation in

the cytoplasm [42]. Such regulation of activity by subcel-

lular localization seems to be a common mechanism in

MAPK activation. Terai and colleagues visualized a con-

formational change in c-Raf (a MAP3K of the ERK path-

way) upon activation by FRET [68]. They demonstrated

that cytoplasmic c-Raf was recruited to the plasma mem-

brane upon EGF stimulation, where binding to Ras induced

a conformational change in c-Raf resulting in its activation.

Thus, Ras binding opens up c-Raf to expose the docking

site for MEK. Differences in the accessibility of regulatory

proteins such as small GTPases, kinases and phosphatases,

or differences in protein concentration that are due to dif-

ferential cellular localization of MAPKs, might confer a

different sensitivity to MAPK modules [69]. In this way,

stimulation input can take place depending on the location

where the MAPK module is activated. These studies

clearly pointed out that MAPK signaling can be initiated

from a specific subcellular locus and that stimulus-specific

distinctions in MAPK activation loci would lead to dif-

ferent outcomes.

Visualization of Ras-MAPK activation in neuronal

microcompartments

The importance of subcellular localization of signaling has

also been extensively studied in neuronal cells. ERK is

involved in many forms of synaptic plasticity and has

therefore been proposed to be a key determinant of learning

and memory [70, 71]. Various targets of the ERK kinase

activity have been discovered in neuronal plasma mem-

branes, spines, axons and nuclei. These targets include ion

channels (i.e., the Kv4.2 channel and AMPA receptor),

cytoskeleton regulators (i.e., focal adhesion kinase and

Rho) and transcription factors [i.e., cyclic AMP-responsive

element-binding protein (CREB) and Elk-1] (for details,

see a comprehensive review [72]). A major difficulty in

imaging analyses of neurons are their minute size, and

quantification of FRET in neuronal microcompartments

has been especially challenging. Instead of using

conventional fluorescence intensity-based FRET measure-

ment, Yasuda and colleagues carried out quantitative FRET

imaging of Ras activity in microcompartments of a neuron

using fluorescence lifetime measurements combined with

two-photon excitation laser scanning microscopy (2p-

FLIM FRET) [73]. Fluorescence lifetime imaging is based

on the detection of time-resolved fluorescence decay after

an ultra-short pulsatile excitation of the fluorophore (for

details, see this review [74]). Harvey and colleagues

demonstrated that Ras signaling can spread from an LTP

(long-term potentiation)-induced spine along dendrites as

long as *10 lm [75]. The same group also succeeded in

imaging ERK activity using 2p-FLIM FRET [37]. Zhai and

colleagues further investigated the prerequisite conditions

for nuclear ERK activation and found that induction of

LTP in a relatively small number of dendritic spines is

sufficient to maintain nuclear ERK activity as well as

activation of downstream transcription factors [76]. These

studies clearly demonstrated that the compartmentalized

signal activation defines the extent and duration of the

subsequent signaling according to the spatial parameters

(i.e., length of the axon, location of the spine and distance

from the nucleus). In addition to the roles of ERK in

synaptic plasticity, many studies have also shown that

MAPKs are involved in axonal growth, synapse develop-

ment, apoptosis, degeneration and re-generation after

injury [77–80] (for details, see the comprehensive reviews

[81, 82]). Undoubtedly, MAPK signaling can function as a

potential target in terms of medical treatment of neuro-

logical disorders (details are reviewed in [83]). Although

the mechanism by which MAPK signaling contributes to

those neuronal functions is still largely unknown, the

increasing number of imaging tools will facilitate under-

standing of the dynamic nature of signal transduction in

living neurons.

Temporal regulation of MAPKs

Cell fate determination by the duration of MAPK

activity

Another important factor that determines MAPK signaling

is timing. Many biochemical studies have pointed out that

MAPK activities occur in either a transient or a sustained

manner depending on the type of stimulation. One of the

best known examples of this type of regulation is signaling

in the neuroendocrine cell line PC12, which has distinct

outcomes resulting from specific stimulation. Treatment of

PC12 cells with EGF induces transient ERK activation and

cell proliferation, whereas treatment with NGF causes

relatively persistent ERK activation and the cells differ-

entiate into neuron-like cells [84, 85]. A similar
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phenomenon has been reported for the stress MAPK

pathway. TNF induces JNK in a biphasic manner with

robust initial transient activation (\1 h) followed by rela-

tively lower sustained activation (1–6 h). Ventura and

colleagues hypothesized that the time course of JNK sig-

naling may play a role in the determination of a specific

outcome. They utilized a chemical genetic approach to

specifically manipulate the catalytic activity of JNK at a

fixed time and found that apoptotic signaling induced by

JNK required sustained activation and that transient acti-

vation of JNK induced cell survival signaling [86]. Thus,

the duration of MAPK activity is as important as the extent

of MAPK activity in determining cellular responses.

Systems analysis of MAPK signaling based on FP

imaging

Owing to recent progress in the so-called ‘‘omics’’ analy-

ses, such as transcriptome, interactome and phospho-pro-

teome analyses using mass spectroscopy and to high-

throughput gene expression analysis, a tremendous number

of connections between signaling molecules that are

involved in their regulation have been revealed [87] (for

details, see the reviews [88, 89]). This information has

forced a revision of our understanding of signal transduc-

tion, suggesting that it would be more appropriate to con-

sider that MAPKs function as part of a large signaling

network that encompasses signaling of the entire cell rather

than a simple straightforward modular kinase cascade. To

date, mechanisms and regulation of MAPK activation have

been elucidated in detail, and it is becoming possible to

predict the dynamics of MAPK activation in silico [90–93].

However, explanations of MAPK dynamics that occur in

actual cells under physiologically relevant conditions have

not yet been elucidated.

Identification of the core regulatory mechanism of

MAPK dynamics in living cells was first successfully

addressed using yeast cells. Mettetal and colleagues

applied a system identification method combined with real-

time imaging to analyze the temporal regulation of yeast

osmo-responding Hog1 MAPK signaling [94]. They stim-

ulated the cell with repeated salt shock pulses and simul-

taneously measured the kinetics of nuclear translocation

(activation) of a Hog1-FP fusion protein. By analysis of the

stimulation-frequency dependence of the Hog1 response,

the authors succeeded in identifying regulatory negative

feedback loops in yeast osmo-adaptive signaling. Using

similar methods, Hersen and colleagues explored the time

scales of signal activation and inactivation, and they

demonstrated that the kinetics of Hog1 signaling are dis-

tinctly regulated depending on the type of upstream

osmolality-sensing receptors [95]. The combined applica-

tion of live-cell imaging and systems analysis thus allows a

knowledge of the functional topology of a signaling net-

work. Recently, transgenic animals harboring a FRET

sensor have been generated allowing visualization of sig-

naling events in situ under physiologically relevant con-

ditions [96–98]. Tomida and colleagues, using a

combination of in vivo FRET imaging with a systems-

analysis method (Fig. 3), determined how information in

the external cellular environment that stimulates cells is

transduced in the cell of a living animal, using the nema-

tode Caenorhabditis elegans as a model system [38]. In

that study, a FRET-based ERK-family kinase sensor was

created and expressed in a sensory neuron, and the nema-

tode was then exposed to various cyclic patterns of repet-

itive salt stimulation in a flow chamber. This neuronal

MAPK imaging analysis demonstrated that the intensity

and duration of MAPK activity are determined by the

temporal pattern of input stimulation, i.e., a combination of

stimulation period length, stimulation pulse length and

pulse frequency. The highest MAPK response was

achieved following a stimulation of modest frequency,

Input Output

Property of signal transduction system

Signal transduction

 ? 

animal

cells

in vivo imaging

MAPK
Response

Stimuli

Stimulation
parameters
(amplitude, 
frequency, etc)

Quantitative
in vivo imaging

network topology
system's function

Fig. 3 Systems analysis of signal transduction in vivo. A systems-

analytical method can be combined with the in vivo imaging to study

the regulation and function of the network of the signaling molecules

in situ. The analysis typically consists of a defined set of input

stimulations (for example, the cyclic pulsatile salt stimulation, whose

parameters, such as the amplitude, frequency and duration of the

stimulation pulses are varied) followed by measurement of output

responses (i.e., MAPK activity) from which the system properties are

deduced. An in vivo imaging of the signaling inside the target cell can

be achieved using a genetically encoded sensor, which can be

expressed by standard gene transferring methods (i.e., viral infection

and DNA transfection)
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whereas a much higher frequency or less frequent stimuli

resulted in transient or low-level MAPK activation. Iden-

tification of such a nonlinear relationship in which the

resulting MAPK activity is not determined by the total

amount of stimulation but by the adequate timing of cyclic

stimulations also provided a hint regarding its regulatory

mechanism. Further in vivo Ca2? imaging analysis using

this system demonstrated that a similar nonlinear Ca2?

signaling response determined the temporal MAPK

dynamics in the nematode neuron [38]. These studies

pointed out that an endogenous signaling system can

properly respond to the outer fluctuating environment by

interpreting the temporal information (i.e., frequency) of

the environmental change and adequately inducing MAPK

activation according to the temporal parameter.

Oscillatory MAPK activation

Recent imaging analysis further demonstrated another

characteristic behavior of MAPKs. Theoretical studies of

MAPK dynamics have predicted the existence of oscilla-

tory kinase activation [99, 100]. This hypothesis was pro-

ven by studies that focused on feedback regulation of

MAPKs in mammalian and yeast cells [101–105, 108].

Nakayama and colleagues investigated FGF-induced

oscillatory Hes1 expression and ERK activation and found

that a negative feedback phosphorylation of the guanine

nucleotide exchange factor Sos (which activates Ras) by

ERK [106] is required for this oscillation [101]. Shankaran

and colleagues also demonstrated that EGF stimulation

induces oscillatory ERK translocation between the cytosol

and nucleus. They quantified temporal parameters of ERK

translocation and deduced a model that suggested the

involvement of a similar negative feedback loop by ERK

[103]. Indeed, typical biochemical oscillators often involve

a negative feedback loop with a time delay (for a review,

see [107]). Albeck and colleagues [104] demonstrated that

the frequency of the EGF-stimulated ERK oscillation

played important roles in the regulation of cellular prolif-

eration. Interestingly, Aoki and colleagues described

another type of ERK activity oscillation that can be sto-

chastically induced by periodic activation of Raf and that

occurs under normal growth conditions. Although the

detailed mechanism of how Raf is stochastically activated

remains elusive, they clearly demonstrated that cellular

density regulates the frequency of the stochastic ERK

oscillation and, moreover, that oscillatory ERK activities

induce cell proliferation signals [105]. Recently, Regot and

colleagues developed the novel kinase translocation

reporters (KTRs) that translocate into the nucleus upon

phosphorylation by ERK, JNK and p38 MAPKs, respec-

tively. Using these reporters, they demonstrated that ERK

and JNK activities fluctuated in living cells. They further

conducted multiplexed imaging analysis using KTR and

other reporters that were fused to different FPs and

examined the correlation and the crosstalk between dif-

ferent signaling pathways. Interestingly, they found that

not the peak amplitude but the peak number of oscillatory

ERK activities was modulated by the p38 activity [108].

Importantly, oscillatory MAPK dynamics have been diffi-

cult to address without single-cell measurement because

averaging cell population responses will negate stochastic

or asynchronous oscillation occurring in individual cells.

Surprisingly, oscillatory activation of MAPK has also been

found in the yeast Fus3 pathway [102], suggesting that

some conserved regulatory mechanism may underlie the

oscillatory dynamics of MAPK signaling.

Identification of temporal codes in signal transduction

As described above, analysis of the temporal regulation of

MAPK signaling has suggested a universal mode of signal

transduction that likely utilizes the temporal parameter as a

code. The regulatory mechanisms and significance of such

temporal codes of MAPK signaling under physiological

circumstances are still under investigation. However, lessons

from studies on other signaling systems that exhibit similar

temporal behaviors, such as NF-kB, p53 and PKC signaling,

would provide clues for such studies [109–112]. For exam-

ple, oscillatory NF-kB determines the set of cytokine genes

to be expressed according to the frequency of NF-kB acti-

vation spikes [109, 113]. When considering fluctuations in

extracellular environmental signals under physiological

conditions, it would be important to discriminate physio-

logically relevant information from surrounding noises. In

this sense, temporally determined signaling (such as the

frequency modulation) may be advantageous in terms of a

gain in robustness against environmental noise.

Concluding remarks and perspectives

MAPK signaling functions to relay information from the outer

environment in order to induce distinct cellular responses. To

properly perceive and respond to fluctuating environmental

changes, the signal should filter out noises, amplify physio-

logically relevant information, coordinate information with

other incoming signals and carry this information to the proper

subcellular locus where targeted molecules execute proper

effector functions depending on the cellular context. As

described above, recent successful quantification of molecular

states under physiologically relevant conditions has revealed

the roles of signaling molecules in terms of time and space in

the determination of cell fates (Fig. 4). Such spatially and

temporally regulated signaling would be beneficial to the cell

because variable targets could be simultaneously but
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specifically regulated by a limited number of MAPK subtypes.

Furthermore, these signals could be processed or filtered so

that only physiologically relevant information is transduced.

Abnormal regulation of MAPK signaling is responsible for

human diseases such as cancer, autoimmune defects, neuro-

logical disorders and metabolic diseases; hence, MAPK sig-

nals are of potential importance for the diagnosis and

development of therapeutic drugs. It will be beneficial to

determine whether the misregulation of the spatio-temporal

dynamics of the signaling is involved in various diseases and

disorders using animal models. Although there have been only

a few examples of in vivo signaling dynamics described to

date, future advances in imaging techniques and analytical

methods will accelerate the progress of research of the

dynamics of the signaling within cells or within intact organs

or animals.
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