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Abstract TRPA1, one of the transient receptor potential

channels, has been reported to be involved in nociception

and inflammatory pain, suggesting that this molecule could

be a promising target for the development of analgesic

agents. We screened several monoterpene analogs of

camphor, which is known to inhibit human (h) TRPA1, to

identify more effective naturally occurring TRPA1 antag-

onists. Borneol, 2-methylisoborneol, and fenchyl alcohol

exhibited higher inhibitory effects on hTRPA1 activity

than either camphor or 1,8-cineole. Our results revealed

further that the S873, T874, and Y812 residues of hTRPA1

were involved in the inhibitory effects, suggesting that the

hydroxyl group in the six-membered ring of the inhibitors

may be interacting with these amino acids. Further research

on these identified TRPA1 antagonists could lead to new

pain therapeutics.

Keywords Monoterpene � Pain relief � TRPA1 �
Hydroxyl group

Introduction

Transient receptor potential (TRP) channels respond to a

wide variety of sensory stimuli, including temperature,

nociceptive compounds, touch, osmolarity, and phero-

mones [1–3]. TRPA1, one of the TRP channels, functions

as a receptor that responds to noxious cold temperatures

and pungent compounds, including allyl isothiocyanate

(AITC), a component of mustard oil [4–8]. Although the

role of TRPA1 in sensing noxious cold stimulus and

somatic mechanosensation in vivo remains unsettled,

especially in mammals [5, 6, 9], TRPA1 has been estab-

lished as a chemical nocisensor for a wide variety of

reactive compounds, such as flufenamic acid (FFA),

2-aminoethoxydiphenyl borate, icilin, menthol, intracellu-

lar calcium, and zinc ions [7, 10–18]. In addition, in pre-

vious studies we identified TRPA1 as a receptor for

irritation of the skin induced by parabens [19] and for pain

produced by alkaline pH [20]. In contrast, menthol has

different effects on TRPA1 in humans and mice. Several

compounds, such as menthol, have been found to have a

bimodal action on mouse TRPA1 (mTRPA1) gating, with

submicromolar to low micromolar concentrations of men-

thol causing robust channel activation and higher concen-

trations leading to reversible channel blocking [21, 22].

Such bimodal action was not observed with human TRPA1

(hTRPA1) [21]. TRPA1 has also been reported to be

involved in inflammatory processes, including
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inflammation produced by several airway irritants that

cause asthma [23–25] and neuropathic pain [23]. There-

fore, TRPA1 is an excitatory ion channel targeted by acute

nociception and inflammatory pain and is considered to be

a promising target for the development of analgesic agents

[26–31].

Previous studies showed that the inhibitory effects of

AMG5445, a compound partially activating mTRPA1 and

inhibiting hTRPA1 [28], and of AP18, a compound that

inhibits hTRPA1 [9], can be nullified by mutations at serine

and threonine located in the transmembrane domain 5

(TM5) of hTRPA1 [21]. CMP1, a close analog of

AMG5445, contributes to channel blocking at a serine and

isoleucine located in TM6 of hTRPA1 [32]. Monoterpenes,

such as menthol, camphor, and 1,8-cineole, comprise a

group of naturally occurring organic compounds derived

from essential oils that have been used for anesthetic,

analgesic [31, 33, 34], anti-inflammatory [31, 35], and

antipruritic applications [36, 37]. As these compounds

share similarities in terms of chemical structure, it is not

surprising that they interact with the same molecular target

for their analgesic effect [38]. Menthol has been shown to

be an activator of mTRPA1 at low concentrations and a

blocker at high concentrations [21, 22]. Xiao et al. [21]

showed that at high concentrations of menthol, serine 876

and threonine 877 of mTRPA1 contributed to the inhibitory

effects on mTRPA1 activation, suggesting that threonine

877 might form a hydrogen bond with menthol. Camphor

and 1,8-cineole, both well-known components of essential

oils, are reported to exert analgesic effects through the

inhibition of TRPA1 [31, 39] and activation of TRPM8

[39, 40]. However, the structural basis of hTRPA1 inhibi-

tion by these two compounds remains unclear.

Several TRPA1 antagonists have been reported: 1,8-

cineole contained in eucalyptus oil [39], camphor obtained

from the Cinnamomum camphora tree [31], HC-030031

[27], AZ868 [41], A-967079 [42], and CMP1, CMP2, and

CMP3 (the latter three identified as thioaminal-containing

molecules [32]). Among these TRPA1 antagonists, natu-

rally occurring analgesic compounds that inhibit hTRPA1

and which have demonstrated a safety profile based on long

usage would be desirable. Indeed, we recently reported that

1,8-cineole is a rare natural compound that both inhibits

hTRPA1 and activates hTRPM8 [39]. Several compounds

with similar structures exhibit different effects on hTRPA1.

For example, menthol and 1,4-cineole activate hTRPA1,

while camphor and 1,8-cineole inhibit hTRPA1 [39]. Given

these promiscuous effects on hTRPA1, more detailed

analyses would lead to a better understanding of the

structural basis for the action of these compounds with

TRPA1 [39].

We screened camphor analogs to identify more effective

TRPA1 antagonists. From this screening, we found that

borneol, 2-methylisoborneol, and fenchyl alcohol exhibited

higher inhibitory effects than camphor and 1,8-cineole. In

addition, we found that the S873, T874, and Y812 residues

of TRPA1 were critically involved in the inhibitory effect

of borneol.

Materials and methods

Molecular cloning

Full-length hTRPA1 was obtained from Life Technologies

(Carlsbad, CA). cDNAs were cloned into the pcDNA3.1

vector.

Reagents

Camphor, borneol, fenchyl alcohol, and 2-methylisobor-

neol were obtained from Wako Pure Chemical Industries

Ltd. (Osaka, Japan). (-)-Fenchone, 1,8-cineole, cam-

phorquinone, norcamphor, a,b-thujone, a-pinene oxide,

(-)-limonene oxide, (?)-borneol, (-)-borneol, and (±)-

isobornyl methyl ether were obtained from Sigma-Aldrich

(St. Louis, MO). Bornyl acetate, (±)-isoborneol, and

3-methylene-2-norbornanone were obtained from Tokyo

Kasei Co. Ltd. (Tokyo, Japan). The compounds were used

as a mixture of (?) and (-) isomers unless otherwise

stated.

Cell culture

Human embryonic kidney (HEK) 293T cells were main-

tained in DMEM (WAKO Pure Chemical Industries Ltd.)

supplemented with 10 % fetal bovine serum (Biowest SAS,

Caille, France), 100 U/mL penicillin (Life Technologies),

100 lg/mL streptomycin (Life Technologies), and

2 mM L-glutamine (GlutaMAX; Life Technologies) at

37 �C in 5 % CO2. For Ca2?-imaging, 1 lg of plasmid

DNA containing hTRPA1 in pcDNA3 in OPTI-MEM

medium (Life Technologies) was transfected into

HEK293T cells using Lipofectamine Plus Reagent (Life

Technologies). Following incubation for 3–4 h, cells were

reseeded on coverslips and incubated further at 37 �C in

5 % CO2.

Ca2?-imaging

Ca2?-imaging was performed 1 day after transfection.

HEK293T cells on coverslips were mounted in an open

chamber and superfused with a standard bath solution

(140 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2,

10 mM HEPES, and 10 mM glucose, pH 7.4). Cytosolic-

free Ca2? concentrations in HEK293T cells were measured
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by dual-wavelength fura-2 (Molecular Probes, Invitrogen

Corp.) microfluorometry with excitation at 340/380 nm

and emission at 510 nm. The fura-2 ratio image was cal-

culated and acquired using the IP-Lab imaging processing

system (Scanalytics Inc, Fairfax, VA). Ionomycin was used

to confirm cell viability in the vector-transfected cells.

Electrophysiology

Whole-cell patch-clamp recordings were performed 1 day

after transfection. The standard bath solution was the same

as that used in the Ca2?-imaging experiments, and extra-

cellular Ca2? was removed and 5 mM EGTA added for the

recording of AITC-, menthol- and FFA-induced current

responses. The pipette solution contained 140 mM KCl,

5 mM EGTA, and 10 mM HEPES, pH 7.4 (adjusted with

KOH). Data from the whole-cell voltage-clamp recordings

were sampled at 10 kHz and filtered at 5 kHz for analysis

(Axon 200B amplifier with pCLAMP software; Axon

Instruments, Sunnyvale, CA). The membrane potential was

clamped at -60 mV for all conditions. In some experi-

ments, voltage ramp-pulses from -100 to ?100 mV

(500 ms) were applied every 5 s. All experiments were

performed at room temperature.

Data analysis

Data in all of the figures are shown as the mean ± standard

error of the mean, and P values of \0.05 were considered

to be significant. Statistical significance of the effects of

borneol, 1,8-cineole, and camphor on hTRPA1 mutants

were evaluated using Student’s t test. Dose-dependent

curves were fit with a Hill equation.

Results

Screening of naturally occurring compounds having

effects on hTRPA1

Because camphor is known to inhibit hTRPA1, we first

examined the effects of camphor analogs, many of which

are present in essential oils (Table 1), on hTRPA1 using a

Ca2?-imaging method with hTRPA1-expressing HEK293T

cells. In these experiments, changes in the fura-2 ratio

(corresponding to cytosolic Ca2? concentrations) induced

by the test compounds and menthol were compared

because menthol, which activates hTRPA1, and the test

compounds are members of the monoterpene family.

Borneol, 2-methylisoborneol, norcamphor, and fenchyl

alcohol showed small changes in the fura-2 ratio, similar to

1,8-cineole and camphor (Fig. 1), which suggests that these

compounds do not activate hTRPA1.

Effects of borneol, 2-methylisoborneol, fenchyl alcohol,

and norcamphor on hTRPA1-mediated current responses

In order to confirm the effects of the above compounds, we

performed patch-clamp experiments with HEK293T cells

Table 1 Chemical structures of camphor analogs and menthola

Compound Structure

1,8-Cineole

Camphor

Borneol

(-)-Fenchone

Fenchyl alcohol

Camphorquinone

Bornyl acetate

2-Methylisoborneol

Norcamphor

3-Methylene-2-norbornanone

(±)-Isobornyl methyl ether

a,b-Thujone

a-Pinene oxide

(-)-Limonene oxide

a Hydroxyl, carbonyl, and ether oxygen are indicated in red
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expressing hTRPA1. As shown in Fig. 2, borneol,

2-methylisoborneol, fenchyl alcohol, and norcamphor did

not activate hTRPA1, while AITC evoked a robust current

activation with outward rectification.

Borneol, 2-methylisoborneol, and fenchyl alcohol,

but not norcamphor inhibit hTRPA1 in a Ca2?-imaging

method

We next investigated the possibility that the above four

compounds inhibit hTRPA1 using a Ca2?-imaging method

with hTRPA1-expression HEK293T cells. Increases in the

fura-2 ratio caused by menthol were almost completely

blocked in the presence of borneol (1 mM), 2-methyliso-

borneol (1 mM), and fenchyl alcohol (1 mM) in a similar

manner as 1,8-cineole and camphor (Fig. 3a–c, e). Wash-

ing-out of the three compounds after menthol exposure led

to small increases in the fura-2 ratio, which could be due to

the loss of inhibition and resumption of hTRPA1 activity

from residual menthol in the cell. In contrast, norcamphor

did not inhibit the menthol-induced increase in the fura-2

ratio (Fig. 3d, e). We confirmed that borneol, 2-methyl-

isoborneol, fenchyl alcohol, and norcamphor did not pro-

vide any effect on vector-transfected cells, while cells

responded normally to ionomycin (5 lM) [Electronic

Supplementary Material (ESM) Fig. 1]. These results

Fig. 1 Summary of the

inhibitory effects of camphor

analogs on the activity of human

transient receptor potential

channel TRPA1 (hTRPA1)

activity. Fura-2 ratios (340/

380 nm) by test compounds

(1 mM) were normalized to

changes in the fura-2 ratio by

1 mM menthol in human

embryonic kidney (HEK) 293T

cells expressing hTRPA1. Data

are presented as the

mean ± standard error of the

mean (SEM) (n = 27–67)

Fig. 2 Effects of borneol,

2-methylisoborneol, and fenchyl

alcohol on HEK293T cells

expressing hTRPA1.

Representative whole-cell

current traces in the presence of

borneol (1 mM, a),

2-methylisoborneol (1 mM, b),

fenchyl alcohol (1 mM, c) or

norcamphor (1 mM, d) in

HEK293T cells expressing

hTRPA1. hTRPA1 activity was

confirmed with 20 lM of allyl

isothiocyanate (AITC). Cells

were held at -60 mV and ramp-

pulses from -100 to ?100 mV

(500 ms) were administered

every 5 s
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suggest that borneol, 2-methylisoborneol, and fenchyl

alcohol, but not norcamphor, inhibit hTRPA1 activity.

Borneol, 2-methylisoborneol, and fenchyl alcohol

inhibit hTRPA1 current in a dose-dependent manner

To confirm the inhibition of hTRPA1 activity by the three

compounds, we performed patch-clamp experiments with

HEK293T cells expressing hTRPA1. The current response

was measured in the absence of extracellular Ca2? to mini-

mize desensitization. 1 mM of borneol, 2-methylisoborneol,

and fenchyl alcohol completely inhibited the hTRPA1-med-

iated current activated by menthol (1 mM) or FFA (100 lM)

(Fig. 4). Enhancement of the hTRPA1 current was observed

upon washing-out of the three compounds in response to

activation by FFA, but not in response to that by menthol. We

then determined the effective concentrations of the three

compounds for the inhibition of hTRPA1. For this experiment,

AITC was chosen as the hTRPA1 agonist because this mol-

ecule has a higher ability to activate hTRPA1 than menthol or

FFA. 1 mM of borneol, 2-methylisoborneol, and fenchyl

alcohol completely inhibited the AITC (20 lM)-induced

hTRPA1 current, while 1 mM camphor partially inhibited the

AITC-induced response (Fig. 5a–d), suggesting that borneol,

2-methylisoborneol, and fenchyl alcohol are more able to

inhibit hTRPA1 than camphor. Enhancement of the hTRPA1-

current was again observed upon washing-out of the three

compounds. The dose-dependency of the inhibitory effects of

the three compounds on hTRPA1 was then examined using

the patch-clamp method. Similar to camphor and 1,8-cineole,

Fig. 3 Effects of borneol,

2-methylisoborneol, fenchyl

alcohol, and norcamphor on

menthol-induced cytosolic Ca2?

increases in HEK293T cells

expressing hTRPA1. Fura-2

ratio changes due to menthol

(1 mM) application in the

presence and absence of borneol

(1 mM, a), 2-methylisoborneol

(1 mM, b), fenchyl alcohol,

(1 mM, c), and norcamphor

(1 mM, d) in cells expressing

hTRPA1 (n = 14–27).

e Changes in fura-2 ratios due to

menthol in the presence of test

compounds were normalized to

changes in the fura-2 ratio by

menthol in the absence of test

compounds. Data are presented

as the mean ± SEM

(n = 47–79)
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the hTRPA1 current induced by AITC (20 lM) was inhibited

by borneol, 2-methylisoborneol, and fenchyl alcohol in a

dose-dependent manner, with half-maximal inhibitory con-

centrations (IC50) of 0.20 ± 0.06, 0.12 ± 0.03, and

0.32 ± 0.06 mM, respectively, which are much lower than

the IC50 of 1,8-cineole (3.43 ± 0.58 mM) and camphor

(1.26 ± 0.32 mM) (Fig. 5e). These data suggest that borneol,

2-methylisoborneol and fenchyl alcohol have the potential to

be effective analgesic compounds. Commercially available

borneol contains both optical isomers. We confirmed that

there was no difference in the inhibitory effects on hTRPA1

activity between (?)- and (-)-borneols (ESM Fig. 2).

The hydroxyl group of borneol contributes to inhibition

of human TRPA1

Xiao et al. [21] showed that menthol acts as an activator

of mTRPA1 at low concentrations and as a blocker at

high concentrations. This bimodal effect of menthol on

TRPA1 was observed in a mouse clone, but not in a

human clone. A mouse TRPA1 mutant in which serine

and threonine residues located in the predicted inner side

of TM5 were replaced with valine and leucine (S876V/

T877L), respectively, was neither activated nor inhibited

by menthol [21]. In this same study, the serine and thre-

onine residues were found to be critical for determining

the sensitivity of TRPA1 to menthol in both mammalian

TRPA1 channels. These findings led the authors to sug-

gest that T877 of mTRPA1 interacts with menthol through

a hydrogen bond [21]. The fact that borneol, 2-methyl-

isoborneol and fenchyl alcohol have a similar hydroxyl

group in their structures led us to hypothesize that these

compounds interact with the same serine and/or threonine

of TRPA1 in a similar manner as menthol. To test this

hypothesis, we investigated whether the serine and thre-

onine residues are involved in the inhibitory effect of

Fig. 4 Effects of borneol,

2-methylisoborneol, and fenchyl

alcohol on menthol- and

flufenamic acid (FFA)-induced

hTRPA1 currents in HEK293T

cells. a–c Representative

menthol (1 mM)-induced

hTRPA1 current that was

inhibited by borneol (1 mM, a),

2-methylisoborneol (1 mM, b),

or fenchyl alcohol (1 mM, c) in

the absence of extracellular

Ca2?. d–f Representative FFA

(100 lM)-induced hTRPA1

current that was inhibited by

borneol (1 mM, d),

2-methylisoborneol (1 mM, e),

or fenchyl alcohol (1 mM, f) in

the absence of extracellular

Ca2?

52 J Physiol Sci (2014) 64:47–57
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borneol. The inhibitory effects of borneol on the mutant

channel (hTRPA1-S873V/T874L, corresponding to

mTRPA1-S876V/T877L) were significantly lower than

those on the hTRPA1-WT, based on the effects on the

AITC-activated hTRPA1 current at three different con-

centrations (Fig. 6a). On the other hand, camphor and 1,8-

cineole showed no significant changes in their inhibitory

effects on cells expressing mutant hTRPA1 compared

with hTRPA1-WT (Fig. 6b, c). We searched for an

involvement of other amino acids in borneol activity.

Because a tyrosine residue in TM2 of TRPM8 is known to

be involved in interactions with menthol, we screened

tyrosine mutants in TM2 and TM3 of hTRPA1 using a

Ca2?-imaging method and found that the effect of borneol

was reduced with the Y812A mutant (data not shown). In

terms of the effect on the AITC-activated hTRPA1 cur-

rent, results from the patch-clamp studies revealed that

borneol had a significantly lower inhibitory effect on the

mutant (hTRPA1-Y812A) at two different concentrations

than on hTRPA1-WT, whereas such differences between

WT hTRPA1 and hTRPA1-Y812A were not observed for

1,8-cineole or camphor activity (Fig. 6d–f).

Fig. 5 Effects of borneol,

2-methylisoborneol, fenchyl

alcohol, and camphor on AITC-

induced hTRPA1 current in

HEK293T cells. a–

d Representative AITC

(20 lM)-induced hTRPA1

currents that were inhibited by

borneol (1 mM, a),

2-methylisoborneol (1 mM, c),

fenchyl alcohol (1 mM, c), or

camphor (1 mM, d) in the

absence of extracellular Ca2?.

e Dose-dependent inhibition of

AITC (20 lM)-induced

hTRPA1 current by 1,8 cineole,

camphor, borneol, 2-methyl

isoborneol, or fenchyl alcohol.

Half-maximal inhibitory

concentrations (IC50) values are

3.43 ± 0.58, 1.26 ± 0.32,

0.20 ± 0.06, 0.12 ± 0.03, and

0.32 ± 0.06 mM for 1,8-

cineole, camphor, borneol,

2-methylisoborneol, and fenchyl

alcohol, respectively

(n = 5–10)
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Discussion

In this study, camphor analogs were screened to identify

more effective naturally occurring TRPA1 antagonists and

to clarify the structural basis of their respective activity.

Borneol, 2-methylisoborneol, and fenchyl alcohol were

identified as more potent antagonists of hTRPA1 than

camphor and 1,8-cineole. Moreover, the S873, T874, and

Y812 residues were found to be critically involved in the

activity of borneol with hTRPA1, likely through an inter-

action with its hydroxyl group.

TRPA1 is an excitatory ion channel targeted by pungent

irritants, such as those from mustard oil and garlic, and is

thought to function in diverse sensory processes, including

nociception and inflammatory pain. As such, TRPA1 is a

promising target for the development of analgesic agents.

Although several TRPA1 antagonists, such as ruthenium

red, HC-030031, AMG5445, A967079, and camphor, have

been reported to possess analgesic properties [26–31],

naturally occurring analgesic compounds which inhibit

hTRPA1 would be desirable because of their demonstrated

safety during long-term usage. Of the known hTRPA1

antagonists, camphor is a naturally occurring compound

that is often used in cosmetics because of its minimal

adverse effects. We recently found that 1,8-cineole is

another naturally occurring hTRPA1 antagonist. However,

these naturally occurring antagonists exhibit weaker

inhibitory effects on TRPA1 activity than other antago-

nists, such as HC-030031, A-967079, and AZ868. There-

fore, the identification of naturally occurring compounds

with a greater potency for inhibiting hTRPA1 activation is

eagerly awaited.

Borneol, a bicyclic monoterpenoid alcohol that has been

used in foods as an aromatic spice, is a valuable medical

and chemical material that has been used as a folk medi-

cine in China and India [43]. Additionally, borneol is a

Fig. 6 Comparison of the

inhibitory effects of borneol,

camphor, and 1,8-cineole on the

currents of wild-type hTRPA1

(hTRPA1-WT) and hTRPA1

mutants (hTRPA1-S873V/

T874L, hTRPA1-Y812A)

expressed in HEK293T cells.

Inhibitory effects of borneol at

three different concentrations

(0.03, 0.3, and 1 mM, a),

camphor at three different

concentrations (0.03, 0.3, and

3 mM, b), or 1,8-cineole at

three different concentrations

(1, 5, and 10 mM, c) on

TRPA1-mediated current at -

60 mV in HEK293T cells

expressing hTRPA1-WT or

TRPA1 mutants hTRPA1-

S873V/T874L (a–c) or

hTRPA1-Y812A (d–f), in the

absence of extracellular Ca2?.

Current magnitude in the

presence of borneol, camphor,

or 1,8-cineole was normalized

to the current in the absence of

test compounds. (n = 5–8)

**P \ 0.01
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fragrance ingredient used in decorative cosmetics, fine

fragrances, shampoos, and other toiletries. Previous studies

have shown that borneol has a vasorelaxant effect on the rat

thoracic aorta [44] and neuroprotective effects [45].

Although borneol has been evaluated for anti-nociceptive

and anti-inflammatory activities, the molecular targets and

mechanisms of its analgesic effect remain unclear. The fact

that this monoterpene acts as an agonist of the TRPV3 [40]

and TRPV1 [31] channels and specifically inhibits nico-

tinic acetylcholine receptor (nAChR)-mediated effects in a

noncompetitive way [46] does not explain its anti-noci-

ceptive effects. 2-Methylisoborneol has been implicated as

a cause of the muddy odor of fish from Cendar Lake,

Manitoba. Algae produce 2-methylisoborneol and geosmin,

which are responsible for the musty odor [47]. Fenchyl

alcohol, which is a component of several essential oils, is a

fragrance ingredient used in decorative cosmetics, fine

fragrances, shampoos, and other toiletries. This compound

also has an inhibitory effect on acetylcholinesterase

activity [48]. Although borneol is the only terpene known

to have anti-nociceptive effects, the two other terpenes

identified in this study could have similar effects since all

three monoterpenes inhibit hTRPA1; consequently, their

derivatives might function as analgesics.

Alpizar et al. [49] recently reported that camphor

exhibits a bimodal effect on mTRPA1. These authors

observed the inhibition of mTRPA1-mediated basal current

with 1 mM camphor, with an increase in the current upon

washing-out of camphor, suggesting that camphor had a

bimodal action on mTRPA1. In addition, 1–5 mM camphor

increased the cytosolic Ca2? concentration upon washing-

out without any effect during camphor application. We

examined the camphor (1 mM) effect in a Ca2?-imaging

method, but failed to observe changes in the cytosolic Ca2?

concentrations (Fig. 1). We did observe blockage of the

menthol (1 mM)-induced increase in cytosolic Ca2? con-

centrations by camphor (1 mM, Fig. 3e) and also observed

that camphor inhibited the AITC (20 lM)-activated

TRPA1 current in a dose-dependent manner (Fig. 5e). At

this time, we are unable to provide an explanation for the

apparent differences between the two studies, although a

species difference might have caused the different out-

comes. Transient enhancement of TRPA1 current was

observed after washing-out of the three test compounds in

FFA- or AITC-evoked responses (Figs. 4, 5), but not in the

menthol-evoked response (Fig. 4). The bimodal actions of

several compounds on mammalian TRPA1 has mainly

been reported for mammalian TRPA1 agonists involving

non-covalent mechanisms. However, Alpizar et al. [49]

reported that cinnamaldehyde (a TRPA1 activator with

covalent modification) and camphor, which was thought to

be a mammalian TRPA1 antagonist, also exhibit bimodal

actions on mTRPA1, indicating that bimodal actions could

be a more general phenomenon than previously thought.

Therefore, the transient enhancement of the human TRPA1

current upon washing-out of the identified antagonists

observed in our study might also result from a bimodal

action of the compounds. Interestingly, enhancement was

not observed in the menthol-evoked TRPA1 response

(Fig. 4), possibly because menthol and hTRPA1 inhibitors

(borneol, 2-methylisoborneol, and fenchyl alcohol) are all

monoterpenes that act at similar sites, including ones which

were identified in this study, through their cyclohexyl

hydroxyl groups.

Analogs of camphor exhibited promiscuous effects on

hTRPA1. Borneol, 2-methylisoborneol and fenchyl alcohol

inhibited hTRPA1, while norcamphor had no effect on

hTRPA1, and other related compounds activated hTRPA1

(Fig. 1). The mechanisms of action with hTRPA1 remain

unclear, although these monoterpenes have similar

molecular structures. The inhibitory effects of hTRPA1 by

borneol, which was synthesized by the chemical reduction

of camphor, were greater than those of camphor. In addi-

tion, fenchyl alcohol, which was synthesized by the

chemical reduction of fenchone, inhibited hTRPA1 activ-

ity, while fenchone activated hTRPA1. Common structural

differences between camphor and borneol and between

fenchone and fenchyl alcohol are hydroxyl and carbonyl

groups at the same position of their six-membered rings,

which suggests that hydrogen bonding plays a pivotal role

in the action of these compounds. This notion is supported

by the observations on the mutation of T874, an amino acid

thought to form a hydrogen bond with menthol; this

mutation results in reduced activity of borneol. In our

study, S873 and T874 in TM5 and Y812 in TM3 were

found to be involved in the inhibitory effects of borneol.

Because these two sites are somewhat distant from each

other, borneol could fit separately into both sites.

In conclusion, we screened monoterpenes to identify

more effective naturally occurring TRPA1 antagonists and

found that borneol, 2-methylisoborneol, and fenchyl alco-

hol exhibited higher inhibitory effects on hTRPA1 than

camphor and 1,8-cineole. Moreover, three amino acids of

hTRPA1, namely, S873, T874 and Y812, were found to be

involved in the activity of borneol. Further research on

borneol, 2-methylisoborneol, and fenchyl alcohol could

lead to the development of anti-nociceptive agents through

TRPA1 inhibition.
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