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Abstract The maxi-anion channel is widely expressed

and found in almost every part of the body. The channel is

activated in response to osmotic cell swelling, to excision

of the membrane patch, and also to some other physio-

logically and pathophysiologically relevant stimuli, such as

salt stress in kidney macula densa as well as ischemia/

hypoxia in heart and brain. Biophysically, the maxi-anion

channel is characterized by a large single-channel con-

ductance of 300–400 pS, which saturates at 580–640 pS

with increasing the Cl- concentration. The channel dis-

criminates well between Na? and Cl-, but is poorly

selective to other halides exhibiting weak electric-field

selectivity with an Eisenman’s selectivity sequence I. The

maxi-anion channel has a wide pore with an effective

radius of *1.3 nm and permits passage not only of Cl- but

also of some intracellular large organic anions, thereby

releasing major extracellular signals and gliotransmitters

such as glutamate- and ATP4-. The channel-mediated

efflux of these signaling molecules is associated with kid-

ney tubuloglomerular feedback, cardiac ischemia/hypoxia,

as well as brain ischemia/hypoxia and excitotoxic

neurodegeneration. Despite the ubiquitous expression,

well-defined properties and physiological/pathophysiolog-

ical significance of this classical channel, the molecular

entity has not been identified. Molecular identification of

the maxi-anion channel is an urgent task that would greatly

promote investigation in the fields not only of anion

channel but also of physiological/pathophysiological

signaling in the brain, heart and kidney.

Keywords Maxi-anion channel �
Volume-sensitive chloride channel � Purinergic signaling �
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Introduction

Osmotic cell swelling induces activation of a large anio-

nic conductance with characteristic outward rectification

and voltage-dependent inactivation at high positive

potentials. When the swelling-activated anion channels

were studied at the single channel level, different types of

event were described. In most cases, the event of volume-

sensitive outwardly rectifying anion channel (VSOR) with

an intermediate conductance of 30–70 pS has been

described [1]. Consistent with the phenotype of the

whole-cell VSOR current, this channel current exhibits

outward rectification and voltage-dependent inactivation

at large positive potentials ([?50 to ?100 mV). How-

ever, many authors have also reported the single-channel

event with a much larger unitary conductance (300–

400 pS) observed in the cell-attached mode after cell

swelling [2–9]. A representative example of the maxi-

anion channel currents recorded in the cell-attached patch

on an osmotically swollen mammary C127 cells is shown

in Fig. 1a, b (open circles). Also, the maxi-anion channel
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is activated by excision of the inside-out patch (Fig. 1b,

filled circles). This maxi-anion channel has a linear uni-

tary current–voltage relationship without rectification and

is prominently sensitive to the membrane potential,

thereby rapidly inactivating when a threshold of ±20 to

±30 mV is exceeded. A macroscopic conductance with

such a phenotype could readily be observed in whole-cell

recordings from hypotonically swollen cells, when the

VSOR activity was completely suppressed by its rela-

tively specific inhibitor, phloretin, and when ATP was

removed from pipette solution [8].

In our previous review article [10], we highlighted a

newly discovered physiological role of maxi-anion chan-

nel in ATP release in response to osmotic stress in

mammary C127 cells and in response to salt stress in

tubuloglomerular feedback in kidney macula densa. Since

then, we have carried out extensive studies on the maxi-

anion channel along the following four lines: (1) its

biophysical properties including the pore size [11], (2) its

role in ATP release from astrocytes [6, 7] and cardio-

myocytes [2, 12] under ischemic or osmotic stress, (3) its

role in glutamate release from astrocytes under ischemic

or osmotic stress [5], and (4) its molecular identification

[13, 14]. The present review article, thus, gives an

updated account of the biophysical properties, the roles in

release of ATP and glutamate under pathophysiological

conditions, and the molecular identification of the maxi-

anion channel. Also, we intended to provide a compre-

hensive account of physiological and pharmacological

characteristics of the maxi-anion channel in the present

review, because it passed over a decade since a most

recent comprehensive review on this channel was pub-

lished by Strange et al. [15].

Expression pattern of the maxi-anion channel

The volume-activated large-conductance anion channels

exhibiting properties typical of the maxi-anion channels

have been found in different types of cell preparations. The

single-channel event of large conductance was first

described by Blatz and Magleby [16] in the plasma mem-

brane patches excised from rat skeletal muscles in primary

culture. About the same time, large-conductance channels

with anion selectivity and bell-shaped voltage dependency

were described in myotubes obtained from chicken

embryos and in mouse peritoneal macrophages [17], in

Schwann cells from 1 to 2 days old rats in primary culture

[18] and in A6 Xenopus kidney epithelial cells [19]. Later,

when a broader range of cell types was studied by patch-

clamp technique, the activity of maxi-anion channels with

a unitary conductance of 300–400 pS has been reported in

almost every part of the whole organism. Maxi-anion

channel activities have been found in freshly isolated frog

skeletal muscles [20, 21], somatic muscles of Ascaris suum

[22], as well as in cultured L6 rat muscle cells [23–26] and

BC3H1 myoblasts [27]. Smooth muscles from uterus [28]

and colon [29, 30] as well as cultured vascular smooth

muscle cells from rat thoracic aorta [31–33] were found to

express the maxi-anion channel activity. In the heart, maxi-

anion channels were described in neonatal cardiac myo-

cytes in primary culture [2, 12, 34, 35] and freshly isolated

adult ventricular cardiomyocytes [12]. In the nervous

system, the maxi-anion channel activity was detected in

embryonic Xenopus spinal neurons [36], demyelinated

Xenopus axons [37], in neuroblastoma cell lines [3, 38–44]

and in a hippocampal cell line [45, 46]. In glia, maxi-anion

channels were found in cultured Schwann cells from 1 to
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Fig. 1 Single-channel recordings of maxi-anion channel currents in

on-cell patches activated by osmotic swelling of mammary C127 cells

and in inside-out patches excised from the cells. a Representative

current traces recorded under isotonic and hypotonic conditions on

C127 cells during application of alternating pulses from 0 to ±25 mV

(protocol is shown at the top of the traces). b Unitary I–V relationships

for the single-channel events recorded in on-cell patches (open circles)

and in inside-out patches (filled circles). Each symbol represents the

mean ± SEM (vertical bar). Modified from Sabirov et al. [8]
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2 day old rats [18] and adult humans [47] as well as in

freshly dissected rat spinal root Schwann cells [48]. These

channels were similar to those observed in cultured cortical

astrocytes from rats [4, 49, 50] and mice [5–7, 51] as well

as in a rat astrocytic RGCN cell line [52]. In epithelia, the

urinary bladder [53], gastric [54], pancreatic [55–57],

colonic [58–60], airway [61–63], choroid plexus [64], bile

duct [65, 66], ciliary [67–69], renal [9, 19, 70–78], ves-

tibular [79], placental [80–86], ruminal [87] and ovarian

[84] epithelial cells were also found to express the maxi-

anion channel with properties similar to those of excitable

cells. Resembling maxi-anion channels were also found in

fibroblasts [14, 66, 88–92] and endothelial cells [93–97]. In

the immune system, the maxi-anion channel activity has

been confirmed in B lymphocytes [98–101], in T lym-

phocytes [102–104] and in peritoneal macrophages [17,

105]. In other tissues, mast cells [106], keratinocytes [107],

osteogenic cells [108], cultured glomus cells of the carotid

body [109], PC12 pheochromocytoma cells [110], pave-

ment cells from the gills of the trout [111] and mammary

gland C127 cells [8, 11, 112] have also been shown to

possess this channel. Patch-clamping the intracellular

organelles revealed the maxi-anion channel activity in

sarcoplasmic reticulum ‘‘sarcoballs’’ [113], whereas the

presence of this channel in endoplasmic reticulum [114]

and in Golgi complex [115] was demonstrated by recon-

stituting these membranes into liposomes and lipid

bilayers, respectively. Thus, it is likely that the maxi-anion

channel is widely expressed in almost every part of the

body.

Studying the cardiomyocytes, we came across a puz-

zling observation that a high level of maxi-anion channel

activity could be observed with primary cultured neonatal

cells, but not with freshly isolated adult cardiomyocytes

patched by a conventional patch-clamp technique [2, 34]. It

was hypothesized that maxi-anion channels are only tran-

siently expressed in neonatal cells, disappearing upon

maturation [34]. However, ATP release from mature

cardiomyocytes and purinergic signaling in the normal and

diseased heart are well-recognized phenomena. We thus

hypothesized that the difference in maxi-anion channel

activity between neonatal and adult cells could be related

to different pattern of spatial distribution of the maxi-anion

channels over the surface of sarcolemma. When adult

cardiomyocytes were patched using fine-tipped pipettes

(15–20 MX), which were targeted to only Z-line areas, the

maxi-anion events could be observed even in adult cells, as

shown in Fig. 2. When different regions of the cell surface

were subjected to excision and patch-clamp by using a

recently developed ‘‘smart-patch’’ method [116–118], we

found that the channel activity was maximal at the opening

of T-tubules and along Z-lines, but was virtually absent in

the scallop crest area [12], as shown in Fig. 2a. Even in the

cell-attached configuration, unitary maxi-anion channel

events were activated in adult rat cardiomyocytes by

osmotic swelling after a lag time of around 9 min [12], as

shown in Fig. 2b. Thus, it is concluded that maxi-anion

channels do not disappear upon maturation, but become

concentrated at the openings of T-tubules and along Z-lines

in adult cardiomyocytes.
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Fig. 2 Maxi-anion channel activity localized in specific regions on

freshly isolated adult rat cardiomyocytes. a Topographic image of the

area indicated by a white rectangle in the optical image shown at the

bottom part on the surface of a cardiomyocyte obtained using

scanning ion conductance microscopy (SICM) with a fine nanopi-

pette. The maxi-anion channel activity in patches excised from

Z-grooves, T-tubule openings, and scallop crests using the ‘‘smart-

patch’’ technique are shown on the right side. b Swelling-induced

activation of the maxi-anion channel activity in sarcolemma of adult

cardiomyocytes. Mean patch currents recorded at ?50 mV (open
circles) and -50 mV (filled circles) in a cell-attached patch before

and during (horizontal bar) exposure to hypotonic solution. Single-

channel I–V relationship for these on-cell events is shown on the

lower panel. Each symbol represents the mean ± SEM (vertical bar).

Modified from Dutta et al. [12]
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Basic biophysical properties of the maxi-anion channel

The maxi-anion channel exhibits roughly uniform behavior

in different types of cells. Its very large single-channel

conductance (300–400 pS) in physiological conditions

distinguishes it from other chloride channels. Most authors

noted that the maxi-anion channel has multiple subcon-

ductance states of various levels, such as *15, *50,

*100, *150 and *200 pS [2, 17, 29, 95]. When the

ambient Cl- concentration varied, the single-channel

conductance saturated at 640 pS with Km = 112 mM in L6

myoblasts [24], at 581 pS with Km = 120 mM in T lym-

phocytes [104] and at 617 pS with Km = 77 mM in frog

skeletal muscle ‘‘sarcoballs’’ [113].

The current–voltage relationship of the fully open state

is usually symmetrical and linear with no rectification

(Fig. 1b, filled circles). The channel has a maximal open

channel probability at around 0 mV, but readily closes

when the voltage exceeds a range of ±15 to ?30 mV

(Fig. 3a). Thus, the macroscopic currents exhibit time-

dependent inactivation at large positive and negative

potentials over ±15 to ?30 mV (Fig. 3b). Depending on

cell types, such voltage sensitivity varies, and in some

cases the channel has preferential gating by positive or

negative potentials. However, the voltage dependence of

open probability (Popen) remains bell-shaped with maxi-

mum at a certain voltage near 0 mV (Fig. 3c). The half-

maximal open probability (V1/2) was observed at -22.8

and ?18 mV in normal T lymphocytes with effective

gating charges of 5.7 and 9.6 for negative and positive

voltages, respectively [104]. In cultured L6 myoblasts, the

V1/2 values were -25.6 and ?49.6 mV for quiescent cells

and -15.5 and ?31.4 mV for rapidly proliferating cells

[24]. The effective gating charge was dependent on cell

growth and shifted from lower values for quiescent cells

(3.5 and 1.7) to larger values for proliferating cells (10.6

and 3.7 at negative and positive voltages, respectively).

Similar to T lymphocytes, a gating with higher V1/2 at

negative voltages compared to that at positive voltages

(-36.9 vs. ?13.9 mV) was reported for the maxi-anion

channel in mammary C127 cells [8], as shown in Fig. 3c.

In many cell types, the maxi-anion channel can discrimi-

nate well for anions over cations. A high permeability ratio of

chloride over sodium (PCl/PNa) was reported for maxi-anion

channel in bovine pigmented ciliary epithelial cells (24 [68]),

T lymphocytes (30 [104]), neuroblastoma cells (30 [3]), in

neonatal rat cardiac myocytes (24.6 [34]) and in mammary

C127 cells (21–26 [8]). On the other hand, somewhat lower

PCl/PNa (6–11) was observed for human colonic HT-29 cells

[58], freshly isolated guinea pig fetal type II alveolar epithelial
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Fig. 3 Voltage-dependent inactivation of maxi-anion channel cur-

rents recorded in macro-patches excised from mammary C127 cells. a
Steady-state ramp I–V records from a macro-patch containing five

active channels. b Inactivating current traces recorded in response to

step pulses from 0 to ±50 mV in 10-mV increments in a macro-patch

containing 20 active channels. c Voltage dependence of steady-state

open-channel probability. Filled circles represent the ratio of steady-

state macro-patch current to instantaneous macro-patch current (from

b). The Boltzmann fit (dashed line) yields a half-maximal open-

channel probability at V1/2 = ?13.9 and -36.9 mV for positive and

negative potentials, respectively. The solid line is the ensemble-

averaged current of 11 consecutive ramp-pulse records similar to

those shown in (a). Modified from Sabirov et al. [8]
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cells [61], rat bile duct epithelial cells [65], L6 rat muscle cells

[24], and colonic smooth muscle cells [30]. Studying the

maxi-anion channel of T lymphocytes, Schlichter et al. [104]

found a decrease in anion selectivity from PCl/PNa = 30

measured under balanced osmolarity to PCl/PNa = 11 in the

presence of osmotic gradient. These results indicate that the

channel is highly selective to anions but the degree of anion

selectivity may vary not only with cell types but also with the

experimental conditions.

Selectivity data for different inorganic and organic anions

are summarized in Table 1. In many cells, the selectivity of

maxi-anion channels was found to follow the Eisenman’s

sequence I for weak electric field with permeability

sequence of iodide [ bromide [ chloride [ fluoride [8, 31,

33, 54, 58, 104]. The channel permits passage of large

organic anions, including gluconate, glutamate, aspartate

and lactobionate (Table 1). Hurnak and Zachar [25] studied

the relationship between the minimum cross-sectional areas

of the anions and their relative permeabilities and estimated

the pore diameter of maxi-anion channel in cultured myo-

blasts to be approximately 0.6 nm. A similar estimate (pore

radius of 0.32 nm) was obtained by Soejima and Kokubun

[33] from the cross-sectional area of the largest tested anion,

HEPES-, permeability of which was already undetectable.

In our study, analysis of the permeability of the maxi-anion

channel in mammary C127 cells to organic anions of dif-

ferent sizes using the excluded area theory yielded a pore

radius of 0.55 or 0.75 nm depending on whether or not

frictional forces were taken into account [11]. However,

comparison of permeability ratios with the electrical

mobility ratios for the tested organic anions yielded a sur-

prising linear relationship with a slope close to 1, when these

Table 1 Selectivity sequence and permeability ratios Px/PCl (given in parenthesis) for maxi-anion channel of different types of cells

Cells Selectivity sequence References

Rat cultured Schwann cells I- (1.4) [ Br- (1.2) [ Cl- (1.0) [ methyl-SO4
-

(0.72) [ SO4
2- (0.61) [ acetate- (0.39) = isethionate-

(0.39) [ aspartate- (\0.03), glutamate- (\0.03)

Gray et al. [18]

Rabbit urinary bladder epithelial cells Cl- (1.0) & Br- (1.0) & I- (1.0) & SCN- (1.0) & NO3
-

(1.0) [ F- (0.57) [ acetate- (0.30) [ gluconate- (0.07)

Hanrahan et al. [53]

Rat cultured pulmonary alveolar (type II)

cells

I- (1.5) [ Br- (1.02) C Cl- (1.00) [ NO3
-

(0.9) [ gluconate- (0.6)

Schneider et al. [63]

Rat cultured smooth muscle cells from

embryonic aorta

I- (1.4) [ Br- (1.3) [ Cl- (1.0) [ F- (0.7) Soejima and Kokubun [33]

Rat cultured glomus cells of the carotid

body

Cl- (1.0) [ HCO3
- (0.71) [ SO4

2- (0.57) [ glutamate-

(0.14)

Stea and Nurse [109]

Mouse B lymphocyte-myeloma

hybridoma cells

F- (1.25) [ I- (1.18) [ SCN- (1.10) [ Br- (1.07) [ Cl-

(1.00) [ glucuronate- (0.78) [ NO3
- (0.68) [ aspartate-

(0.62)

Bosma [98]

Human T lymphocytes I- (1.38) [ NO3
- (1.14) [ Br- (1.04) [ Cl- (1.0) [ F-

(0.57) [ SCN- (0.56) [ HCO3
- (0.56) [ SO4

2-

(0.49) [ gluconate- (0.29) & propionate-

(0.30) [ aspartate- (0.08)

Schlichter et al. [104]

Chick cultured embryonic osteogenic

cells

Cl- (1.0) [ methylsulfate- (0.71) [ gluconate-

(0.25) [ glutamate- (0.17)

Ravesloot et al. [108]

Human colon carcinoma HT-29cl.19A

cells

I- (1.2) [ Br- (1.05) [ Cl- (1.0) [ F- (0.46) [ gluconate-

(0.24)

Bajnath et al. [58]

Ascaris suum muscle membrane vesicles I- [ Br- = NO3
- [ Cl- [ F- Dixon et al. [22]

Rat muscle L6 cells Br- (1.18) [ I- (1.15) [ NO3
- (1.13) [ Cl-

(1.0) [ methanesulfonate- (0.60) [ HCO3
-

(0.59) [ propionate- (0.44) [ SO4
2- (0.40) [ glutamate-

(0.1)

Hurnak and Zachar [25]

Guinea-pig parietal cells I- [ Br- [ Cl- [ F- Kajita et al. [54]

Mouse mammary C127 cells I- (1.31) [ Br- (1.14) [ Cl- (1.0) [ F-

(0.61) [ phosphate2- (0.43) [ aspartate-

(0.23) & glutamate- (0.22)

Sabirov et al. [8]

Mouse mammary C127 cells Cl- (1.0) [ formate- (0.66) [ pyruvate-

(0.52) [ methanesulfonate- (0.51) [ acetate-

(0.50) [ propionate- (0.39) [ glucuronate-

(0.19) [ glucoheptonate- (0.18) [ gluconate-

(0.17) [ glutamate- (0.16) [ lactobionate- (0.13)

Sabirov and Okada [11]
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ratios were plotted against each other. This result suggests

that even large anions move inside the maxi-anion channel

pore by free diffusion with little or no interference by the

pore wall. Thus, pore size values based on ionic permeability

measurements are underestimated. In fact, using non-

charged polymeric molecules as a probe, we obtained larger

estimates of the maxi-anion channel pore size, as shown in

Fig. 4. Thus, one-sided application of polyethylene glycols

(PEGs) yielded an effective pore radius of 1.16 and 1.42 nm

for cytosolic and extracellular entrances, respectively [11],

whereas two-sided application of PEGs gave an averaged

radius of *1.3 nm (Fig. 4). This result is in contrast to the

pore radius similarly estimated for a volume-activated anion

channel, VSOR (0.6 nm: [119]) and a cAMP/PKA-activated

anion channel, CFTR (0.6–1.0 nm: [120]). The pore size of

maxi-anion channel thus largely exceeds the size of small

organic anions (e.g. 0.35 nm for glutamate) and is sufficient

for transport of larger organic anions (e.g. 0.58–0.65 nm for

ATP: Fig. 4).

The maxi-anion channel in gastric parietal cells was

insensitive to extracellular pH 5–8 [54]. In cultured glomus

cells of the rat carotid body the channel was insensitive to the

intracellular pH 6.5–8 in inside-out patches [109]. However,

high external pH 9 shifted voltage dependence of the maxi-

anion channel to more negative values in frog skeletal

muscles [21]. For the tracheal maxi-anion channel recon-

stituted into giant liposomes, low bath pH reduced channel

open probability in inside-out patches yielding an apparent

pK of 6.09 [57]. However, the channel current amplitude did

not change with acidification suggesting that the protonation

site is located far from the channel permeation pathway.

Pharmacological properties of the maxi-anion channel

Similar to other chloride channels, the maxi-anion chan-

nel was found to be suppressed, though not completely,

by classical anion channel blockers, such as NPPB and

SITS (Fig. 5) as well as DIDS and DPC [2, 5, 6, 8, 12,

30, 54, 93, 96, 103, 114]. However, maxi-anion channels

were found to be completely insensitive to phloretin,

which is a relatively specific blocker for VSOR [121], in

mouse mammary C127 cells [8, 112] and mouse astro-

cytes [5, 6, 8, 112], and to glibenclamide (Fig. 5), which

blocks not only CFTR but also VSOR [122], in mouse

C127 cells [8], rat cardiomyocytes [2] and mouse astro-

cytes [5]. An anion channel inhibitor, L-644-711 (0.5–

1 mM), also blocked maxi-anion channels in cultured rat

astrocytes [4]. Arachidonic acid at a micromolar level

inhibited maxi-anion channels in an L6 rat muscle cell

line [26], from human term placentas membranes recon-

stituted into giant liposomes [84], in mouse mammary

C127 cells [112], in cultured neonatal rat cardiomyocytes

[2, 12] (Fig. 5), in primary cultured mouse astrocytes [5,

6], and in primary cultured mouse fibroblasts [14],

whereas the gastric endothelin-activated maxi-anion

channel was insensitive to arachidonic acid added from

outside [54]. Dutta et al. [112] found that the maxi-anion

channel of mammary C127 cells was inhibited by ara-

chidonic acid in two different ways: channel shutdown

(Kd of 4–5 lM) and reduced unitary conductance (Kd of

13–14 lM) without affecting voltage dependence of open

probability. The negative charge and cis-conformation of

the arachidonate are essential for the channel inhibition,
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Fig. 4 Maxi-anion channel has a wide pore larger than the size of

ATP. Left panels Basic principle of the polymer partitioning method

using PEGs (depicted as globules) of different sizes (upper panel) and

the effective pore radius (R) of an ATP molecule calculated in two

different conformations: conventional long and more compact forms

found in crystals (see for details: Sabirov and Okada [11]). Right
panel Relative single maxi-anion channel conductance (circles) and

relative bulk solution conductivity (triangles) as a function of the

hydrodynamic radius of PEGs. Each symbol represents the mean ±

SEM (vertical bar) (n = 5–20). Pore size is estimated as an

intersection point between a rising portion of the curve (partial

partitioning) and an upper plateau level (complete exclusion).

Modified from Sabirov and Okada [11]
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which occurs from the intracellular, but not extracellular,

side [109].

Gadolinium ions are considered as a relatively selective

inhibitor of the stimulated ATP release [123, 124]. Gd3? at

the concentration of 30–50 lM effectively shuts down the

maxi-anion channels from the extracellular (Fig. 5), but not

the cytosolic, side [2, 5, 6, 8, 12, 14]. This is in contrast to

the VSOR which is insensitive to gadolinium ions [8, 125].

Zn2? ions also effectively blocked the maxi-anion channel

both from extra- and intracellular sides in different cell

types [26, 31, 93, 103, 111].

In mouse N1E 115 neuroblastoma cells, a type II

pyrethroid, deltamethrin, at micromolar concentrations

inhibited the maxi-anion channel activity [43], whereas

ivermectin (10-7 M) and pentobarbitone (10-6 M) signif-

icantly increased open channel probability [44].

Activation of the maxi-anion channel by physiological/

pathophysiological stimuli

Although the maxi-anion channel activity is rarely seen in

cell-attached patches on resting cells, the channels can be

activated by variety of physiologically/pathophysiologi-

cally relevant stimuli. As summarized in our previous

review [10], the maxi-anion channel is activated by

osmotic cell swelling in cortical collecting duct (CCD)

cells [9], neuroblastoma cells [3], cortical astrocytes in

primary culture [4, 5], mammary C127 cells [8, 112] and in

cardiomyocytes [2, 12] (Fig. 6a). In cardiomyocytes [2, 12]

(Fig. 6b, c) and astrocytes [2, 5, 6, 12], the channel is also

activated in response to the chemical ischemia and

hypoxia. In kidney macula densa cells, the channel

becomes activated in response to salt stress, namely

reduction of the NaCl concentration in the tubular fluid

[70]. Maxi-anion channels could be activated by endothe-

lin-1 via EB-receptor during whole-cell recordings from

guinea-pig parietal cells [54]. In cell-attached patches, the

maxi-anion channels were activated by an agonist of

A1-adenosin receptor, N6-cyclohexyladenosine, in cortical

collecting duct cells [75] and by bombesin, a Ca-mobilizing

peptide mitogen, in Swiss 3T3 fibroblasts [90]. On NIH3T3

fibroblasts and porcine aortic endothelial cells, both grown

in the presence of colchicines, the maxi-anion channels

were activated by extracellularly added antiestrogens,

toremifene [89] and tamoxifen [94]. The effect could be

blocked by 17b-estradiol but not by progesterone. A sim-

ilar effect of these antiestrogens on C1300 neuroblastoma

cells was blocked by okadaic acid, suggesting a role of Ser/

Thr phosphorylation in this process [42]. Henriquez and
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Riquelme [82] reported a direct modulation by 17b-estra-

diol and tamoxifen of the maxi-anion channel from human

placenta reconstituted into giant liposomes. Bradykinin and

an NK-1 receptor antagonist, substance P methylester,

were also able to activate the maxi-anion channels in cell-

attached patches on pig aortic endothelial cells [93] and

rabbit colonic smooth muscle [29, 30], respectively.

Interestingly, the channels could be reversibly activated by

raising the ambient temperature above 32�C both in cell-

attached and whole-cell experiments in human T lympho-

cytes [103]. In several studies, a strong stimulus to activate

the maxi-anion channel was patch excision (see [15]).

Obviously, a very strict regulatory system controls the

channel physiological state, which provides a low basal

activity of maxi-anion channel in resting conditions. The

mechanism of the maxi-anion channel activation by cel-

lular swelling remains poorly understood at present.

Hypoosmotic stress is known to activate several signaling

pathways [1, 126, 127], which are also involved in the

maxi-anion channel regulation. These include protein

phosphorylation, changes in the intracellular concentration

of Ca2? and cAMP, G proteins, membrane stretch and

cytoskeleton, and so on. Intracellular regulatory pathways

involved in maxi-anion channel regulation were studied in

a number of cell types. Thus, intracellular signaling via

PKA and PKC phosphorylation has been suggested to

regulate the maxi-anion channel in rabbit cortical collect-

ing duct cells [9], bovine aortic endothelial cells [97], pig

aortic endothelial cells [93], and rat vascular smooth

muscle cells [31, 32]. Meanwhile, in rabbit colonic smooth

muscle cells, PKA and PKC inhibitors had no effect on the

maxi-anion channel activity [29]. The channel was shown

to be regulated by G proteins: the channels were activated

by GTPcS and inhibited by GDPbS and pertussis toxin

(PTX) in rabbit renal cortical collecting duct cells [75, 76]

and in rabbit colonic smooth muscle cells [29]. However,

an opposite type of regulation was observed in rat bile duct

epithelial cells, where PTX and GDPbS activated, whereas

GTPcS inhibited the maxi-anion channels [65, 66], sug-

gesting a cell-specific channel regulation by G proteins.

Activation of maxi-anion channels upon patch excision

may imply an involvement of the cytoskeleton in the maxi-

anion channel regulation. Indeed, in cortical collecting duct

cells, Schwiebert et al. [9] demonstrated that in inside-out

patches, the maxi-anion channel could be activated by

disruption of F-actin using dihydrocytochalasins. Short

actin filaments activated the channels, whereas long actin

filaments inhibited, and 1 mM ATP reversed effect of di-

hydrocytochalasin B. In addition, phalloidin abolished the

channel activation by negative pressure [9]. Mills et al.

[128] proposed that swelling-induced membrane stretch

activates the maxi-anion channel by a mechanism, which

involves fragmentation and depolymerization of F-actin.

Although most authors found that maxi-anion channels

are insensitive to changes in the cytosolic free Ca2? con-

centration in excised inside-out patches, elevation of

cytosolic Ca2? by a Ca-ionophore, A23187, was found to

increase the incidence of channels in the cell-attached
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mode in human colonic cells HT-29 [58], Swiss 3T3

fibroblasts [90], pig aortic endothelial cells [93] and

embryonic Xenopus spinal neurons [36].

On balance, it must be stated that available data are still

fragmentary to deduce the precise mechanisms of activa-

tion of the maxi-anion channel. Also, studies for the

molecular mechanisms have been largely hampered by the

lack of molecular identification of this channel.

Hypothesized roles of the maxi-anion channel in the Cl2

transport

As an electrogenic chloride-transporting pathway, the

maxi-anion channel has been implicated in a number of

physiological functions, which involve Cl- movement.

Thus, the channel was deemed to provide a rout for solute

transport and/or bicarbonate secretion in pancreatic duct

cells [55], in alveolar epithelium [63], in syncytiotropho-

blasts of placenta [83, 129], in sheep ruminal epithelium

[87] and in glomus cells of the rat carotid body [109]. The

channel is thought to participate in the Cl- efflux during

cell volume regulation in cortical collecting duct epithe-

lium [9, 75], pigmented ciliary epithelial cells [68],

lymphocytes [102, 104], myoblasts [23], placenta [80],

neuronal cells [3] and astrocytes [4]. The maxi-anion

channel is expressed in the ciliary epithelium, where it may

participate in the aqueous humor secretion [67, 130], and in

the hepatic bile duct, where it could be involved in bile

formation [65, 66]. Efflux of Cl- ions during apoptotic cell

shrinkage is also thought to occur via maxi-anion channels

in neuronal cells [46]. Chloride influx as a counter ion for

potassium uptake is thought to be a function for the maxi-

anion channel in Schwann cells [47, 48]. The maxi-anion

channel may also be involved in regulating charge balance

and membrane potential of the Golgi complex by providing

a counter anion pathway for the H?-ATPase [115]. Regu-

lation by estrogens and antiestrogens links the maxi-anion

channel to the intracellular signaling pathways of the cells

expressing estrogen receptors [42, 89]. A possible role in

signal transduction in B cell activation [99, 100] and in

receptor-mediated initial cell depolarization in colonic

smooth muscle cells [29] has also been proposed.

It should however be noted that in most papers, the pro-

posed physiological roles are mainly hypothetical without

making critical comparison of pharmacology between the

proposed functions and the maxi-anion channel.

Roles of the maxi-anion channel in stimulated release

of ATP and glutamate

Adenosine-50-triphosphate (ATP) is not only a universal

energy source constantly produced and utilized by cells at

high rates, but it also serves as an ‘‘extracellular second

messenger’’ for autocrine and paracrine signaling at cel-

lular as well as tissue/organ levels [131–135]. When cells

are stimulated, they release small amounts of this signal-

ling molecule, which then binds to P2 purinergic receptors

expressed in virtually all cell types [136]. ATP is a rela-

tively large and hydrophilic molecule, and it needs

specially designed pathways in order to exit the cells. Most

ATP molecules and its complex with Mg2? exist in the

cytoplasm in anionic forms at physiological pH (*87% as

MgATP2- and *11% as ATP4-: see [137]. Therefore,

it is possible that an anion channel can electrogenically

translocate ATP4- or MgATP2-, thereby serving as a

conductive pathway for ATP release (see for review [10,

137]). The maxi-anion channel is a very likely candidate

for this role due to the following five reasons: (1) The

stimuli, which effectively activated the maxi-anion chan-

nel, also produced a massive release of ATP. This has been

confirmed in mammary C127 cells [8], cardiomyocytes [2,

12] and astrocytes [6, 7] for osmotic stress; in kidney

macula densa cells for the salt stress [70]; and in cultured

neonatal [2] and acutely isolated adult cardiomyocytes [12]

as well as in primary cultured astrocytes [6, 7] for the

ischemic and hypoxic stresses. (2) In all these studies, the

inhibitors of the maxi-anion channel, such as SITS, NPPB

and Gd3?, effectively suppressed the stimulated ATP

release, whereas blockers of VSOR, phloretin and gliben-

clamide, had no notable effect on the stimulated release of

ATP from the cells tested in these studies. (3) Our bio-

physical analysis showed that the maxi-anion channel is

well suited for the function of a conduit for ATP4- or

MgATP2-. Thus, ATP4- added either from the extracel-

lular or from the intracellular side produced a profound fast

open-channel voltage-dependent blockage, revealing a

weak ATP-binding site with Kd of 12–13 mM located

approximately in the middle of the channel pore [8]. Pore-

sizing experiments with polyethylene glycols indicated that

the maxi-anion channel has a relatively large pore with an

effective radius of *1.3 nm [11]. Such a wide nanoscopic

pore provides sufficient room to accommodate ATP4- or

MgATP2-, the radii of which are in the range of

0.6–0.7 nm (see [11]). (4) Replacing all the anions in the

intracellular side with 100 mM ATP4-, we were actually

able to detect small inward currents carried by the nucle-

otide (Fig. 7a), which reversed at around -20 mV and

yielded the permeability ratio PATP/PCl of *0.1 for the

maxi-anion channels in all the cell types tested, including

C127 cells [8, 112], macula densa [70], cardiomyocytes

[2, 12] and astrocytes [6]. The maxi-anion channel was

permeable also for MgATP2- (Fig. 7b) with the perme-

ability ratio PMgATP/PCl of *0.16 [2]. The maxi-anion

channel does not discriminate well between the nucleotides

and is permeable also to ADP3- (PADP/PCl = 0.12) and
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UTP4- (PUTP/PCl = 0.09) [137]. The ATP currents were

sensitive to the blockers of the maxi-anion channel, SITS,

NPPB, Gd3? [8] and arachidonic acid [112]. (5) Finally,

recent studies by using a smart-patch technique [138]

combined with a biosensor ATP detection technique [139,

140] demonstrated that the spatial distribution of the maxi-

anion channel expression on the cell surface of both neo-

natal and adult rat cardiomyocytes coincides with that of

the ATP releasing sites [12]. From these studies, the maxi-

anion channel emerges as an important gateway for the

purinergic cell-to-cell signaling providing an electrogenic

conductive pathway for the translocation of ATP4- and

MgATP2- from the cytosol to the extracellular milieu. It is

proposed that the maxi-anion channel-mediated release of

ATP in response to salt stress is a central event during cell-

to-cell communication between macula densa cells and

mesangial cells, which express P2Y2 receptors [70, 141].

This mechanism may represent a new paradigm in cell-to-

cell paracrine signal transduction mediated by ATP in

tubuloglomerular feedback [10, 141, 142]. In cardiac cells,

the maxi-anion channel is suggested to play a protective

role by releasing ATP during ischemic preconditioning [2,

12]. Astrocytes may communicate with neurons by

releasing extracellular signaling molecules called glio-

transmitters such as ATP and glutamate [143, 144]. Thus, it

is suggested that purinergic cell-to-cell signaling in the

brain occurs via activation of maxi-anion channels [5–7].

Astrocytes can also release their intracellular glutamate

in physiological conditions in response to ATP, glutamate,

bradykinin and prostaglandin E2 [145]. High levels of the

extracellular glutamate of about 200–300 lM [146] can be

observed during brain ischemia-reperfusion, and this

released glutamate is considered as a main cause of brain

excitotoxicity and neurodegeneration [147–149]. As shown

in Fig. 8a–c, the astrocytic maxi-anion channel was found

to be conductive to glutamate with Pglutamate/PCl of 0.20 [5]

and could, therefore, serve as a mediator for the stimulated

glutamate release from cultured astrocytes. Consistent with

this hypothesis, the swelling- and ischemia-induced release

of glutamate was greatly suppressed by blockers of maxi-

anion channels, such as NPPB, SITS, Gd3? and arachido-

nate [5]. However, even a strongest inhibitor of the maxi-

anion channel, Gd3?, inhibited only about half of the total

glutamate release in hypotonic conditions and about one-

third of it under the chemical ischemia, as summarized in

Fig. 8d, suggesting that an additional pathway is involved

in the observed release of glutamate. This second pathway

is likely to be the another volume-activated anion channel

VSOR, because this channel is also permeable to glutamate

with a permeability ratio Pglutamate/PCl of 0.15 [5], and

because the massive release of glutamate was partially

suppressed by blockers of VSOR, phloretin and tamoxifen

(Fig. 8d). Thus, it appears that both VSOR and maxi-anion

channels jointly represent major conductive pathways

for the release of glutamate from swollen and ischemia-

challenged astrocytes with predominant contribution of

the maxi-anion channel.

It is clear that the maxi-anion channel conducts gluta-

mate-, ATP4- and MgATP2-. What is, however, the

number of active channels that would be sufficient for the

observed net release of glutamate and ATP? Previously our

quantitative analyses of the channel’s conductance and the
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observed net release of these molecules suggested that brief

opening of only a few maxi-anion channels would be

sufficient to provide physiologically significant extracel-

lular signals caused by the release of glutamate from

cortical astrocytes [5] and that of ATP from cardiac myo-

cytes [2].

The fact that the maxi-anion channel is blocked by ATP

at millimolar range (see above) would suggest that some

other intracellular anions (e.g. free amino acids or glycol-

ysis intermediates) could also interact with the maxi-anion

channel pore in vivo and interfere with the ionic fluxes.

Although we did not detect any effect of glutamate on the

channel amplitude up to 30 mM [5], we suppose that, in

general, the fraction of the maxi-anion channels contrib-

uting to the release of ATP and/or glutamate could vary as

a function of the concentrations of cytosolic constituents,

which interact with the channel, depending on the intra-

cellular state of the concerned cells.

Puzzle of the molecular identity of the maxi-anion

channel

The molecular identity of the maxi-anion channel is not yet

firmly established. As we described above, the maxi-anion

channel has a very large single-channel conductance and

bell-shaped voltage-dependent inactivation with maximal

open probability at around 0 mV. These biophysical

properties are similar to those of the voltage-dependent

anion channel (VDAC, also called porin) expressed in the

outer membrane of mitochondria [150–152]. Therefore, it

has been widely held that VDAC located in the plasma

membrane (pl-VDAC) is the most likely candidate protein

[38, 45, 46, 49, 88, 110]. This hypothesis has received a

great attention and considered to be an established concept

in the field. Consistent with this idea, several groups have

indeed reported the presence of VDAC protein in

the plasma membrane of various cells [38, 49, 88, 110,
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153–161]. A possible mechanism for targeting of the same

protein to such different locations as mitochondria and the

plasma membrane has been suggested by Buettner et al.

[110]. These authors identified an alternative first exon in

the murine vdac1 gene that encodes a leader peptide at its

N-terminus. This peptide serves as a signal to target the

protein to the plasma membrane via Golgi apparatus and it

is eventually cleaved away to produce a pl-VDAC protein

identical to the mitochondrial one. Another mechanism

involving mRNA untranslated regions has also been con-

sidered [162]. Three isoforms of mitochondrial porin,

VDAC1, VDAC2 and VDAC3, have been cloned in

mammals [49, 163–170]. If the maxi-anion channel is a pl-

VDAC, then deletion and/or silencing of the VDAC genes

would be expected to eliminate the channel activity. In

order to test the ‘‘maxi-anion channel = pl-VDAC’’

hypothesis, we have deleted each of the three genes

encoding the VDAC isoforms individually and collectively

and demonstrated that maxi-anion channel (*400 pS)

activity in VDAC-deficient mouse fibroblasts was unal-

tered [14]. Essentially similar maxi-anion channel

activities were observed in mouse embryonic fibroblasts

(MEFs) derived from VDAC1-, VDAC2- and VDAC3-

deficient (vdac1-/-, vdac2-/-, vdac3-/-) mice, as shown

in Fig. 9a–c, as well as in MEFs from wild-type mice and

in mouse adult fibroblasts (MAFs) from VDAC1/VDAC3

double-knockout mice [14]. As shown in Fig. 9d, the

channel activity was also similar in VDAC1/VDAC3

double-deficient cells with the VDAC2 protein depleted by

siRNA [14]. Thus, the lack of correlation between VDAC

protein expression and maxi-anion channel activity

strongly argued against the long held hypothesis of

plasmalemmal VDAC being maxi-anion channel, but

indicate that none of the three individual isoforms of

VDAC can be responsible for the maxi-anion channel. The

plasmalemmal VDAC proteins may perform some other

functions, such as being a receptor for plasminogen kringle

5 [171] or a trans-plasma membrane NADH-ferricyanide

reductase [172], activities that are unrelated to the maxi-

anion channel activity.

It should be noted that the similarities in single-channel

properties between the maxi-anion channel and VDAC are

rather superficial, and closer inspection reveals very

important differences, as summarized in Table 2. For

instance, the VDAC single-channel conductance may reach

levels of over 10 nS at high salt concentrations without any

saturation [173], whereas the single-channel conductance

of max-anion channel saturates at 580–640 pS with Km of

77–120 mM [24, 104, 113]. The ability to discriminate

between cations and anions is also very different between

VDAC and maxi-anion channels: under the same 10-fold

KCl gradient, the maxi-anion channel generated a reversal

potential of about 40 mV [89], whereas no more than

approximately 10 mV was observed for the mitochondrial

VDAC [174], indicating that the maxi-anion channel is

much more selective for chloride over potassium than the

mitochondrial VDAC. Although the overall ranking of

anionic permeability was similar for both channels

(Br- & Cl- [ acetate), the numeric value of the perme-

ability ratio was notably different for acetate. The

permeability ratio for glutamate- to Cl- of 0.23 for the

WT-MEF maxi-anion channels [14] was also different

from the value of Pglutamate/PCl = 0.4 reported for the

mitochondrial porin [175]. Although voltage-dependent

gating has been considered to be a common property for

the two channels, the mitochondrial VDAC is known to
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retain approximately 40% of its initial conductance in the

so-called ‘‘closed’’ state, which is cation-selective [150,

151], whereas the maxi-anion channel closes completely at

high positive and negative voltages (e.g. [8, 14]). Voltage-

dependent modulation of ionic selectivity has never been

reported for maxi-anion channels, supporting our conclu-

sion that the maxi-anion channel and VDAC are unrelated

proteins.

Plasmalemmal VDAC is not the only molecular candi-

date for the maxi-anion channel. Recently, Suzuki and

Mizuno [176] have reported that a gene tweety found in

Drosophila flightless locus has a structure similar to those

of known channels. The human homologs of tweety

(hTTYH1-3) have been suggested to provide a product,

which represents a novel large-conductance Ca2?-activated

chloride channel, while a related gene hTTYH1 gave rise

to functional expression of the swelling-activated chloride

channel. It has been hypothesized that hTTYH1 might be

the large-conductance Ca2?-activated Cl- channel [176,

177]. We attempted to check this attractive hypothesis by

transfecting two splice-variant clones of the TTYH1 gene

(TTYH1-E and TTYH1-SV, kind gifts from Dr. M. Suzuki)

into HEK293T cells and assaying the maxi-anion channel

activity 1–5 days after transfection by patch excision. In

these experiments, either control, TTYH1-E- or TTYH1-

SV-transfected cells never showed the maxi-anion channel

phenotype typical to C127 cells used as a positive control

in these experiments [13]. This result implies that the

human homologs of tweety clones alone are unlikely to be

molecular identity of the maxi-anion channel. We believe

that more thorough tests of this attractive hypothesis are yet

necessary. It might be meaningful to test some other

variants of TTHY genes as well.

The maxi-anion channel in cardiomyocytes [2] and

mammary C127 cells [137] was insensitive to octanol-1,

suggesting that it is unrelated to connexins. A plasma-

lemmal subtype of the mitochondrial adenine nucleotide

translocase (ANT), or ADP/ATP carrier (AAC), which

mediates ATP/ADP exchange at the inner mitochondrial

membrane, could also be ruled out based on the insensi-

tivity of the maxi-anion channel to the potent and selective

blockers of ANT, atractyloside and bongkrekic acid [137].

Taken together, we must summarize that the molecular

entity of this classical channel has as yet been unidentified.

Concluding remarks

The maxi-anion channel, which is activated by osmotic cell

swelling, is ubiquitously expressed and found in almost

every part of the body. This classical anion channel obvi-

ously fulfils important physiological functions, which

remain incompletely understood at present. As a conven-

tional chloride-conducting pathway, the maxi-anion

channel is likely to be involved in controlling the cell

membrane potential, in fluid secretion/absorption and in

cell volume regulation (Fig. 10). However, the ability to

Table 2 Comparison of the

single-channel properties

between the mitochondrial

VDAC and the maxi-anion

channel

Parameter VDAC Maxi-anion channel

PCl/PK (100/1,000 mM KCl) 1.7–1.9 [173, 174] 13.5 ± 2.3 [14]

Pacetate/PCl 0.41 [178] 0.58 ± 0.01 [14]

Pglutamate/PCl 0.4 [175] 0.17 [108]; 0.23 [14]

[Cl-] dependence for

single-channel conductance

Linear up to 10 nS with no

saturation [173]

Saturates at 580–640 pS

with Kd = 77–120 mM

[24, 104, 113]

Pore size 1 and 2 nm for different

entrances [179, 180]

1.16 and 1.42 nm for

different entrances [11]

Voltage-dependent

‘‘closed’’ state

Retains *40% of initial

conductance [150]

Non-conductive [8, 14]

Fig. 10 Maxi-anion channel is activated by osmotic swelling,

ischemia and hypoxia, and its pore serves as the conducting pathways

not only for a small inorganic anion, Cl-, but also for negatively

charged signaling molecules, ATP and glutamate. Transport of Cl-

defines the conventional roles of the maxi-anion channel in fluid

secretion/absorption, in cell volume regulation, and in controlling the

membrane potential. On the other hand, the wide nano-sized pore of

the maxi-anion channel is capable to release extracellular signals,

ATP and glutamate, from a cell, thus defining novel roles of this

channel in stress-sensory signal transduction. See text for details
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release small amounts of physiologically important sig-

naling molecules, such as ATP and glutamate, puts this

channel in the center of the purinergic and glutamatergic

cell-to-cell signal transduction (Fig. 10). Also, this channel

is deeply associated with the pathogenesis of cardiac

ischemia and hypoxia as well as with excitotoxic neuro-

degeneration in the brain. With regard not only to its

conventional roles due to Cl- conduction but also to its

novel roles due to signaling anion conduction (Fig. 10);

therefore, the maxi-anion channel would represent an

important target for drug discovery. The maxi-anion

channel has recently been verified to possess a wide

nanoscopic pore (Fig. 10). However, the channel molecule

itself is not identified. Molecular identification of the maxi-

anion channel is an urgent task that would greatly promote

the studies in this field.
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