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Abstract
Global agricultural production has risen substantially in recent decades and needs to rise further to meet the ever-growing food 
demand. While higher production can be directly attributed to agricultural expansion and intensification, the underlying factors 
behind the changes in cultivated areas and yields can be complicated and have not been well understood. China has dramatically 
increased its food production in past decades, especially during the initial approximately 30 years following the commencement 
of the rural reform in the late 1970s. The agricultural land use, including cropland areas, the composition of different crops and 
their spatial distributions, and crop yields have experienced substantial changes. In this research, we quantitatively analysed the 
changes in the harvested areas and yields of the four most widely cultivated crops in China (rice, wheat, maize, and soybean) at 
the county level from 1980 to 2011. We used spatial panel regressions to quantify the determinants of the observed changes in 
harvested area and yields for the major cultivation region of each of the four crops. Results showed that growth in population, gross 
domestic product, and urbanisation are positively associated with harvested areas. Higher usage of machinery and fertiliser inputs 
increased yields of the three cereal crops, while the harvested area of soybean decreased, particularly after China’s accession to the 
WTO. Our findings reveal how domestic urbanisation and changes in consumption patterns, coupled with the rising globalisation 
of agricultural markets, shaped China’s agricultural production and land use over the three decades. These insights shed light on 
the determinants of long-term agricultural dynamics and thus inform evidence-based decision-making.

Keywords Agricultural production · Land-use intensity · Crop productivity · Land-use change · Food security · Spatial 
panel regression

1 Introduction

Food security continues to be a major concern for human-
ity and is an intrinsic element of sustainable development 
(Godfray, Beddington et al., 2010). Future agricultural 

production must increase to meet the ever-increasing 
food demand due to population growth, higher demands 
for plant-based energy production, and more resource-
demanding diets. While the increased food production 
in the past, particularly after the green revolution started 
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in the 1950s, was mainly achieved by agricultural land 
expansion and intensification, future production increases, 
however, must be achieved at lower environmental costs 
(Alexander et al., 2015; Garnett et al., 2013; Popp et al., 
2016). A few crops play a particularly important role in 
food security as they provide the majority of the energy 
and essential nutrients (Khoury et  al., 2014). Overall, 
humanity obtains 50% of its daily calories from cereals, 
and more than 40% of these calories are from only three 
major staple crops: rice, wheat, and maize (FAO, 2019; 
Kearney, 2010). Moreover, the growing consumption of 
livestock products, which are increasingly produced in 
industrial production systems, requires large amounts of 
feed and fodder, which are mainly sourced from maize, 
as the source of energy, and soybean, which provides the 
proteins for animal growth (Cassidy et al., 2013). In 2017, 
half of the 1.42 billion hectares (Bha) of the global har-
vested area were cultivated with only four crops: wheat, 
maize, rice, and soybean (FAO, 2019). Understanding 
changes in the area dedicated to these major crops and 
their yields provides critical insights for better under-
standing the agricultural dynamics that shape the salient 
changes in the food system.

While the overall share of the four major crops in the 
global harvested area and production volume has remained 
stable over the last 50 years, the contribution of the indi-
vidual crops to the overall production quantities has sub-
stantially changed over time. The proportion of wheat in 
the total harvested area decreased from 22% in 1967 to 
15% in 2017. At the same time, the area occupied by maize 
increased from 11% in 1967 to 14% in 2017, equivalent to 
an absolute increase of 85 million ha (Mha). The increase 
in soybean cultivation has been especially drastic, with an 
increase greater than 95 Mha, or from 3 to 9% of the global 
harvested area during this 50-year period (FAO, 2019).

The sweeping changes in the global patterns of crop 
cultivation have been driven by interlinked political, socio-
economic, climate change, and biophysical factors. Where 
these crops are produced depends on locational factors 
that shape land rents, including climate, soil, and acces-
sibility, while changes in economic, institutional, politi-
cal, and demographic characteristics drive the changes in 
cultivation patterns (Meyfroidt, 2016). For example, the 
spatial patterns of food production and consumption have 
been transformed by the globalisation of the food system, 
manifested by the shift from locally produced food to an 
increasing reliance on agricultural commodities that are 
sourced from distant markets (Levers & Müller, 2019).

While the overall cropland area only increased moder-
ately, much of the recent global increase in crop production 
has been due to higher crop yields, mainly as a result of 
higher input intensity per unit area (Magliocca et al., 2015; 
Rudel et al., 2009). The intensification of production has 

greatly benefitted global food security because it has saved 
substantial land resources from being converted into agri-
cultural production (Borlaug, 2007; Burney et al., 2010). 
However, the intensification may also provoke rebound 
effects by raising profits from production and lowering food 
prices, thereby incentivising further expansion (Lambin & 
Meyfroidt, 2011; Rudel et al., 2009). Understanding the pat-
terns and determinants of intensification processes remains 
important because of the adverse side effects that can result 
from higher input intensity, such as nutrient leaching, water 
pollution, air pollution, and negative effects on human health 
(Godfray, Crute et al., 2010; Tilman et al., 2011).

China is a particularly interesting case because the coun-
try’s rapid economic development has had substantial effects 
on land use (Deng et al., 2015; Jiang et al., 2013; Sun et al., 
2018). China has experienced drastic changes in agricultural 
production and land systems in the past years. Agricultural 
production has increased dramatically in China follow-
ing the reforms initiated in 1978 that shifted farmland use 
rights from communes to millions of farm households— 
the so-called household responsibility system (Huang & 
Rozelle, 2018; Lin et al., 2022). Agricultural production has 
taken off ever since. China’s real agricultural output value 
grew at an annual rate of 5.3 percent between 1978 and 2017 
(Sheng et al., 2020).

At present, China is by far the largest producer and con-
sumer of rice and wheat in the world; the government views 
self-sufficiency in the production of these crops as criti-
cal for securing China’s “rice bowl” (i.e., producing suffi-
cient food for China) (Zhang, 2019). Maintaining domestic 
food security, defined by the Chinese government as a 95% 
degree of grain self-sufficiency, remains a top policy prior-
ity and is a strategic goal on China’s food security agenda 
(Huang & Yang, 2017). The lingering COVID pandemic and 
ongoing Russia-Ukrain conflict have pushed food security 
even higher on the Chinese government’s agenda (Hellegers, 
2022; Pu & Zhong, 2020).

To achieve the policy goals, the Chinese government has 
implemented a strict policy to protect its arable land, the 
so-called “arable land red line policy”, which aims to main-
tain at least 1.8 billion mu (i.e., 120 Mha) of agricultural 
land in production. In addition, China set up a guaranteed 
grain procurement price for wheat, rice, and maize, among 
others, to foster grain production. While China become the 
largest food importer, particularly of soybeans and maize, 
in the world, the key staple crops, wheat and rice, continue 
to be largely produced domestically, mainly to reduce reli-
ance on imports and to guarantee domestic food security 
(Huang et al., 2017). However, China faces daunting chal-
lenges in striving for the envisaged domestic food security. 
The domestic demand for agricultural products has been 
rapidly increasing, mainly because of population growth, 
and a dietary structural shift from mainly plant-based food 
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towards diets with a higher reliance on animal proteins— 
driven by urbanisation and growing affluence (Huang et al., 
2015; Jiang et al., 2015; Zhao et al., 2021).

Achieving production increases is hampered by the 
small farm structure— the average farm size in China was 
approximately 0.5 ha in 2015 (Wu et al., 2018) and the high 
fragmentation of farms, which hinders higher capital inputs, 
agricultural modernisation, and realisation of economies of 
scale (Lai et al., 2020; Zhang et al., 2013). Cropland per 
capita amounted to only 0.09 ha per capita in 2016 in China, 
and the scarcity of land resources becomes even more severe 
with the loss of arable land caused by urbanisation, land 
degradation, and soil contamination (Bren d’Amour et al., 
2016; Deng & Li, 2016). The contrast between the low 
income from agriculture and the rising wage levels from 
urban employment opportunities drives the massive migra-
tion from rural to urban areas. Since the 2000s, many rural 
areas have started to depopulate and are suffering from 
labour shortages because of the ever-increasing migration 
from rural areas to the growing cities (Liu et al., 2017). The 
aging society, partially due to the previous one-child policy, 
further augments rural labour scarcity and raises the ques-
tion of who will cultivate China’s agricultural land in the 
future. The fundamental changes in the Chinese countryside 
have profound effects on the extent and input intensity of 
agriculture and, consequently, on agricultural production 
outputs. It is vital to understand the impact of these changes 
on agricultural production strategies and, thus, on agricul-
tural productivity.

The spatial composition of crop cultivation in China has 
changed notably in the last three decades. Rice, arguably the 
most important staple food for the Chinese, has traditionally 
been cultivated in southern China. However, in recent years, 
rice cultivation has expanded in Northeast China because 
the japonica rice grown in the north is in high demand due 
to its superior nutritional value and good taste (Sun et al., 
2018). In contrast, the harvested area of rice in the south 
has decreased due to multiple factors such as urbanisation, 
cropland abandonment, and reduced cultivation intensity 
reflected in the multi-cropping index (Jin & Zhong, 2022; 
Liu et al., 2013). Combined with climate change, the cen-
troid of the rice plantation area has already shifted 230 km 
to the northeast (Hu et al., 2019; Li et al., 2015; Liu et al., 
2013). Wheat is the main staple crop in northern China. 
Approximately 126 million metric tons of wheat were pro-
duced on 24 Mha in 2011, and most of this wheat was culti-
vated extensively and rotated with maize. Moreover, China 
has become the second-largest maize producer in the world. 
The harvested area of maize increased from 20 Mha in 1980 
to 36 Mha in 2011, mainly in response to the increasing 
demand for maize as a feed crop for China’s growing live-
stock population. Maize production is concentrated in the 
plain regions stretching from the northeast to the southwest 

(Li, 2009; Yin et al., 2018). Overall, rice, wheat, and maize 
account for 80% of the total harvested area in China, with an 
increasing trend. Conversely, the area cultivated with soy-
beans decreased slightly, and yields have remained stable 
since approximately 1980 (Sun et al., 2018).

The changes in harvested area, crop structures, and yields 
have stark implications for food security and the environment. 
However, the existing literature on the patterns, determinants, 
and drivers of changes in cropland structures in China has 
focused on individual crops, such as rice (Hu et al., 2019; Jin 
& Zhong, 2022; Li et al., 2015; You, 2012; Yu et al., 2022) 
or maize (Li, 2009). To the best of our knowledge, a holistic 
assessment of the spatial changes in cropping structures and 
productivity, how these have changed in all of China, and what 
factors have determined these changes is still lacking. Here we 
analyse the determinants for the changes in harvested areas and 
yields of four major crops (rice, wheat, maize, and soybean) 
at the county level with spatial panel regressions that account 
for spatial and serial autocorrelations in the data. We aim to 
answer two key research questions:

1. How did the harvested areas and yields of the four major 
crops change between 1980 and 2011?

2. What were the main determinants for the changes in the 
harvested area and yield of each of these crops?

2  Data

We utilised spatial panel data from 2,354 counties and 
from each year from 1980 to 2011— the first three dec-
ades after the rural reform when the most drastic changes in 
cropland area and crop yields happened. The rural reform 
of China started from a grassroots initiative in Fengyang 
County, Anhui province, in 1978 and soon spread to other 
counties in Anhui and Sichuan provinces. But only in 1980, 
the household responsibility system (HRS) was officially 
endorsed by the central government and implemented 
nationwide (Lin, 1988). Therefore, we purposely chose this 
period when the sweeping changes in agricultural production 
happened, mainly driven by institutional reforms. All data 
were sourced from the statistical yearbooks of the Chinese 
government. The panel setup allows to control for variables 
that cannot be observed or measured, such as cultural factors 
or differences in agricultural practices across observations, 
and to control for variables that change over time but not 
across observations (Hsiao, 2007). We focused our analysis 
on the four major crops, i.e., rice, wheat, maize, and soy-
bean, which covered 90% of the cultivated areas and 92% of 
the grain production quantity in China in 2011. In total, we 
estimated eight crop-specific regressions with the annual 
harvested areas of each of the four crops and their yields as 
the response variables.
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Crop production in China is spatially clustered in specific 
regions (Sheng et al., 2017; Yin et al., 2018). We confined 
the four crop-specific regressions to the main cultivation 
region of each crop. To define these regions, we selected the 
provinces with the largest harvested area in 2011 in descend-
ing order until more than 90% of each crop’s harvested area 
was included. The main cultivation regions visualise the 
most important centres of production for each crop (Fig. 1). 
Rice clusters in Northeast and South China; wheat is mostly 
located in the northern part; maize dominates in a belt from 
the northeast to southwest; soybean is concentrated in the 
northeast. In contrast to the harvested areas of each of the 
four crops, the crop yields did not show obvious spatial clus-
ters (Supplementary Fig. S1).

The choice of the explanatory variables was based on a 
thorough literature review and prior knowledge about land 
use in China (Shi et al., 2013; Tong et al., 2003; Yu et al., 
2016) but was also constrained by data availability. The har-
vested area and yields of the major crops can be influenced 

by many factors, including political, socioeconomic, man-
agement, technological, and biophysical factors. We tested 
the model with different combinations of the variables to 
attain the most plausible and generalizable model. The socio-
economic variables, which we selected from the Chinese sta-
tistical yearbooks, include the gross domestic product (GDP) 
per county as a proxy for economic performance, road length 
per county to capture market accessibility, and the popula-
tion per county (in thousands) to measure the local demand 
for agricultural products, which may affect the extent and 
patterns of cultivation. The GDP value was adjusted for 
inflation by employing the consumers' price index (CPI) 
with the reference year set as 2010. We hypothesized that 
the GDP values in preceding years might impact the harvest 
area and crop yields. Consequently, we used lagged GDP, 
specifically GDP(t-1), in the model. We accounted for the 
agricultural labour input (in thousands), the horsepower of 
machinery (in 1000kw) used in agricultural production, and 
the use of fertiliser in agricultural production to represent 

  

 

Rice Wheat 

Maize Soybean 

Fig. 1  Main cultivation region of each crop (thick black outline). These regions harboured more than 90% of the entire harvested area of each 
crop in 2011
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land-use intensity. We further employed two time-variant 
biophysical factors that we hypothesised to be important 
spatial determinants for the location of crop cultivation: the 
growing degree days as the accumulated temperature over 
10 degrees and the total rainfall for every year (Deryng et al., 
2014; Hu et al., 2019). Finally, we included a dummy vari-
able that captures the admission of China to the World Trade 
Organization (WTO) in 2001 as a potentially important vari-
able affecting the amount of crop imports, which may deter-
mine the domestic patterns of agricultural production.

All explanatory variables from the statistical yearbooks 
are available at the county level for every year from 1980 to 
2011; we resampled or aggregated the biophysical variables 
to the county level. As the study areas for each crop differ 
from each other, the statistics of the explanatory variables 
also differ for each crop. While the application of capital 
inputs for agriculture (i.e., machinery, fertiliser), as well 
as GDP and road length, have increased substantially in 
the main cultivation regions of all crops, labour input has 
decreased (Fig. 2). The population increased by 35% over 
the study periold, but agricultural labour decreased by 20%. 
As expected, rainfall and growing degree days fluctuated 
over time, with a slightly increasing trend in the number of 
growing degree days.

3  Methods

Given the spatial dynamic nature of the changes in the crop-
land area and yields, we chose the spatial panel regression 
model, a state-of-the-art statistical model, in this research. 

Regression models must correct for the presence of spatial 
autocorrelation in the dependent variable because it vio-
lates the standard assumption of independent observations 
in regression analysis, similar to serial correlations in time 
series data. To test for the presence of spatial autocorre-
lation in the dependent variables, we calculated Moran’s I 
separately for harvested areas and yields for all cultivation 
regions of the four crops. We consistently found statisti-
cally significant spatial clustering for the harvested areas 
and yields, implying the existence of positive autocorrela-
tion. We correct for the autocorrelations over time and space 
with spatial panel models (Belotti et al., 2017; Elhorst, 2010, 
2012). We tested different models that controlled for time 
lags, spatial lags, spatial errors, or a combination thereof. 
To select the appropriate model, we used the Akaike infor-
mation criteria (AIC). Finally, we used the Hausman test to 
decide between random and fixed effect formulations. The 
results suggested the fixed effects formulation as appropri-
ate and, in consequence, all time-invariant variables cancel 
out of the regressions. The spatial autoregressive model is 
as follows:

W is an n × n (n is the number of the spatial observations, in 
our case, counties) spatial weights matrix that describes the 
spatial neighboring relationship: wij takes a positive value if 
county i is a neighbor of county j, otherwise 0. wij is the ( i, j
)th element of W, where iandj = (1,… , n) . The spatial lag 
term Wyt is the spatially weighted average of the value of y 
in the neighbouring locations, i.e., counties. � is the spatial 
autoregressive coefficient, and ε is the error term, and X the 

(1)yt = �Wyt + �X + �t + �

Fig. 2  Trends of county-level 
explanatory variables in the 
main cultivation regions of the 
major crops
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vector of the explanatory variables. To capture the influ-
ence of aggregate temporal trends (e.g., the technological 
progress), we included the year values in the regression with 
τ denoting the time coefficient.

The spatial weights matrix, W  , account for the spatial 
autocorrelation. There are no universal rules for the choice 
of the neighbourhood structure, size, and weight of indi-
vidual neighbours. We, therefore, tested several realisations 
of the spatial weights matrix to assess the sensitivity of the 
results to the choice of the neighbourhood structure. Here 
we reported the results with the first-order rook contiguity 
weights, which include immediate neighbours that share a 
common border with the observation of interest. The imple-
mentations of the second-order weights (i.e., the inclusion 
of neighbors of first-order neighbors) and queen contiguity 
(i.e., shared border and vertexes) had minor effects on the 
results and do not affect their interpretation (these results can 
be obtained from the first author upon request). We tested for 
multicollinearity among explanatory variables with the vari-
ance inflation factor (VIF). As a rule of thumb, a variable 
with a VIF greater than 10 may merit further investigation 
(Miles, 2014). No major correlative structures of concern 
occurred in our data, as judged by the VIFs.

Finally, we assessed if our models suffer from Simpson’s 
paradox, that is, the coefficient that relates the explanatory 
(x) to the response variables (y) changes sign if another vari-
able is added to the model (Pearl, 2014). This allows testing 
the robustness of the models to additional model formula-
tions by starting with one variable of interest, then consecu-
tively adding other variables until arriving at the full model 
specification. We did not find any change in the variables’ 
sign when including additional covariates in the models.

4  Results

We present all regression results in log–log form so that we 
can interpret the variable effects as elasticities, expressed as a 
percent change. For example, an elasticity of two implies that 
a 1% increase in the independent variable would result in a 

2% increase in the dependent variables. In addition to compar-
ing the size of the influence of each coefficient for all crops, 
we also calculated the standardised effect sizes that facilitate 
comparing the strengths of influence across the explanatory 
variables, irrespective of their measurement units.

4.1  Changes in harvested area and yield

The average harvested area of maize and soybean increased 
by 78% and 7%, respectively, while the areas of rice and 
wheat declined by 14% and 9%, respectively, especially 
between 1998 and 2004 (Fig. 3; note that we present the 
changes in the main cultivation regions; hence, the num-
bers may differ from the official statistics). The decline of 
rice and wheat during this period reflected the crop plant-
ing structure shift: many regions, particularly in coastal 
and western China adjusted the crop structure by reducing 
the proportion of grain crops, such as wheat and rice, and 
increasing cash crops and vegetables (Liu et al., 2013). The 
steady and sharp increase of maize, especially after year 
2000, reflects the increased demand of animal feed due to 
the dietary change(Wang et al., 2019; Zhao et al., 2021). 
Government subsidies on maize also play a substantial 
role(Huang et al., 2013). The yields of rice, wheat, maize, 
and soybean increased by 40%, 46%, 61%, and 26% from 
1980 to 2011, respectively. (After cross-referencing the val-
ues with other data sources, we conclude that the spikes in 
maize and wheat yields in 1983 are likely a data artifact; 
this outlier will not substantially affect the results because 
we have a long time series).

The area harvested with rice increased in the northeast 
and declined in southern China (maps with the spatial 
changes in harvested areas from 1980 to 2011 are in Sup-
plementary Fig. S2 and yield changes in Supplementary 
Fig. S3). The main areas of wheat cultivation were in north-
ern China, although almost every province has some wheat 
cultivation. The spatial patterns of changes in wheat cultiva-
tion from 1980 to 2011 show few obvious spatial patterns 
except the increasing spatial clustering around the North 
China Plain, the traditional wheat cultivation region. Maize 

Fig. 3  Changes in harvested 
areas (left) and yields (right) per 
crop type in the main cultivation 
regions
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cultivation covered large areas stretching from the northeast 
to the southwest; this area is known as the Chinese maize 
belt (Meng et al., 2016). Soybean was increasingly concen-
trated in the northeast.

Crop yields showed a much more heterogeneous distribu-
tion than the area harvested. The yields of rice, wheat, and 
maize increased in most regions in China, while the yield 
of soybean decreased, especially between 1980 and 1990.

4.2  Determinants of the changes

The spatial lag of the dependent variables has strong and 
positive effects, which mirror the spatial concentration of 
the harvested areas (see Supplementary Table S4 for detailed 
regression results).

The impacts of time-varying explanatory variables quan-
tify the effects in percent changes (Fig. 4 visualises changes 
in harvested areas; Fig. 5 shows changes in yields). Popula-
tion is positively associated with the harvested area of crops; 
a 1% increase in population is associated with substantial 
increases in harvested areas for all four crops: 0.16% for rice 
and soybean, 0.33% for wheat, and 0.27% for maize. Rising 
agricultural labour per county also has positive influences 
on all crops except wheat, with the strongest effect on rice, 
at 0.29% per one percent increase. Road length has a mixed 
effect on the harvested areas: increasing road length tends 
to be associated with less harvested areas of wheat, rice and 
soybean, but the areas of wheat and maize tend to expand 
in counties with a denser road network. GDD has positive 
effects on the harvested areas of all crops except wheat, 
possibly because most wheat cultivation in China is winter 

wheat, sown in autumn. WTO accession in 2001 had a uni-
versal negative effect on the harvested areas of all crops, par-
ticularly wheat and soybean. GDP, agricultural machinery, 
and rainfall have negligible influences on harvested areas.

In terms of yield changes, GDP has positive, albeit minor 
effects on crop yields: a 1% growth in GDP is positively 
associated with the yields of rice (0.02%), wheat (0.02%), 
maize (0.03%), and soybean (0.01%) (Fig. 5). As for the 
production inputs, more agricultural labour has little influ-
ence on yields; machinery and fertiliser have positive effects 
on all crops aside from soybean. The increase in road length 
was positively correlated with the yield growth of soybean, 
and negatively correlated with rice and maize. Weather 
conditions were, unsurprisingly, important determinants for 
yields. GDD is positively associated with crop yields, with 
particularly strong effects for wheat and soybean at around 
0.15%. Higher rainfall is associated with higher yields of 
wheat and maize, while it has minimal effects on rice and 
soybean. The WTO accession is associated with an increase 
in the yields of wheat, maize, and soybean, but it has a nega-
tive effect on rice yield.

The comparison of the variables with the standardised 
regression coefficients reveals the relative influence of each 
covariate in the crop-specific regression (Fig. 6; see Sup-
plementary Table S5 for the detailed regression results). 
The population is the most important determinant for all 
four crops, with more people being associated with more 
harvested areas for all crops. This reflects the spatial over-
lapping of population and major agricultural areas. The har-
vested area of rice is positively affected by more agricultural 
labour and population and strongly negatively influenced by 
more roads. The rice production area seems to be associated 

Fig. 4  Percentage change in 
harvested areas of each crop 
with a 1% increase in the 
explanatory variables (or in 
the years after the accession of 
WTO for the WTO dummy); 
markers are coefficient esti-
mates, and whiskers denote the 
95% standard errors
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with less dense road networks. This may be due to the fact 
that large areas of rice cultivation expanded in Northeast 
China, where the road network is quite low. Similarly, soy-
bean also exhibits a similar pattern, as the major expansion 
and planting regions were concentrated in the remote areas 
of Northeast China.

The wheat area is negatively related to the accession of 
WTO and higher growing degree days, but positively related 
to population and road. The harvested area of soybean is 

negatively associated with greater road length and, unsur-
prisingly, accession to the WTO. The import of soybeans 
by China surged significantly following its accession to the 
WTO. Presently, China stands as by far the largest importer 
of soybeans, accounting for approximately two-thirds of the 
total traded volume (Gale et al., 2019).

As expected, the weather variables are important for the 
yields of all crops, albeit with varying degrees of influ-
ence (Fig. 7). The temperature indicated by GDD is the 

Fig. 5  Percentage change in 
yields of each crop with a 1% 
increase in the explanatory vari-
ables (or after the accession of 
WTO as WTO is a dummy vari-
able); markers are coefficient 
estimates, and whiskers denote 
the 95% standard errors

Fig. 6  Variable importance for 
changes in harvested areas of 
each crop; dots are standard-
ised coefficients, and whiskers 
denote the 95% standard errors
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most or second-most important explanatory factor for the 
yields of rice, wheat, and soybean, but it has a relatively 
minor effect on the yield of maize. Rainfall has a mixed 
effect on yields and is the most important factor for the 
yield of maize. The production input variables, i.e., labour, 
machinery, and fertiliser, have relatively strong effects on 
yield. However, the negative effects of them on the soy-
bean seem perplexing, possibly because soybeans are a 
nitrogen-fixing crop that requires low fertiliser inputs. For 
the yield of rice, the most important factors are fertiliser, 
GDD with positive effects, and WTO with strong nega-
tive effects. For the yield of wheat, GDD stands out as the 
most important factor with a strong positive effect. Sur-
prisingly, road density is the most important factor for the 
yield of soybean. That means the higher yield of soybean 
is associated with better road infrastructure.

5  Discussion

The product of harvested areas and yields of crops determine 
total crop production. We evaluated the changes in both areas 
and yields for rice, wheat, maize, and soybean in the major 
producing regions of these crops in China using county-level 
data from 1980 to 2011. We use spatial panel regression to 
quantify the determinants of the observed changes.

We reveal substantial changes in the cropping structures 
in China over recent decades, with maize occupying more 
area, mainly at the expense of wheat and rice. Maize has 
been important in providing energy-rich feed for livestock. 

In particular, the increasingly dominant industrial production 
of pigs and poultry relies on domestic maize production to 
provide energy for rapid animal growth (Bai et al., 2018). At 
the same time, protein feed, the second vital feed ingredient 
for monogastric livestock, comes from soybeans. However, 
domestic soybean cultivation has even slightly contracted 
in China, despite the massive increase in pig and poultry 
production. The rapid increase in demand for soybeans has 
largely been satisfied by imports from abroad, which was 
spurred by China’s accession to the WTO in 2001. A large 
amount of soybean imports allows China to save scarce 
arable land for cultivating other grain crops (Qiang et al., 
2013). At the same time, the growing soybean imports from 
China have contributed to land-use change elsewhere, such 
as in Latin America, where most of the soybeans imported 
by China are produced (Porkka et al., 2013; Yu et al., 2016). 
This is worrying for China’s domestic nitrogen balance 
because soybean, a legume, fixes nitrogen from air and soil 
in its biomass. Thus, the contraction of soybean production 
also compels higher nitrogen application to N-demanding 
crops, such as maize (Sun et al., 2018).

China has dramatically increased grain production in 
recent decades (You et al., 2011), mainly due to higher 
yields of rice, wheat, and maise, while the harvested areas of 
rice and wheat have declined by 14% and 10%, respectively. 
Yield levels are mainly the result of management as well as 
higher application of intermediate inputs, such as pesticides 
and fertilisers. Our analysis corroborates the importance of 
higher input levels on yield increases. While lower labour 
intensity is associated with lower crop yields, the decrease 

Fig. 7  Variable importance for 
changes in yields of each crop; 
dots are standardised coeffi-
cients, and whiskers denote the 
95% standard errors
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in labour input was compensated by the higher fertiliser 
use and machinery applications for the three cereal crops. 
Labour input will likely decrease further as more people 
migrate from rural areas to cities, possibly contributing to 
labour shortages in agricultural activities (Huang & Rozelle, 
1996; Liu et al., 2016).

Most rice production is located in the coastal areas of 
South China; this region has been characterised by high rates 
of economic development and rapid urbanisation. Rice cul-
tivation demands considerable labour input, yet provides 
comparatively little income. Off-farm jobs hence continu-
ously pull labour out of agricultural production (Peng et al., 
2009). GDP growth and rural–urban migration in these 
regions have led to a decline in the harvested areas of rice, 
particularly in coastal regions. In addition, as a result of 
the increasing demand for high-quality rice that is produced 
in north-eastern China and of the higher average tempera-
tures due to climate change, rice production has expanded 
substantially in the north in recent years (Li et al., 2015; 
You, 2012). Our analysis and results on the effects of GDP 
and growing degree days confirm this narrative and are in 
line with other findings (Deng et al., 2015; Gornall et al., 
2010; Wang et al., 2018). The results proved to be robust 
and sensible.

One limitation of this research is that the explanatory 
variables are not crop-specific. As all counties grow several 
crops, we thus cannot associate the amounts of fertiliser, 
machinery, and labour that are applied to each of these 
crops, and we cannot relate the changes in input applica-
tions to the changes in crop-specific production patterns. 
This uncertainty causes inaccuracies and insensitivities 
in the input variables. For example, soybean was not the 
dominant crop in most regions except in some counties in 
north-eastern China; thus, the fertiliser, machinery, and 
labour data only partly reflect the input intensity of soy-
bean cultivation. This explains some seemingly counterin-
tuitive results, such as that labour has little effect on soy-
bean yield. In addition, the actual labour input is difficult 
to estimate, as labour has shifted from the agricultural sec-
tor to the manufacturing and service sectors. The increase 
in rural labour does not necessarily imply a higher input 
of labour in crop production, which may explain the nega-
tive effects of labour on yields. Nevertheless, the analysis 
suggests that labour is not a major constraint for further 
yield increases in Chinese crop production. Besides, our 
national-level analysis at the county level, spanning a 
period of 32 years, clearly reveals some pertinent trends 
in crop production and their determinants. Although the 
model is by no means a causal model, the results can nev-
ertheless stimulate further discussion and analysis because 
such nationwide analysis complements analyses at the level 
of farms with smaller geographic coverage. Comparisons 
of the analyses at the micro- and macro-levels are needed 

to attain a more holistic picture of the agricultural produc-
tion dynamics in China. Another limitation of this research 
is that the four major crops were modelled separately. Con-
sequently, we overlooked the interactions among these 
crops, both in terms of supply and demand. On the supply 
side, the growth of one crop might result in the reduction 
of another crop, given the competition for land. On the 
demand side, certain crops may exhibit potential substitu-
tion effects— which also link the supply and production 
of two crops. Future research with promise could be struc-
tured to tackle these interactions, e.g., by aggregating the 
production of the major crops.

Although the first three decades after the rural reform 
represented an interesting case for studying the changes in 
harvested area and yields of the major crops, research based 
on more recent data can provide more up-to-date informa-
tion and relevant policy implications. The COVID-19 and 
geopolitical conflicts, such as the Russia-Ukraine war may 
also profoundly affect the agricultural policies and strategies 
on food security, which in turn affect the cropping structure 
and patterns. All of these are good topics for future research.

6  Conclusion

China’s population growth has gone in hand with rapid 
urbanisation and rising income levels, which led to a sub-
stantial increase in demand for food. In particular, the shift 
to higher meat consumption resulting from rising affluence 
by urban consumers has contributed to land conversion away 
from staple crops towards feed crops such as maise. The 
development of the road network, better transportation infra-
structure, and accession to the WTO facilitated rising food 
imports. However, there is ample evidence that a further 
increase in the application of intermediate inputs will not 
elevate crop yields much more, as the input applications are 
already very high in many areas of China, leading to levels 
of air and water pollution that are of rising concern (Wang 
et al., 2018).

Our analysis demonstrates the complex interactions 
among intertwined determinants that affect the changes in 
harvested areas and yields in China. Further research with 
statistical data of a higher spatial resolution will permit more 
nuanced insights into the dynamics within the counties. In 
light of the many impacts of changes in crop production on 
food security and the environment, it remains pertinent to 
expose the patterns and determinants of the changes across 
large areas. Such analysis will also benefit from longer time 
series and methodological improvements, such as in spatial 
econometrics, that allow for a deeper analysis of space–time 
data. Data-driven insights with state-of-the-art statistical 
models can inform land policies and thus support the sus-
tainable development of agriculture.
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