
Vol.:(0123456789)1 3

CEAS Space Journal (2024) 16:375–392 
https://doi.org/10.1007/s12567-023-00509-9

ORIGINAL PAPER

GREATCUBE+: conceptual design tool for CubeSat’s design

Carlo Girardello1,2  · Martin Tajmar1 · Carsten Scharlemann2

Received: 2 February 2023 / Revised: 4 May 2023 / Accepted: 29 May 2023 / Published online: 14 June 2023 
© The Author(s) 2023

Abstract
CubeSats are a type of spacecraft which have become popular since the early 2000. They are known for their quick develop-
ment time and low cost, when comparing them to larger satellites. However, there is a significant drawback which has been 
recorded during these years of operations, namely an high failure rate which turns almost half of them into space debris. 
The reasons behind these malfunctions are often attributed to flawed spacecraft design choices or failures of commercial 
off-the-shelf (COTS) products. To improve the design of CubeSats, several software tools for performing the conceptual 
design have been proposed. These tools are often limited in their capabilities and are not suitable for all types of CubeSat 
missions. To address this issue, the University of Applied Sciences Wiener Neustadt (FHWN) in cooperation with Technische 
Universität Dresden is developing a software tool called GREATCUBE+. Its goal is to increase the success rate of CubeSats 
by providing a satellite model which is composed of commercial-off-the-shelf (COTS) products backed up by empirical 
heritage, analytical proof, and numerical analysis. One of the main features of this tool is the ability of dealing with different 
typologies of payloads. GREATCUBE+ has been validated with various successful CubeSat missions and it provides design 
solutions with an accuracy of above 90% when it comes to CubeSat weights and volumes. Using this software, CubeSat 
design teams can proceed from the conceptual development to the testing and assembly phases quicker, hoping to result in 
higher quality CubeSats and fewer failures.

Keywords CubeSat · Conceptual design · COTS · Simulation

1 Introduction

CubeSats are a type of nanosatellite which were first devel-
oped in the late ’90 s by Professor Jordi Puig-Suari and Bob 
Twiggs at CalPoly and Standford University. Their purpose 
was to provide students in the aerospace engineering course 

with hands-on experience in space systems. With an expo-
nential growth since then, nowadays CubeSats are counted 
in the thousands units in orbit [1]. CubeSats have become 
relevant not only as educational tool but also as an important 
industrial asset worldwide. Soon, CubeSats will orbit around 
the Moon in the framework of the Artemis mission to per-
form relevant scientific measurements [2]. One of the main 
advantages of CubeSats is the standardization since each 
CubeSat must cope with the guidelines introduced by the 
CubeSat Standards Rev. 14.1 [3]. Specifically, they can be 
stacked in cuboids with 10x10x10 cm as minimum standard 
dimensions. Their maximum size is ruled by the CubeSat 
deployer which is being used.

According to a further study performed by Venturini [4], 
most of the design mistakes that result in failures of Cube-
Sat missions are originated in the conceptual development 
phase. CubeSats rely extensively on COTS (commercial-
off-the-shelf) components usage. They allow developing 
teams to contain costs, when comparing COTS prices to 
space-graded devices, although is one of the main causes 
for CubeSat failures on orbit [4, 5]. Additionally to COTS 

M. Tajmar and C. Scharlemann have contributed equally to this 
work.

 * Carlo Girardello 
 carlo.girardello@fhwn.ac.at

 Martin Tajmar 
 martin.tajmar@tu-dresden.de

 Carsten Scharlemann 
 carsten.scharlemann@fhwn.ac.at

1 Institute of Aerospace Engineering, Technische Universität 
Dresden, Marschnerstr. 32, Dresden 01069, Saxony, 
Germany

2 Institute of Aerospace Engineering, University of Applied 
Sciences Wiener Neustadt, Johannes-Gutenberg-Straße 3, 
Wiener Neustadt 2700, Niederösterreich, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s12567-023-00509-9&domain=pdf
http://orcid.org/0000-0003-3580-5653


376 C. Girardello et al.

1 3

products-related failures, 35% of academical and 25% of 
industrial CubeSats fail due to inconsistencies of the design 
and low amount of testing [4]. The solution to part of these 
issues, specifically in the design-oriented failures section, 
may be solved by optimizing the conceptual development 
phase to provide teams with more time to be dedicated to 
testing.

The abovementioned improvements can be potentially 
achieved with the usage of GREATCUBE+ by CubeSat 
teams in Phase 0/A. GREATCUBE+, or GC+, is a software 
tool which has the goal of providing teams with a complete 
design of a CubeSat mission based on a limited number of 
user introduced inputs. It is currently under development 
and it is a joint project between the University of Applied 
Sciences Wiener Neustadt and the Technical University of 
Dresden. The model provided will be comprehensive of the 
relevant information from system (mass, power production, 
form factor) to subsystem level. This paper, which intro-
duces GC+, is structured as follows:

• Sect. 1
  Problem statement, GC+’s introduction.
• Sect. 2
  Definition of GC+ with a specific interest in its lay-

ered structure. Literature review on similar existing tools. 
GC+ capabilities.

• Sect. 3
  A test case, performed keeping a real satellite as an 

evaluative reference.
• Sect. 4
  Last remarks and summary.

It is hoped that the usage of GREATCUBE+ will reduce the 
time required for the conceptual development phase. GC+ 
will be used for the design process of future CubeSats at the 
FHWN and will be offered in the framework of mutual coop-
erations with other teams. With time, a clearer picture of 
the value of this software in terms of real-time savings and 
quality improvements will emerge. CubeSat missions follow 
the standards imposed by the California Polytechnic State 
University [3] for interfaces, while for their development, 

teams can follow either the ECSS-M-ST-10C Rev.1 [6] or 
the NASA’s guidelines [7, 8]. A summary of the CubeSat 
project phases is listed in Table 1.

According to the ECSS standards [3], the conceptual 
development takes place during the Phase 0/A. GREAT-
CUBE+ is intended to be used in these two phases. Its 
scope is to provide design teams with a preliminary model 
of the CubeSat which is currently under development. Using 
GREATCUBE+, it is hoped that teams will terminate the 
conceptual phase faster using the model provided as an ini-
tial baseline for more refined and detailed analyses. In this 
way, the design mistakes mentioned earlier could potentially 
decrease, since teams could start their conceptual design 
using a baseline model provided by the software. This model 
comes from empirical correlations and well-knwon analyti-
cal equations, recommending COTS product which could 
satisfy the introduced mission requirements. Additionally, 
if design teams could reach the end of Phase B quicker, due 
to a faster development of Phase 0/A, more time would be 
available for testing, which is the other major cause of Cube-
Sat failure [4, 5]. As an example, the maximum total time 
spent during Phase 0/A is supposed to be of 6 months, as it 
is possible to note from Table 1. GREATCUBE+ is capa-
ble of providing a possible solution for the mission require-
ments provided by the user in less than 20 min. Naturally, 
GREATCUBE+ cannot substitute a team of engineers but 
it can help in providing them with a preliminary starting 
model from which experts can integrate and implement addi-
tional requirements. Additionally, GREATCUBE+ has been 
developed considering a single payload on board. In case 
multiple payloads are present, the design team could use 
the heaviest and most power consuming payload as an input 
for GREATCUBE+. Sequentially, starting from the model 
provided by the software, teams could integrate or add the 
additional payloads manually in further iteration steps. A 
literature review shows that GC+ is not the first effort to 
predict satellite features which has been developed. Many 
other scientists and researchers worldwide have investigated 
over this topic and they created some similar tools [9–14]. 
The innovation brought by GREATCUBE+ is its capability 

Table 1  Summary of CubeSat 
project lifecycle with timelines, 
overall scope of phases, and 
required final documentation

Phase Duration Final documents General scope

Phase 0 1–3 months Mission definition  review (MDR) Mission analysis/needs identification
Phase A 1–3 months Preliminary  requirement  review (PRR) Fesibility study
Phase B 1–2 months Preliminary design  review (PDR) Preliminary definition
Phase C 1–6 months Critical  design  review (CDR) Detailed definition
Phase D 2–12 months Operational  readiness review  (ORR) 

and  acceptance review  (AR)
Qualification and production

Phase E Variable  Commissioning  results review (CRR) Operations and utilization
Phase F Variable Mission close-out  review (MCR) Disposal



377GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

to perform a conceptual study with various types of sub-
systems acting as payload (ADCS, OBC, TT &C, thruster, 
demonstrative/scientific payload, sensors etc.) with small 
amount of inputs from the user. Naturally, the amount of 
inputs which are available at the beginning of the conceptual 
development phase is limited. Hence, the inputs which are 
required by GC+ need to be tailored so that the design teams 
are capable of introducing them.

2  GREATCUBE+ structure and methodology

GREATCUBE+ is a layered software. It is divided concep-
tually in three separate levels. At the end of each section, an 
overview of the achieved results is presented to the user in 
the form of a preliminary model. The three divisions are:

• GREATCUBE+ empirical level (GEL)
• GREATCUBE+ analytical level (GAL)
• GREATCUBE+ numerical level (GNL)

Many researchers tried to link empirical equations to con-
ceptual design decision. Among them, Chang et al. [11], 
performed the conceptual design of a microsatellite using 
empirical laws obtained from a database of components 
in a similar fashion. No such tool exists, to the best of the 
authors knowledge, for CubeSats. Additionally, Peroy et al. 
[15] provide an insight of the main milestones of the life 
project of a CubeSat, stressing out the importance of the 
conceptual development phase. Asundi et al. [9] provided 
an insight of the system engineering methodology neces-
sary to fully develop a CubeSat mission under a theoretical 
perspective, first introducing the characteristic paralleliza-
tion of tasks which will be later introduced in GAL. Many 
other scientific articles have dealt with similar topics that, 
for the sake of clarity, will not be discussed in this paper 
but are listed in the references. As relevant mentions, Schoz 
et al. [16] discussed the topic of open source CubeSat design 
and NASA [17] provided a step-by-step guide on how to 
design a CubeSat mission. Lastly, Selva et al. [18] created a 
similar model which also picks COTS components based on 
user introduced input, but it works only for a selected list of 
payload types while GC+ has the added value of being able 
to operate with different typologies of payloads. A limita-
tion of the tool is the fact of performing CubeSat simulation 
with only one possible payload. Future work may include 
multiple payloads input.

2.1  GREATCUBE+ empirical level: GEL

The starting point in each GC+ simulation begins with 
the empirical level GEL. In this level, the user specifies 
its mission parameters and the tool iterates those values 

using the empirical correlations retrieved from a database 
of past flown missions to estimate empirically system and 
subsystem values. Sequentially, these empirical outcomes 
are weighted, averaged, and then compared with COTS 
products which have the closest match with them. A sche-
matic of the empirical level is depicted in Fig. 1.

The amount of parameters which the user can intro-
duce is flexible, since there is no way for predicting what 
the user would know about its mission characteristics at 
the stage in which GC+ is used. To fulfill the philosophy 
of GC+ for flexibility, the inputs have been divided in 
two separate categories at this stage: mandatory and non-
mandatory inputs. The mandatory inputs are:

• Payload mass [kg]
• Payload or satellite on orbit average power (OAP) [W]
• Nature of payload (ADCS, TT &C, Thruster, OBC, sen-

sors etc.), if payload mass is introduced.

The reason for selecting these as mandatory parameters 
comes from the fact that these values are usually avail-
able in the initial phases of a space mission design, which 
is the space project phase in which GREATCUBE+’s 
usage is recommended. Additionally, those were the data 
which were most commonly listed in the literature review 
of successfully flown CubeSats which were added to the 
database for empirical correlations. The tool can operate 
even with only one of those mandatory inputs. Once those 
inputs have been given, the non-mandatory inputs can be 
introduced to add extra details for the simulation to come. 
Those non-mandatory inputs are:

• Alignment requirement [ deg].
• Total amount of data per orbital period [kbps].
• Number of ground stations (GS).
• Δ V [ m

s
].

Once they have been introduced, GC+ finally starts the 
computation of the empirical model via GEL. The just 
introduced user inputs are used to retrieve system param-
eters from empirical relationships obtained via mathemati-
cal methods applied to an internally collected database of 
successfully flown CubeSat missions. The empirical laws 
used in GEL for the system and subsystem characteristic 
determination are:

• Payload mass as a function of CubeSat mass.
  Polynomial second degree fitting with 63 satellites 

of which payload mass is known with an R2 factor of 
0.95.

• Payload OAP as a function of satellite OAP.
  Assumption taken from the average power consump-

tion of COTS products in the databases.



378 C. Girardello et al.

1 3

  Satellite OAP would be equal to the sum of the user-
introduced payload OAP, average power consumption 
of OBC (0.72 W), transceivers (1 W), and ADCS (0.92 
W). Those values are retrieved from the database of 
COTS products.

• Satellite OAP as a function of CubeSat mass.
  Polynomial second degree fitting with 175 satellites 

for which satellite OAP is known with an R2 factor of 
0.49.

• Alignment requirement as a function of ADCS mass.
  Power fitting with one term with 49 ADCS COTS 

products with an R2 factor of 0.651. A practical exam-
ple is displayed in Figure10.

• ADCS mass as a function of ADCS power consump-
tion.

  From the alignment requirement, the ADCS mass is 
retrieved via the previous correlation. The ADCS mass is 
then used to estimate the ADCS power consumption with 
a polynomial second degree fit with 49 ADCS COTS 
products with an R2 value of 0.6. An example is displayed 
in Fig. 10.

• Total amount of data as a function of TT &C mass.
  Direct empirical correlation retrieved from Eq. 1:

  
  where the 1.5 factor represents the redundancy of 

repeated data sent to the ground stations and 480 [s] is 
the average communication window for a satellite in LEO 
orbit [19].

Sequentially, the results of these empirical correlations are 
used in further relations which are, once again, derived data 
points of the database of past flown missions. For example, 
it is possible to link the following variables:

• CubeSat mass as a function of form factor.
  Polynomial first degree fit with 1438 data points with 

an R2 value of 0.651.
• CubeSat mass as a function of satellite OAP.
  As above.
• TT &C power as a function of satellite OAP.
  Based on the empirical correlation used for retrieving 

the data rate introduced above, it is possible to link this 
value with the closest match from the COTS products in 
the database. The next step consists in substituting the 

(1)Data Rate = DataUser Input⋅1.5
Nr. Ground Station⋅480

Fig. 1  The architecture of the 
GREATCUBE+ empirical level 
(GEL). The diamonds represent 
the user inputs, blue are manda-
tory (payload mass, type of 
subsystem used as payload, 
satellite/payload OAP) while 
the green diamonds (alignment, 
data, Δ V) are non-mandatory. 
The boxes are the processes



379GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

average power consumption of the TT &C subsystem 
introduced above, when describing the payload OAP as 
a function of the satellite OAP, with the COTS prod-
uct selected in this fashion. From this, it is possible to 
increase the reliability of the satellite OAP estimation 
using the average power consumption of a COTS which 
can transmit the abovementioned data rate.

• ADCS power as a function of satellite OAP.
  The empirical correlation between ADCS power and 

alignment as a starting point is used. Once the ADCS 
power is retrieved, it is substituted in the satellite OAP 
assumptions for the ADCS for further calculations.

• ADCS mass as a function of CubeSat mass.
  Polynomial third degree fit with 20 data points of exist-

ing CubeSats and the relevant assumed mass of ADCS 
systems. The assumptions are based on the composition 
of the hardware stated in the documents available for 
each CubeSat mission. The R2 value for this correlation 
is of 0.3.

• Satellite OAP as a function of number of solar panels.
  The average power production can give an indication 

of the required solar panel architecture retrieved empiri-
cally. The two available cases are for body mounted 
or deployable solar panels architectures. For the body 
mounted, a polynomial third degree fit is retrieved from 
a dataset of 40 CubeSat missions which use the same 
approach. The proposed correlation has a R2 value of 
0.8. The deployable solar panels approach is retrieved, 
instead, from a dataset of 23 CubeSat missions with a 
power fit with two elements with an R2 of 0.2. A repre-
sentation of these two correlations is presented in Fig. 9.

These equations are obtained via curve fittings of the data 
points which are included in databases of past flown mis-
sions for which the input parameter is known. The tradeoff 
between different fittings has been performed considering 
the R2 value as the main design driver for the selection or the 
rejection of the proposed fitting. The discarded COTS alter-
native were heavier, did not satisfy the user requirements or 
exceeded the power capabilities of the current setup.

Each of the user-introduced inputs are used in these equa-
tions. It is clear that when multiple inputs are introduced, 
GEL will produce multiple outputs for the same variable as 
well. To unify the results down to just one single empirical 
parameter for each system value, some weighting factors 
have been introduced. Those factors act as a quality filter of 
the empirical equations utilized to reach that result, since not 
all the correlations are of the same quality (according to R2 
values). As an example, the CubeSat mass as a function of 
the form factor empirical correlation has thousands of data 
points and it has a very high R 2 value (0.651), while the TT 
&C power vs. satellite OAP equation has a lower R 2 value 
(0.49) together with less data points. The outcome of what is 

stated above is translated into a non-equality of the results. 
The output of the first example, CubeSat mass as a function 
of the form factor, should have more influence on the abso-
lute value for satellite OAP obtained at the end of GEL when 
comparing it with the outcome of the second correlation. For 
this reason, a set of internal weights are implemented on the 
results of the single empirical equations and they are a func-
tion of the R 2 values. Sequentially, the values are averaged 
and a single weighted output is produced. This conservative 
approach is used to give more importance in the calcula-
tions to the outcomes of the best fitting functions, without 
completely ignoring the less performing ones.

As shown in Fig. 1, once the inputs have been processed 
and the first system level outputs have been collected, a 
physical constraint routine is implemented. The physical 
constraint routine is a system level checkpoint for the above-
mentioned collected results. It analyzes if the current power 
production capabilities, which are a system level result, are 
capable of satisfying the power demand introduced by the 
user as an input. If the power requirement has not been intro-
duced by the user, the power is estimated based on the mass 
of the payload. Furthermore, it checks also if an alignment 
requirement has been introduced. If an alignment require-
ment is not present and the current power production forces 
the design toward a deployable solar panels approach, the 
user is warned by a popup so changes can be applied by run-
ning again the script with the necessary adding. If, instead, 
an alignment requirement is present, GEL proceeds in feed-
ing this user introduced input into a specific set of empirical 
laws mentioned earlier which, in return, will identify the 
trend for attitude dynamics control systems (ADCS) that 
have been implemented in similar scenarios of CubeSat 
mass and pointing requirements.

Finally the Δ V requirement, if desired, can be intro-
duced. The reason why this parameter is introduced after 
the preliminary structure of the CubeSat has been already 
obtained is due to the fact that propulsion subsystems are not 
so common in CubeSats [20, 21] and their implementation 
should be done on an already existing CubeSat skeleton. 
The propulsion requirement uses the well-known Tsiolko-
vsky rocket equation to identify the ideal COTS propulsion 
system to be implemented from a database, without altering 
the existing design too much (e.g., the lightest propulsion 
system which maintains the same form factor and solar pan-
els architecture).

Once the propulsion system has been added to the Cube-
Sat structure, the system model runs through the physical 
routine constraint to ensure that form factor and power pro-
duction values can withstand the new design needs.

GEL, during this whole process, is assembling in parallel 
a satellite model which is composed solely of COTS. This is 
done to create a link from the empirical obtained values and 
real-life components. This applies to the propulsion systems, 



380 C. Girardello et al.

1 3

ADCS, the solar cells, solar panels, the antenna, the trans-
ceiver, the thruster, the OBC, and the structure. These results 
are then added all up together and a parallel empirical model 
made of COTS is created based on the results of the closest 
match of a COTS product with the experimental correla-
tions. Naturally, an internal check similar to the physical 
constraint routine is always vigilant, looking for inconsisten-
cies in the design outcome of the COTS model.

Concluding, a tradeoff between the experimentally 
retrieved model and the one coupled with COTS showed 
that the latter is more accurate when referring the results to 
a set of known missions. This justifies the choice of keeping 
the COTS model as the empirical model (EM) to be used in 
the analytical level. The performed tradeoff with reference 
to already successfully flown CubeSat mission is presented 
in Fig. 2. It can be seen how close the results are to the real 
case already at this stage with reference to CubeSat mass. On 
average, the error between the real CubeSat values and the 
empirical ones is close to 18%. When comparing the results 
of the COTS-based model from the empirical values to the 
real CubeSat masses, this percentage goes down to 14%. For 
the analysis just presented, the design parameter which was 
considered for the tradeoff between the empirically retrieved 
value and the COTS-based model was solely the CubeSat 
mass of the reference satellites.

2.2  GREATCUBE+ analytical level: GAL

The analytical level, GAL, is the follow-up layer of GEL. 
This section is designed to improve the quality of the results 
of the empirical model (EM). As mentioned in Sect. 2.1, 
the EM with COTS products is based on empirical herit-
age. In GAL, via the application of well-known analytical 
equations from academical textbooks like [22] and [23], the 
COTS products proposed in the EM will be justified and the 

quality of the analytical model (AM) will benefit from it. 
As an example, the ADCS mass and idle power consump-
tion retrieved empirically in GEL are the only parameters 
considered for the closest match with the database of COTS 
products prior of the EM. IN GAL, instead, the external 
torques that the CubeSat will suffer and the COTS product 
torque storage will be considered for the evaluation. Natu-
rally, it will need to satisfy the alignment requirement of the 
user. An example is described in Sect. 3. A schematic of this 
layer can be observed in Fig. 3.

Fig. 2  Analysis of the results 
of GEL. The first column 
represents the mass of the real 
CubeSat used as a reference. 
The second column represents 
the empirical value obtained 
via experimental equations. The 
third column is the CubeSat 
obtained via COTS analytical 
match up from the empirical 
values. Database status: 28 
October 2022

Fig. 3  Schematic of GAL. This layer starts with the empirical model 
and some user inputs. Following, the user decides to follow either 
GAL1 or GAL2 for their design routine and it is concluded with the 
definition of the analytical model (AM)



381GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

The two separate branches, GAL1 and GAL2, will be 
described further in this section. Summarizing, for the sake 
of clarity, they are the refinement engines of GAL and they 
differ only in how they treat new COTS suggestions based 
on concurrent engineering (CE) principles. The literature 
review for this layer, as the one performed for GEL, included 
many similar scientific tools developed in the past. The most 
relevant ones are the work of Ridolfi et al. [10], Chang et al. 
[11], Asundi et al. [9] and partially, for what concerns the 
division between GAL1 and GAL 2, to Aas et al. [24].

In the previously cited authors’ works, the problem of 
conceptual design of space missions has been analyzed. In a 
similar fashion, the methodology chosen for the implementa-
tion of their tools, has been concurrent engineering.

This part of the tool uses the empirical model as a start-
ing point. The focus shifts now from system level (CubeSat 
mass, power production, form factor) to subsystem selec-
tions. Prior to going through the refinement part, the user 
is required to fill in a set of additional inputs tailored for 
subsystem selection. Once more, following GREATCUBE+ 
philosophy of usage in early stages of the design phase, the 
required input are going to be information which the user 
must know already at this stage if a CubeSat mission is 
planned. These required data are:

• Payload dimensions [U], if any.
• Payload duty cycle [%], if any.
• Payload power consumption (idle,peak) [W], if any.
• Expected lifetime [yrs].
• Operating temperatures of the payload [deg], if any.
• Power cycles of the other subsystems [%].
• Alignment time [%] if present.
• Radiation tolerance [krad].
• Expected altitude for a circular orbit [km].
• Thruster misalignment [deg], if any.
• Electronics efficiency of components [%].

These items are mandatory for the operations of the analyti-
cal level and GAL will not allow the user to proceed until 
those data are filled in. Naturally, if a user is uncertain con-
cerning a specific input, a trial and error process can occur 
as many times as necessary in the analytical level: based on 
user’s choice, multiple runs of the software are allowed. The 
list pictured above is not constant, it depends on the infor-
mation provided in the empirical level: e.g., if an alignment 
requirement was not introduced in GEL, the alignment time 
is not requested in GAL. Once the software has received all 
the inputs, the refinement process can start. GAL is divided 
internally in different layers, each one representing a subsys-
tem. The list of subsystems refined in GAL is:

• Payload subsystem.
• Attitude dynamics and control subsystem (ADCS).

• Propulsion subsystem.
• Electric power subsystem (EPS).
• Structure subsystem.
• OBC subsystem.
• TT &C subsystem.
• Thermal subsystem.

Excluding the payload subsystem, in which the refinement is 
carried out already via the introduction of the user inputs, in 
all the other subsystems, internal routines ensure a consist-
ency in the results. Similar to the physical constraint result 
of GEL, a twin method is applied in GAL to provide always 
logical COTS suggestions based on the current architecture 
available so that major design changes (e.g., form factor 
increase) are avoided. Naturally, if no possible solution for 
the current architecture is achievable, a decrease or increase 
in size takes place. In the ADCS refinement, as a leading 
example, the inertia is calculated based on the current mass 
and solar panels architecture. Sequentially, GAL proceeds 
and calculates the external torques (solar, atmospheric drag, 
magnetic torque, gravitational, parasitic if a thruster is pre-
sent) which the CubeSat will suffer during its orbit. The 
following physical variables are assumed:

• Magnetic dipole moment, D, is 0.1 Am2.

• Reflectance factor, 0.8.
• Drag coefficient, 2.25.
• Ram area equal to surface area [m2].

Finally, the total torque to be stored by the ADCS system 
is obtained multiplying the total torque, calculated above, 
with the user introduced input of alignment time [22]. From 
this point onward, GAL knows that it must first check that 
the ADCS suggested from the EM is capable of managing 
such torque. In case this is not possible, the database of 
ADCS systems is scanned for a device which could store 
that amount of torque and, at the same time, guarantee the 
alignment requirement introduced by the user in GEL. The 
other subsystem refinements proceed in the same fashion of 
the one described above.

In the development of GAL, specific attention has been 
paid toward how it should treat a new recommended COTS 
for a new subsystem. The possible alternatives are mainly 
two: the proposed COTS substitutes the one suggested in the 
empirical model, for the next subsystem to use an updated 
model, or it should be preserved for the final assembly of 
the analytical model. To answer these questions, GAL1 and 
GAL2 are introduced, as presented in Fig. 3. Both alter-
natives use the concurring engineering principles listed 
in ECSS-Q-ST-60C [25]. This document regulates CE 
describing it as the engineering activity which takes place 
in the context of simultaneous design of the product, the 
production process and all associated product usages, in an 



382 C. Girardello et al.

1 3

integrated, multifunctional team, with external organiza-
tional constraints minimized. Current research shows that 
the outputs of both GAL1 and GAL2 are qualitatively and 
quantitatively identical. The main difference between them, 
which justified in the first place the design of two distinct 
methods, is how they treat the implementation of new COTS 
in the model.

2.2.1  GREATCUBE+ analytical level solver 1: GAL1

GAL1 is one of the two methods designed to solve the COTS 
refinement of GAL. The inputs it needs are the empirical 
model inherited from GEL and the user-introduced inputs 
listed above. A schematic of its concept of operations is 
drawn in Fig. 4.

The information path in GAL1 is mono-directional. 
Every subsystem uses the same empirical model as an ini-
tial input for the refinement process. If a new COTS prod-
uct is selected, it is stored in a separate variable until all 
the remaining subsystems have performed their refinement 
from the original model. Finally, all the new components 
are merged together and a new model, the analytical model 
(AM), is created. In the same fashion of GEL, a COTS syn-
ergy check is applied to the AM. It checks the feasibility 
of the proposed design made of the new COTS in terms of 
power production of the current solar panels architecture, 
if it can withstand the power demands of the new COTS 

components, and volumes. The main feature of GAL1, under 
a methodological point of view, is the fact that there is no 
prioritization for the order in which the subsystems are sup-
posed to be refined. This approach resembles the develop-
ment process of a concurrent engineering facility, where the 
system engineer provides the subsystem experts with the 
mission requirements and they develop together a model 
which satisfies them for the first iteration round. Sequen-
tially, each expert perform a refinement over this model 
and updates the starting model so that the other subsystem 
experts could also adapt to the new changes.

In case the AM would not pass the stability check, this 
unsuccessful model is then iterated once more into GAL1 
acting as a new empirical model. This approach ensures the 
synergy of all the COTS components which now are com-
posing the analytical model. Utilizing this approach, the sys-
tem engineer in a real concurrent engineering facility, would 
obtain the ideal result without any bias. A more detailed 
description of the software perspective is presented in the 
last part of section 2.2.2

2.2.2  GREATCUBE+ analytical level solver 2: GAL2

GAL2 is the twin model of GAL1. It has the same goal: 
to refine the COTS components selection provided in the 
empirical model. The main difference, when comparing it 
with GAL1, is the fact that in this method, the subsystem 
criticality is taken into account and the user can manually 
select which subsystem is the most important according to 
their personal and subjective idea. The concept of operations 
of GAL2 can be seen in Fig. 5.

The process now is not mono-directional anymore but it 
is a constant, increasing iteration at each subsystem added to 
the list. Naturally, the user is required to introduce in GAL2 
the same inputs required in GAL1 without distinction. The 
equations used to perform the refinement are the same used 
in GAL1.

The empirical model is used as a starting point for the 
iteration. Once the user selects the subsystem which needs 
more attention, GAL2 proceeds autonomously in its refine-
ment of that specific part of the CubeSat. In case a new 
COTS component needs to be used, GAL2 substitute this 
new piece in the empirical model, deleting the previous one 
used. Naturally, a COTS synergy check in terms of volumes 
and power demand is applied in this stage to ensure that the 
design would be strong enough to sustain these new compo-
nents. Sequentially, with this updated EM, GAL2 performs 
an additional, secondary run of the subsystem just integrated 
to measure the righteousness of its choice.

In case it fails, a new COTS component will be selected 
and the system will be allowed to proceed further with 
the same philosophy described above. Finally, the user is 
asked once more to pick one of the remaining subsystems 

Fig. 4  Schematic of GAL1. It is possible to see how the flow of infor-
mation is mono-directional. The new COTS are stored separately and 
are assembled together only at the end, creating a brand new CubeSat 
model, the analytical model (AM)



383GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

to optimize, now that the most critical one has been chosen. 
This new subsystem will naturally be refined based on the 
system requirements and changes dictated by the subsystem 
which runs above it. In the same fashion, if a new COTS 
is obtained, it is updated in the empirical model and the 
usual COTS synergy check is performed. Once all the sub-
systems have been correctly prioritized and refined, GAL2 
presents the user with the analytical model. Following the 
same example introduced in GAL1, GAL2 too represents 
fully the process of a concurrent engineering facility.

The case is one with an expert system engineer, which 
knows already what subsystem is the most problematic 
for the given mission scenario, and forces the subsystem 
experts to consider it in their independent designs in a 
polarized approach. The latest efforts showed that ana-
lytically there is no difference between the two methods 
in terms of quality of the final analytical model. The pro-
posed architectures do not differ in terms of COTS prod-
ucts recommendations regardless of the method chosen 
also at a quantitative level. Both methods are representa-
tive of the concurrent engineering principle at a con-
ceptual level. As introduced by Smith [26], concurrent 
engineering is a practice which allows design teams to 
save time consistently during the development phase. The 

principles implemented in GAL1 and GAL2 can be imag-
ined in the framework of a concurrent engineering chal-
lenge (CEC) as:

• GAL1
  Each subsystem expert, at the beginning of the 

CEC, uses the model provided by the system engineer 
as baseline for their activities. Once the system engi-
neer asks for updates, the changes performed by each 
designer are presented and a new satellite is created 
with the new modifications. In this approach, the sys-
tem engineer allows all the teams to come up with the 
ideal architecture starting from the same initial model. 
The results are presented at the end of the session and 
a new architecture is proposed based on the feasibility 
of the design for the next iteration round [27].

• GAL2
  A specialist finds out that the current design for 

the interested subsystem in not optimal. The mat-
ter is immediately brought to the system engineer 
which communicates this matter to the other subsys-
tem experts. In case the process happens via shared 
spreadsheets, the new values are updated. Sequentially, 
the other subsystem experts halt their activities, which 
were carried out considering the old design, and imme-
diately update their designs. Additionally, this concept 
introduces a certain bias toward some subsystems 
which may be considered more important than others 
(e.g., payload), as stated in Wertz [22].

As a software, the concrete parallelization of the tasks 
is not implemented. To ensure that the concurrent engi-
neering principles are respected, the missions proposed 
in Fig. 6 have been crosschecked via the usage of break-
points to monitor that the COTS products recommended 
were in line with the method’s philosophy. For GAL1, the 
usage of the same empirical model for each subsystem was 
ensured. Additionally, with the assembly of the analytical 
model, the same refinement correlations are used. Dur-
ing the various iteration steps of GAL2, there are COTS 
changes and the results fluctuate based on the proposed 
architecture. Once all the subsystems have received the 
required inputs and have been allowed to run, the solution 
outcome is the same of GAL1. The COTS synergy check 
ensures for both methods that the products recommended 
are fitting inside the current structure (volume check) and 
that the current solar panel architecture is capable of feed-
ing the subsystems with the duty cycles provided by the 
user (power check).

A follow-up review of the CubeSats introduced before, 
when dealing with GEL, now under a GAL1 and GAL2 
perspective, is presented in Fig. 6.

Fig. 5  Schematic of GAL2. It is possible to see how the the subsys-
tem which the user wants to iterate first is constantly at the center of 
the design, since the following subsystems are going to be refined to 
accomodate the features introduced by the ones above



384 C. Girardello et al.

1 3

2.3  GREATCUBE+ numerical level: GNL

The numerical level, GNL, is the last layer in GREAT-
CUBE+. It is meant to increase the accuracy of GC+ by 
numerical proof of the design proposed in GAL. A sche-
matic of this section of the tool is presented in Fig. 7.

The starting point for GNL is the AM, which is obtained 
as an output of GAL. So far, the model available to the 
user at the end of GAL is qualitatively proven by analyti-
cal equations and empirical trends. There are no volume 
related issues, since the physical constraint routine and 
the stability check took care of it in both levels. The first 
step in GNL is related to the positions assigned to the 
subsystems inside the CubeSat. The reason for this relies 
on two core features:

• The launcher provider has always a specific requirement 
for the center of gravity (COG) as shown in Table 2 [3, 
28].

• To perform any study with a simulation software 
(ANSYS, STK etc.), a step file is necessary. Hence, the 
position of the subsystems must be fixed previously to 
generate such a file.

Each of the COTS components provided in the AM 
comes with a datasheet which is easily obtainable by the 
producer’s website. This means that heights, lengths, 
depths, temperature operating ranges, electrical connec-
tions, radiation tolerance, and many other physical prop-
erties are listed, collected, and available. The problem of 
fitting the subsystems of the AM inside the CubeSat can 
be summarized and simplified as: fitting differently sized 
boxes inside a bigger, empty shell. This simplification is 
a well-known problem in operations research (OR) which 
is called bin packing problem (BPP). From a literature 
review performed [29–36], it emerged that the BPP with 
a genetic algorithm (GA) is a promising approach for the 
application on GNL. Additionally, the algorithm necessary 

Fig. 6  Tradeoff between GAL1 
and GAL2. The correct imple-
mentation of the CE principles 
ensure the righteousness of the 
results regardless of the method 
used. Database status: 28 Octo-
ber 2022

Fig. 7  Definition of the tasks performed by GNL. The AM is used as 
a reference for the numerical implementation and it goes through a 
process of subsystem position definition, 3D assembly, and iteration 

in a simulation scenario in various environments (e.g., thermal and 
orbital simulation)

Table 2  CubeSat center of gravity (COG) locations range

Form factor 
[U]

X-axis [cm] Y-axis [cm] Z-axis [cm]

1 ±2 ±2 ±2
2 ±2 ±2 ±4.5
3 ±2 ±2 ±7
6 ±4.5 ±2 ±7
12 ±4.5 ±4.5 ±7



385GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

for the subsystem position placement of GNL needs to take 
into account an extra feature: the payload position. GC+ 
offers the possibility to place it either:

• on top of the CubeSat: just above the transceiver, on 
the +Z side of the axis, which is a subsystem always 
present in any CubeSat.

• in the middle: close to the geometric center.
• in the bottom part: as a last subsystem in the system on 

the -Z side of the axis. Alternatively, if a propulsion 
system is present, the payload would stand on top of it.

In a similar fashion, in case a propulsion system is present, 
GNL places it automatically on the bottom part (-Z) of the 
CubeSat, coinciding with the Z-axis.

The objective functions which are used for such a tool 
are:

• Overall COG must lay within the limits imposed by the 
launcher provider presented in Table 2.

• At least one of the sides of the COTS must be as close 
as possible to one of the side panels of the structure to 
mimic mechanical connection with the rails composing 
the structure.

• The individual Z-axis of each COTS must be as close 
as possible to the Z-axis of the outer shell to mimic the 
placement in between the structure rails.

Via the implementation of such algorithm within GNL, it 
is possible to obtain the optimal value which satisfies the 
abovementioned functions. Naturally, based on the design-
ing team’s needs, it is possible to introduce subjective 
weights to the functions as percentages [%]. In this way, 
team members may try different constraints and measure 
how much of a difference there is between alternative 
designs. An example of a generic 6U is presented in Fig. 8.

Sequentially, once the genetic algorithm has reached the 
optimal solution for the weights introduced, GNL proceeds 
in creating an IGES (initial graphics exchange specifica-
tion) file. This typology of file can be exported to many 
software suits (e.g., ANSYS, FreeCAD).

In case a solution which is representative of the require-
ments imposed by the CubeSat Rev. 14.1 is not found, the 
tool proceeds with a different approach. GNL provides the 
current setup to the user but requires a different combina-
tion of the weights to be introduced.

The conclusion of GC+ will then be the validation of 
the proposed design from a thermal or orbital analysis 
perspective with this IGES file. It is possible to setup, as 
an example, a thermal simulation in ANSYS as the one 
presented in Section 3.3. To perform a thermal analysis, 
the remaining tasks for the user are:

• Definition of material properties and emissivities, easily 
retrievable by the datasheets of the COTS producer.

• Definition of the contact points for conductive interfaces.
• Definition of the radiative interfaces
• Introduction of the relevant heat loads for the COTS
• Definition of the external heat loads for the worst hot case 

(WHC) and worst cold case (WCC) scenario.

Additionally, using the power budget feature of GAL, intro-
duced below in Sect. 3 Fig. 11, it can also be possible to exe-
cute a transient state analysis in ANSYS. In case the design 
suggested does not satisfy any of the requirements imposed 
by the COTS components datasheet, the user can modify the 
weights imposed to the optimizing functions and iterate a sec-
ond best subsystem architecture scenario. This process can 
proceed until the thermal requirements have been satisfied.

Fig. 8  GNL’s final outcome of the COTS position after being iterated 
within the GA. It is possible to see how the subsystems are placed 
within the limits of the structure, no overlapping is present and every 
subsystem is in contact with at least one panel of the outer shell. 
Composition: (1) transceiver (red) (2) OBC (green) (3) ADCS (yel-
low) (4) payload (pink) (5) EPS (blue) (6) antenna (lightblue) (7) 
thruster (black)



386 C. Girardello et al.

1 3

3  A step‑by‑step example: Phoenix

Phoenix is a 3U CubeSat developed by the Arizona State 
University (ASU) launched in 2019. More information 
concerning this mission can be found at the official Cube-
Sat website [37]. The scope of this case study is to dis-
play the operating process of GREATCUBE+ applied to a 
real mission scenario. The expected outcome is a CubeSat 

model which is similar to the reference satellite in terms of 
mass, volume, and power consumption. The simulation of 
Phoenix with GREATCUBE+ is only one example of the 
various missions which has been used for the validation 
of the tool. Many different other examples can be found in 
the bibliography [38–40]. The following parameters are a 
mix between assumptions and real values obtained from 
the literature [37, 41, 42] to retrieve the necessary data for 
utilizing GREATCUBE+:

• Payload mass: 1.2 kg—assumption taken from Figure 13. 
The payload is approximately 10 cm in height but it is 
not fully occupying a 1U volume; hence, it is assumed 
its weight to be 1.2 kg.

• Payload volume: 1U of space (10 cm × 10 cm × 10 cm) 
- assumption.

• Payload OAP: 1.5 W OAP, 2.35 W peak power and 1.25 
W idle power, stand alone payload - [41, 42].

• Alignment requirement: 1.5deg [42].
• Altitude: 400 km ([41]).
• Duty cycles: 35% payload, 35% ADCS, 100% OBC, 25% 

transceiver—assumption.
• Lifecycle: 4 years [42].
• Radiation experienced: 400 krad—assumption.

Via the usage of the official CDR of Phoenix [42], it has 
been possible to retrieve the data mentioned above obtaining 

Fig. 9  Solar panel architecture study performed in GEL. The data-
base of CubeSat missions is comprehensive of the solar panels archi-
tecture. By extrapolating two functions out of it (deployable trend, 
body mounted trend), it is possible to identify two different areas for 
the identification of the empirically proven architecture to be imple-
mented

Fig. 10  Top: ADCS mass 
retrieved from the alignment 
requirement via the usage of a 
power fitting on the empirical 
database. Bottom: ADCS power 
consumption obtained by first 
degree polynomial fitting



387GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

better results than in previous publications [38] and more 
refined information with reference to power consumption 
and duty cycle.

3.1  GEL: empirical model (EM)

The empirical analysis of GEL follows the specifics 
described in earlier sections. For a results oriented point 
of view, in this chapter, only the relevant decisions will be 
mentioned. After having introduced the payload mass, OAP 
and alignment information in the GUI, GEL starts its com-
putation. The first important result that is provided is rela-
tive to the empirical trend, based on power production and 
CubeSat mass, of solar panels architecture: deployable or 
body mounted. For Phoenix, it is presented in Fig. 9.

From this figure, which uses empirical trends for the 
implementation of either deployable or body mounted solar 
panels, it is estimated that Phoenix will use body mounted 
panels. This information will be used in the following steps 
of the empirical level for the definition of the battery pack 
and the solar panels architecture followed by the evalua-
tion of the amount and type of solar cells which will be 
necessary.

Empirically, the tool also computes what would be the 
trend for an ADCS system for the given alignment require-
ment and the current CubeSat mass and form factor without 
dealing with inertia matrices and torques estimation. To do 
so, an empirical law retrieved in the same fashion as for 
the deployable/body mounted solar panels is used to per-
form this study but with alignment, power consumption, 
and ADCS mass as tradeoff parameters. From the database, 
the user ADCS should be of approximately 0.4/0.5 kg with 
1.2/1.3W [Note that: in [38] a value of 4W is mentioned] of 
power consumption for a 1.5deg requirement. The empiri-
cal fittings, retrieved from a power fitting (ADCS mass vs. 
alignment requirement) and a linear fitting (ADCS mass vs. 
ADCS power consumption) are presented in Fig. 10.

The closest COTS that matches this value is the MAI-
400 from Maryland Aerospace, based on the database of 
COTS components used in GEL, with 0.7 kg of mass, 2W 
of power consumption in peak power mode and 1.5deg of 
pointing accuracy.

Since no information has been given concerning the TT 
&C, GEL assumes that a data rate of 19.2 kbps is going to 
be used with two ground stations. Finally, GEL terminates 
its task and the final EM is presented to the user. The results 
can be seen in Table 3.

This concludes the analysis of GEL for this example. As 
it is possible to see by the comparison of these results with 
the ones presented in Fig. 2, the mass error is only 14%. It is 
worth mentioning that this value has been obtained introduc-
ing solely four basic parameters and, masswise, the accu-
racy is already at 86%. Concerning the power production, 

Phoenix has a power budget of 6.8W for science mode (oper-
ating mode) [42], and the result obtained via GEL provided 
a 4W from an empirical perspective. The form factor instead 
has a 100% accuracy. This model is then ready for next step, 
i.e., the analytical model (AM).

3.2  GAL: analyitical model (AM)

The EM just obtained in GEL is used as the starting model 
of GAL for its refinement. After having introduced the 
remaining inputs in the GUI, following the list introduced 
in Sect. 2.2, the tool is finally ready to execute one of the 
two methods. For simplicity, only GAL1 is analyzed but 
the result, as shown in Fig. 6 would not be different in case 
GAL2 would have been used.

First, the inertia matrix for the current architecture is cal-
culated and the process follows the same pattern described 
in Sect. 2.2 for the ADCS. Resultwise, with the introduc-
tion of the user-introduced inputs, the ADCS has not been 
changed due to the external torques suffered during the 35% 
of time in which the payload is functioning at full power, 
which the MAI-400 is capable of sustaining. GAL sequen-
tially performs an electrical power preliminary assessment, 
where all the subsystems duty cycle, power mode, and the 
CubeSat altitude data are used to analytically compute, via 
the classic EPS sizing equations [22], the power budget and 
the ideal battery pack size from an analytical perspective. 
The summarizing graph for the analytical EPS refinement 
can be seen in Fig. 11, updated already with the battery pack 
power demand stirred throughout the whole daylight time.

Following the philosophy for the EPS sizing inherited 
by Wertz et al. [22], the worst case scenario approach is 
implemented. This translates in having the highest power 
demanding subsystem to be switched on during eclipse 
time. The OBC is picked internally from a list of COTS 
components using the specific form factor recommenda-
tion usage and radiation tolerance as main design drivers. 
The structure remains the same, since the code has not 

Table 3  Empirical model (EM) obtained at the end of GEL for the 
Phoenix case

Parameter Value (COTS case)

CubeSat mass 3.25 kg
Power production (avg.) 4 W
Solar panels Body mounted
Nr. solar cells per face 6
Form factor 3U
ADCS MAI-400
Battery pack 2× with 207 Wh/kg
Structure mass 0.3043 kg from ISIS space
OBC 0.073 kg, average OBC mass



388 C. Girardello et al.

1 3

identified that a change in form factor is required. A final 
table for the GAL analysis, together with the values of 
Phoenix, is presented below in Table 4.

As it can be noticed from the table, the difference mass-
wise is almost 0.2 kg (5%), while for the power is 0.5 W 
(8%). The form factor value is fully respected. The differ-
ences relative to the other subsystems rely on the fact that 
the systems implemented in Phoenix are not available in 
GREATCUBE+ database or they have been discarded due 
to the internal calculations of GAL. The tradeoff between 
components does not take into account the price or the 
availability at the time of the design for a given COTS 
product when comparing it with a past mission. Unfortu-
nately, for what concerns the other subsystems (thermal, 
transceiver, and antenna), no data have been found on their 
properties, and hence they have been excluded from the 
table above. The AM so obtained is then fed to the numeri-
cal level, GNL.

3.3  GNL: numerical model (NM)

The analytical model is then moved downward to the final 
layer, the numerical level, GNL. In this part, following the 
reasoning of Sect. 2.3, the current architecture is validated 
numerically. Updated research showed that the implemen-
tation of an hybrid genetic algorithm in MATLAB© for the 
establishment of the optimum setup of the subsystems com-
posing Phoenix is feasible following the setup proposed in 
Sect. 2.3. The hybrid form comes from the need, for some 
subsystems, i.e., a propulsion unit, to be fixed in specific 
position regardless of their fit with reference to the optimiz-
ing functions. The algorithm has been solved with the func-
tions described in Sect. 2.3 as design drivers. The subjective 
weights implemented for the solver are:

• The COG must be within the limits imposed by the 
launcher provider: 80 (highest importance)

• COTS sides in contact with CubeSat panels: 80

Fig. 11  EPS refinement made 
in GAL via analytical analysis 
of the the different power loads 
with duty cycles. On the X-axis, 
the orbital period, on the Y-axis, 
the power consumption. The 
yellow straight line represents 
the average power demand, the 
thick blue line represents the 
current power budget as esti-
mated in GAL. The green line 
”Final Power” represents the 
sum of all the COTS products 
power consumption at any given 
time

Table 4  Result comparison 
between GAL and the real 
Phoenix CubeSat design. No 
data relative to the remaining 
subsystems implemented in 
Phoenix have been retrieved. 
Hence, no comparison is 
possible for transceiver, 
antenna, thermal. The data for 
the ”Phoenix data” column 
are retrieved from the official 
Phoenix CDR [42]

Parameter GEL results GAL results Phoenix data

CubeSat mass 3.25 kg 3.7 kg 3.9 kg
Power production 4 6.3 W 6.8 W
Solar panels Body mounted Body mounted Body mounted
Nr. solar cells per face 6 6 6
Form factor 3U 3U 3U
ADCS MAI-400 MAI400 MAI400
Mom. storage – 11 mNms 11 mNms
Battery pack 2× with 207 Wh/kg EPS1 plus from EnduroSat 2S4P AAC clyde
Structure mass ISIS space 3U ISIS space 3U In-house built
OBC 0.72 kg average OBC mass ISIS OBC GOMSpace 

NanoMind 
A3200



389GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

• Individual Z-axis coincident with structure’s Z-axis: 0, 
being a 3U. This function has little to none impact due in 
the current setup since the COTS products recommended 
for this version of Phoenix are respecting the 1U standard 
for their dimensions (10 cm lenght, 10 cm width,  any cm 
height). The only exception is given by the OBC, green 
in Figure 12.

The abovementioned setup, merged with the information 
provided by the AM, brought to the definition of the archi-
tecture presented in Fig. 12.

This proposed outcome was the result of GNL and 
resulted in a system with a center of gravity displayed as 
Eq. 2 shown below:

The payload is considered to be placed on the bottom part of 
the spacecraft, as it is for the case of the real Phoenix mis-
sion, as shown in Fig. 13.

The position of the subsystems proposed by GNL with 
this approach is more conservative toward an optimal output 
for the COG, based on the setup of the weights introduced 
above. Different setup may be obtained by giving different 
values to the weights addressed to the optimizing functions.

It can be observed how GNL was capable of predicting 
the allocations of volumes in Phoenix via the objective 

(2)
⎡
⎢
⎢
⎣

COGX

COGY

COGZ

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

0.033194

−0.007201

−0.000715

⎤
⎥
⎥
⎦
[cm]

functions. This is demonstrated by the comparison of 
the real setup of Phoenix, displayed in Fig. 13, with the 
proposed design of GNL in Fig. 12. As it is shown, the 
allocations of volumes and masses respect the reference 
satellite entirely.

The previously mentioned architecture is then automati-
cally generated in the form of an.IGES file. This model 
is then used for a thermal simulation using ANSYS© 
environment.

The process of transferring from MATLAB© to 
ANSYS© is not automatized. The necessary steps to take 
prior to performing a thermal analysis are the ones intro-
duced in Sect. 2.3, i.e., definition of the heat loads, materi-
als, emissivities, etc. A summary of the values introduced 
for the case study of Phoenix is presented in Table 5.

In case a transient analysis is desired, it can be possible 
to use the proposed power budget of Fig. 11 as a guideline 
for such simulation. A visual representation of the CAD 
model which has been moved to ANSYS© for the thermal 
simulation of Phoenix is presented in Fig. 14.

Although no thermal analysis which could be validated 
with the real satellite has been performed, since no infor-
mation regarding the boundary conditions of Phoenix has 
been found, the model depicted in Fig. 14 is ready for 
either a transient or steady-state analysis. A simple steady-
state analysis has been performed which does not take into 
account all the possible boundary conditions which the 
team designing Phoenix may have used for their thermal 
simulation. The outcome of this numerical study is shown 
in Fig. 15.

Fig. 12  GNL proposed architecture for Phoenix. From +Z: (1) trans-
ceiver (red) (2) ADCS (yellow) (3) EPS (blue) (4) OBC (green) (5) 
antenna (lightblue) (6) payload (pink)

Fig. 13  CAD model of Phoenix, courtesy of Arizona State University



390 C. Girardello et al.

1 3

The numerical analysis presented in the figure is representa-
tive of the worst hot case scenario (WHC). Phoenix will be hit 
by the solar heat flux with an intensity of 1378 W/m2 on three 
faces, while for the remaining three faces it will be illuminated 
by the IR and Albedo heat fluxes for a value of 242 W/m2 . 
The heat loads of the components, together with the material 
specifications and emissivities, are introduced in Table 5. It 
is paramount to underline how the simulation results depend 
sharply on the chosen parameters. Although it may be interest-
ing to try out different setups of the parameters introduced in 
Table 5, without the boundary conditions of the actual Phoenix 
mission, it is impossible to achieve validation in this way. The 
test case presented here with ANSYS displays how quickly 

teams can get from the conceptual phase to numerical analysis 
with the usage of GREATCUBE+.

This final result shows how it could be possible to use, or 
even modify based on the designing team needs, the model 
which is directly inherited from GNL to perform a thermal 
analysis well in advance during the conceptual phase.

4  Conclusion and future work

GREATCUBE+ shows capability of predicting design fea-
tures of existing CubeSats in multiple cases. Its multidis-
ciplinary payload design approach is a feature that may be 

Fig. 14  ANSYS© model inher-
ited from GNL analysis and 
automatically generated. The 
subsystems listed are: (1) trans-
ceiver, (2) ADCS, (3) battery 
pack, (4) OBC, (5) antenna, (6) 
payload. An actual comparison 
can be performed referring to 
Fig. 13

Fig. 15  Results of the ANSYS© 
simulation performed with the 
numerical model developed by 
GNL with the boundary condi-
tions of Table 5. The simulated 
case represents the worst hot 
case scenario



391GREATCUBE+: conceptual design tool for CubeSat’s design  

1 3

interesting for any team which is in the process of devel-
oping a CubeSat mission. Additionally, this software could 
help shortening the time necessary in the conceptual devel-
opment phase via its characteristic of providing both a list 
of COTS products, which satisfy mission requirements, and 
a CAD model which can be filled with valuable information 
for thermal analysis. The quality of GREATCUBE+ can 
be further increased by expanding the COTS components 
database. GREATCUBE+’s future work intends to include 
an orbital and electrical simulation in SIMULINK© which 
will be used to test, based on the power budget suggestions, 
the survivability of the battery pack for the proposed orbit 
and power cycles.

The empirical correlations, retrieved from a vast data-
base of successfully flown missions, behaves as guarantee 
of the empirical level (GEL). The consistency of the results 
increases as the model proceeds through the different layers 
reaching, in many cases, 90% accuracy. As a proving exam-
ple of accuracy of the software, an iteration with the mis-
sion named Phoenix is performed and its results are shown 
in Fig. 15. Throughout the whole simulation from GEL to 
GNL, the design changes fluidly until the optimal scenario 
is achieved, based on the user-introduced inputs. Within the 
database of tested CubeSat systems in GREATCUBE+, it 
has been recorded that its prediction accuracy is close to 
100% for the form factor and for weights and power produc-
tion, it reaches 90%.

Increased efforts showed how GAL1 and GAL2 both give 
the same output, as it is possible to see in Fig. 6. This result 
proves how the concurrent engineering principles, if applied 
correctly, lead to the same design regardless of any bias of 
the system engineer.

Latest developments displayed the potential of genetic 
algorithms for the determination of the subsystem positions 
to achieve the optimal COG which could respect the require-
ments of the launcher provider without altering the design of 
the CubeSat. This is then followed by the generation of an 
IGES file which can be used in different simulation scenario 
(e.g., ANSYS© ) for further investigation and analysis.

Acknowledgements This work was funded by the region of Lower 
Austria (Niederösterreich) via the project numbered: K3-F-767/002-
2019. The support of Technische Univerität Dresden and Fachhochs-
chule Wiener Neustadt is greatly appreciated.

Funding Open access funding provided by University of Applied Sci-
ences Wiener Neustadt (FHWN).

Declarations 

 Conflict of interest The authors certify that they have no competing 
interests on the matters discussed in this manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. NANOSAT Database. https://www.nanosats.eu/. Accessed: 
2022-07-25

 2. McIntosh D. M., M.J.A. Baker J. D.: The nasa cubesat missions 
flying on artemis-1. 34th Small Satellite Conference, SSC20-
WKVII-02 (2020)

 3. CalPoly: Cubesat design specification (cds) rev. 14.1, 00–34 
(2022)

 4. Tolmasoff, M., Delos, R., Venturini, C.: Improving mission suc-
cess of cubesats. In: Proceedings of the US Space Program Mis-
sion Assurance Improvement Workshop, The Boeing Company, 
El Segundo, CA. Aerospace Report Nr. TOR-2017-01689 (2017)

 5. Villela, T., Costa, C.A., Brandão, A.M., Bueno, F.T., Leonardi, R.: 
Towards the thousandth cubesat: A statistical overview. Interna-
tional Journal of Aerospace Engineering (2019). https:// doi. org/ 
10. 1155/ 2019/ 50631 45

 6. ECSS: Ecss-m-st-10c, space project management - project plan-
ning and implementation. European Cooperation for Space Stand-
ardization (2009)

 7. NASA: Basics of Space Flight. https:// solar system. nasa. gov/ 
basics/ chapt er7-1/. Accessed: 2020-07-06

 8. NASA: Nasa - npr 7120.5f. https:// nodis3. gsfc. nasa. gov/ displ 
ayDir. cfm?t= NPR &c= 7120 &s= 5E (2021)

 9. Asundi, S.A., Fitz-Coy, N.G.: Cubesat mission design based 
on a systems engineering approach. In: 2013 IEEE Aerospace 

Table 5  Boundary conditions for steady-state thermal analysis in 
ANSYS© of the Phoenix CubeSat using the CAD model provided by 
GREATCUBE+

Boundary condition Value

Solar heat flux 1378 W/m2

IR and albedo heat fluxes 242 W/m2

Emissivity alluminium alloy A3003 
roughened

0.8

Material COTS Alluminium alloy
Initial temperature –80oC
Heat load transceiver (A3003) 0 W
Heat load ADCS (A3003) 0.16 W
Heat load EPS (A3003) 0.1 W
Heat load OBC (A3003) 0.2 W
Heat load antenna (A3003) 0 W
Heat load payload (A3003) 0.2 W
Structure Three faces: 0.9 (Solar 

Cells). Three faces: 1 
(Black paint)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5063145
https://doi.org/10.1155/2019/5063145
https://solarsystem.nasa.gov/basics/chapter7-1/
https://solarsystem.nasa.gov/basics/chapter7-1/
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR%20&c=7120%20&s=5E
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR%20&c=7120%20&s=5E


392 C. Girardello et al.

1 3

Conference, pp. 1–9 (2013). https:// doi. org/ 10. 1109/ AERO. 2013. 
64969 00

 10. Ridolfi, G., Mooij, E., Corpino, S.: A System Engineering Tool 
for the Design of Satellite Subsystems. https:// doi. org/ 10. 2514/6. 
2009- 6037

 11. Chang, Y.-K., Hwang, K.-L., Kang, S.-J.: Sedt (system engineer-
ing design tool) development and its application to small satel-
lite conceptual design. Acta Astronautica 61(7), 676–690 (2007). 
https:// doi. org/ 10. 1016/j. actaa stro. 2007. 01. 067

 12. Álvarez, J., Roibás-Millán, E.: Agile methodologies applied to 
integrated concurrent engineering for spacecraft design. Res. Eng. 
Design 32, 431–450 (2021)

 13. Knoll, D., Fortin, C., Golkar, A.: A process model for concurrent 
conceptual design of space systems. Syst. Eng. 24(4), 234–249 
(2021)

 14. Putnik, G.D., Putnik, Z.: Defining sequential engineering (seqe), 
simultaneous engineering (se), concurrent engineering (ce) and 
collaborative engineering (cole): On similarities and differences. 
Procedia CIRP 84, 68–75 (2019)

 15. Nieto-Peroy, C., Emami, M.R.: Cubesat mission: From design to 
operation. Appl. Sci. (2019). https:// doi. org/ 10. 3390/ app91 53110

 16. Scholz, A., Juang, J.-N.: Toward open source cubesat design. Acta 
Astronautica 115, 384–392 (2015). https:// doi. org/ 10. 1016/j. actaa 
stro. 2015. 06. 005

 17. Higginbotham, S.: Cubesat launch initiative overview and cubesat 
101. In: Nevada Space Grant and Nevada NASA EPSCoR State-
wide Meeting 2017 (2017)

 18. Jacobs, M., Selva, D.: A cubesat catalog design tool for a multi-
agent architecture development framework. In: 2015 IEEE Aero-
space Conference, pp. 1–10 (2015)

 19. Polnik, M., Mazzarella, L., Di Carlo, M., Oi, D., Riccardi, A., 
Arulselvan, A.: Scheduling of space to ground quantum key dis-
tribution. EPJ Quantum Technol (2020). https:// doi. org/ 10. 1140/ 
epjqt/ s40507- 020- 0079-6

 20. Páscoa, J., Teixeira, O., Ribeiro, G.: A review of propulsion 
systems for cubesats. (2018). https:// doi. org/ 10. 1115/ IMECE 
2018- 88174

 21. Krejci, D., Lozano, P.: Space propulsion technology for small 
spacecraft. Proceedings of the IEEE PP, 1–17 (2018). https:// doi. 
org/ 10. 1109/ JPROC. 2017. 27787 47

 22. Wertz, W.J., James., R.: Space Mission Analysis And Design 
(SMAD). Springer, New York (1999)

 23. Howard, C.P.: Orbital Mechanics for Aerospace Engineering Stu-
dents. Elsevier, ISBN-100080977472 (2013)

 24. Aas, C.L., Zandbergen, B.T., Hamann, R.J., Gill, E.K.: Develop-
ment of a system level tool for conceptual design of small satel-
lites. In: Proceedings of the 7th Annual Conference on Systems 
Engineering Research: CSER 2009, 20-23 April 2009, Loughbor-
ough University, UK (2009). Research School of Systems Engi-
neering, Loughborough University

 25. ESA-ESTEC: Ecss q st 60c rev. 2, space product assurance. ECSS 
(2013)

 26. Smith, J.L.: Concurrent engineering in the jet propulsion labora-
tory project design center. SAE transactions, https:// doi. org/ 10. 
4271/ 981869, 1106–1118 (1998)

 27. McInnes, A., Harps, D., Lang, J., Swenson, C.: A systems engi-
neering tool for small satellite design. 15th Annual AIAA/USU 
Conference on Small Satellites (2001)

 28. NANORACKS: Nanoracks cubesat deployer (nrcsd) interface 
control document. NanoRacks website http:// nanor acks. com/, 
NR-SRD-029, 1–53 (2013)

 29. Zhao, X.: The 3d dimensional container loading problem, phd 
thesis, university of southampton. PhD Thesis, Southampton Busi-
ness School, University of Southampton (2017)

 30. Wu, Y., Li, W., Goh, M., Souza, R.: Three-dimensional bin pack-
ing problem with variable bin height. Eur. J. Operational Res. 202, 
347–355 (2010). https:// doi. org/ 10. 1016/j. ejor. 2009. 05. 040

 31. Yan, Y.F.: 3d bin packing in mixed case palletization. Master The-
sis, University of Waterloo (2015)

 32. Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the 
container problem, Elsevier, European Journal of Operational 
Research (1993)

 33. de Silva, E.F.: Algorithms for solving 3d cutting and packing prob-
lems with real-world constraints. PhD Thesis, KU Leuven (2020)

 34. Kang, J., Moon, I., Wang, H.: A hybrid genetic algorithm with a 
new packing strategy for the three-dimensional bin packing prob-
lem. Appl. Math. Comput. 219, 1287–1299 (2012). https:// doi. org/ 
10. 1016/j. amc. 2012. 07. 036

 35. Che, C., Wang, Y.-s., Teng, H.-f.: Test problems for quasi-satellite 
packing: Cylinders packing with behavior constraints and all the 
optimal solutions known. Optimization Online (2008)

 36. Zhong, C.-Q., Xu, Z.-Z., Teng, H.-F.: Multi-module satellite com-
ponent assignment and layout optimization. Appl. Soft Comput. 
75, 148–161 (2019). https:// doi. org/ 10. 1016/j. asoc. 2018. 11. 021

 37. Phoenix CubeSat Official Website. https://phxcubesat.asu.edu/. 
Accessed: 2022-09-13

 38. Girardello, C., Tajmar, M., Scharlemann, C.: Greatcube+: a mul-
tipurpose tool for cubesat conceptual design. DGLR2022, Paper 
Number: 570329 (2022)

 39. Girardello, C., Tajmar, M., Scharlemann, C.: Greatcube+: A 
multidisciplinary software tool for cubesat system and subsystem 
design - 4s symposium 2022. 4S Symposium (Paper Number 63) 
(2022)

 40. Girardello, C., Tajmar, M., Scharlemann, C., Treberer-Treber-
spurg, W.: Concurrent engineering methodology for cubesat con-
ceptual design. SECESA 2022 (Paper Number 14) (2022)

 41. Rogers, S., Sanchez de la Vega, J., Zenkov, Y., Knoblauch, C., 
Bautista, D., Bautista, T., Fagan, R., Roberson, C., Flores, S., 
Barakat, R., et al.: Phoenix: a cubesat mission to study the impact 
of urban heat islands within the us (2020)

 42. Phoenix CDR. https:// s3vi. ndc. nasa. gov/ ssri- kb/ static/ resou rces/ 
phoen ix_ cdr_-_ share able. pdf. Accessed: 2022-09-13

https://doi.org/10.1109/AERO.2013.6496900
https://doi.org/10.1109/AERO.2013.6496900
https://doi.org/10.2514/6.2009-6037
https://doi.org/10.2514/6.2009-6037
https://doi.org/10.1016/j.actaastro.2007.01.067
https://doi.org/10.3390/app9153110
https://doi.org/10.1016/j.actaastro.2015.06.005
https://doi.org/10.1016/j.actaastro.2015.06.005
https://doi.org/10.1140/epjqt/s40507-020-0079-6
https://doi.org/10.1140/epjqt/s40507-020-0079-6
https://doi.org/10.1115/IMECE2018-88174
https://doi.org/10.1115/IMECE2018-88174
https://doi.org/10.1109/JPROC.2017.2778747
https://doi.org/10.1109/JPROC.2017.2778747
https://doi.org/10.4271/981869
https://doi.org/10.4271/981869
http://nanoracks.com/
https://doi.org/10.1016/j.ejor.2009.05.040
https://doi.org/10.1016/j.amc.2012.07.036
https://doi.org/10.1016/j.amc.2012.07.036
https://doi.org/10.1016/j.asoc.2018.11.021
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/phoenix_cdr_-_shareable.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/phoenix_cdr_-_shareable.pdf

	GREATCUBE+: conceptual design tool for CubeSat’s design
	Abstract
	1 Introduction
	2 GREATCUBE+ structure and methodology
	2.1 GREATCUBE+ empirical level: GEL
	2.2 GREATCUBE+ analytical level: GAL
	2.2.1 GREATCUBE+ analytical level solver 1: GAL1
	2.2.2 GREATCUBE+ analytical level solver 2: GAL2

	2.3 GREATCUBE+ numerical level: GNL

	3 A step-by-step example: Phoenix
	3.1 GEL: empirical model (EM)
	3.2 GAL: analyitical model (AM)
	3.3 GNL: numerical model (NM)

	4 Conclusion and future work
	Acknowledgements 
	References




