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Abstract
To overcome the limitations of current parafoil precision landing capabilities, an efficient real-time convex optimized guid-
ance and control strategy is presented. The parafoil guidance problem is non-convex in essence and it can be solved with 
a sequence of convex problems, each of those converging in polynomial time to a feasible solution of the approximated 
original problem. Our approach shows reliable and fast numerical convergence through in-flight recalculation of time of 
flight and a new optimal trajectory to cope with time-varying dynamics. The efficiency of our strategy is demonstrated via 
a comparative analysis of the existing X-38 in-flight demonstrated guidance and control system. Exhaustive Monte Carlo 
simulations show performance improvements of about one order of magnitude. The concept proposed is simple, yet general, 
as it scales to any atmospheric parafoil landing system and allows efficient implementation relying only on the turn rate 
saturation information for the parafoil model.

Keywords  Parafoil · Convex programming · Guidance and control · Landing · Real time · Trajectory optimization · 
Sequential convex programming

1  Introduction

1.1 � Background

The increased availability of onboard computation power 
and efficient optimization algorithms associated with auto-
mated code generators [23] have dramatically boosted the 
industrial propagation of embedded optimized guidance 
and control strategies. Pushed by the research of Açikmeşe 
[21], numerous aerospace problems can be solved in real-
time. Namely, it was possible to land spaceships accurately 
[2, 3] using that strategy. Convex optimization is widely 
used in real-time trajectory optimization problems due to 
the maturity of the technology [1, 4] and the convergence 
speed to a global solution. The successive convexification 
(SCVx) method used in [20], for instance, has been proven 

to be superlinearly convergent to a solution that may not be 
dynamically feasible [22]. The successes of the adoption 
of embedded onboard optimization rely on the numerical 
efficiencies of powerful algorithms such as Interior-Point 
Methods (IPM). Originally, parafoil guidance has been per-
formed using a sequence of open-loop trajectories, namely 
acquisition phase, energy management phase, and final 
phase [31]. The various phases of flight are triggered by 
a trade-off between potential and kinetic energy indicators 
guiding sequentially the parafoil to its landing site. In the last 
section, we compare our results with the method from [31] 
which is based on this concept. While this method is reliable 
and fast, it does not take into consideration the uncertain-
ties of the parafoil and wind model, leading to poor landing 
precision performances. This concept is further explored 
and improved in [34]. When the landing precision is a driv-
ing factor, especially in unknown and rugged terrain, such 
as for scientific payload delivery for exploration, or fairing 
recovery, the former technologies do not meet the require-
ments. To overcome these limitations, this paper demon-
strates the potentials of using onboard optimized trajectory 
generation and control to increase drastically performance 
figures. Similarly to other techniques, the parafoil and wind 
models uncertainties are not explicitly handled. The superior 
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performance stems from the ability to recompute a trajectory 
onboard multiple times.

Driven by the need to improve the landing accuracy, 
series of authors have approached the problem using onboard 
optimization [19]. When the landing precision is the primal 
goal, all the methods for parafoil guidance face conflicting 
objectives. One needs both an accurate parafoil model and 
a fast refresh rate to account for the uncertainties. However, 
an accurate model in the optimization problem naturally 
comes together with heavy computation cost. In the para-
foil problem, and the wind influences strongly the dynamics 
and computing new trajectories onboard is unavoidable for 
accurate landing. To start with, the algorithm introduced by 
Slegers in [30] uses a Model Predictive Control (MPC) on a 
2-Degrees Of Freedom (DOF) model for the terminal guid-
ance phase of the landing trajectory. The method can update 
the reference with a high refresh rate mitigating the effect 
of the highly unknown wind, which is assumed constant in 
the optimization process. In [36], the authors also frame the 
parafoil landing problem using a famous trajectory optimiza-
tion strategy. They use Particle Swarm Optimisation (PSO) 
to generate a trajectory online with an update rate of 1Hz. 
It can generate smooth trajectories due to the penalty and 
bounds on the heading acceleration; it shows good perfor-
mances when compared against other real-time methods. 
However, PSO do not guarantee convergence to a solution.

In terms of collision avoidance, [14] presents a Rapidly-
exploring Random Tree (RRT) algorithm to avoid the espe-
cially difficult urban environment. Similarly, [28] proposes 
a collision avoidance algorithm tailored for parafoil, using 
stochastic guidance.

It is important to take it into account explicitly the wind 
uncertainty as highlighted by the authors of [7]. They decide 
to tackle the wind uncertainty problem with a frame called 
the Wind Fixed Frame (WFF), initially introduced in [31]. 
The algorithm presented in [16] focuses on the robustness 
of the trajectory subject uncertainty of the wind.

Most of the recent literature focuses on exploiting the 
peculiarity of the parafoil problem. The innovation of the 
guidance proposed in [12] is the use of Euler’s elastica 
functions to get the trajectory that minimizes the maximum 
curvature, taking advantage of the similarity of the equa-
tions of motion with a structure problem. Sacrificing some 
precision, the algorithm runs in real time. The idea exposed 
on [5] incorporates the actuator limitation in the optimiza-
tion problem which allows both a refresh frequency of 1 Hz 
and a guarantee of non-saturation of actuators. The parafoil 
model used in [15] takes into account that the horizontal 
and vertical velocities are influenced by the altitude through 
the air density, leading to more representative results. The 
paper brings a method to take into account non-convex 
and difficult terrain, while it ignores the winch dynamics. 
Finally, [33] uses a more realistic model compared to the 

aforementioned methods. As a result, it takes into account 
the flared landing. However, the real-time implementation 
is not specified.

1.2 � Contribution

Onboard optimization for parafoil guidance and control was 
considered by Slegers in [29]. While the linear MPC offers 
convergence and recursive feasibility guarantees, the low pre-
cision of the linear model used leads to a largely sub-optimal 
solution, and lower landing precision performances. On the 
other hand, the work of Rademacher in [25] considers a more 
accurate model, including more physical parameters of the 
parafoil. It shows better results in terms of landing precision. 
Besides, it considers a realistic wind profile. However, the per-
formances depend largely on the precision of estimation of the 
aerodynamic coefficients of the parafoil model. A small error 
on each parameter adds up to a large landing precision error 
as shown in the Monte Carlo simulations. Besides, the con-
vergence guarantees are not clear for an arbitrary initial guess. 
The contribution of this paper is to provide a method with fast 
convergence with a 4-DOF model, which is intermediately 
accurate model with respect to the models used in the litera-
ture. In [24], the authors use a sequential convex approach as 
well, but rely on a 6-DOF model. While the resulting trajec-
tory will be easier to track, each iterate is not guaranteed to 
be dynamically feasible. Since the model used is more richer, 
one could expect more optimization variables and therefore a 
longer convergence time. However, in our approach, since we 
use a 4-DOF model, the aerodynamic coefficients do not have 
to be known, and the method is fully transparent to parameters 
knowledge and estimation. Besides, estimating aerodynam-
ics coefficients come often with errors and large engineering 
efforts. Moreover, each iteration provides a useful trajectory 
for the parafoil, despite being potentially largely sub-optimal. 
The two main requirements for the algorithm to perform are 
knowledge about the profile of air density and the level of 
saturation of the actuators. Both are considered light. Overall, 
it enables the use of onboard optimization for a larger set of 
missions. It assumes that the landing cone is free of any obsta-
cle, ignoring any unevenness on the landing area. The landing 
cone is defined by the set of position where a dynamically 
feasible trajectory exist, leading to the landing site. Overall, 
this paper provides a new interesting trade-off between fidelity 
of the trajectory and its computation time, allowing anytime 
control at the same time.

1.3 � Outline

In Sect. 2, the parafoil landing problem is introduced. It 
contains the parafoil and wind model used and the opti-
mization problem to be solved, and it provides an estima-
tion of the horizontal and vertical speeds and the time of 
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flight. Then, in Sect. 3, a resolution of the aforementioned 
parafoil landing problem is presented. The resolution has 
the possibility to be implemented in real time, since each 
iterate of the algorithm consists of a convex problem and 
yields a usable solution to the original non-convex para-
foil problem. As the iterative process progresses, the tra-
jectory becomes more and more useful. The possibility to 
generate a new reference trajectory alleviates the effect of 
the uncertainties and unmodelled dynamics on the land-
ing precision. Namely, the algorithm presented allows the 
continuous non-convex problem to be discretized, con-
vexified, and linearized for real-time resolution. A sim-
ple controller tracking the generated reference trajectory 
is finally introduced. In Sect. 4, the performances are 
assessed with a Monte Carlo simulation, as well as com-
pared to the guidance of the X-38 mission, named PGNC.

1.4 � Notation

The scalars are written with the unmodified font v; the vec-
tors are written in bold x and the matrices in uppercase bold 
A . The lower script numbers xk refer to the quantity evalu-
ated at the time step tk . We have xk = x(tk) unless it is clear 
from the context. The lower script x0 is referring to the ini-
tial time 0 and the lower script xf  is referring to the final time 
tf  . The time derivative of a quantity x(t) is written 𝜕x(t)

𝜕t
= ẋ(t) . 

The overline x̄ refers to the solution of the previous iteration 
of the sequential Algorithm and x⋆ refers to a feasible solu-
tion of a non-convex problem. The symbol ‖x‖ refers to the 
2-norm of a vector x with ‖x‖ =

�
x2
1
+ x2

2
 . Moreover, x⊤ is 

the transpose of x . The position of the parafoil is defined 

with respect to the inertial frame FI = {OI , x1I , x2I , zI} 
whose origin OI lies at the desired landing point, with x

1I 
aligned with the desired final heading.

2 � Problem formulation

2.1 � Parafoil and environment modeling

2.1.1 � Parafoil

Modeling the dynamical system, the parafoil, constitutes the 
first step of the problem formulation and there exist several 
ways to do it. First, we can use the first principles of physics 
and consider methodically all the forces and torques act-
ing on the payload and parafoil, possibly considering highly 
nonlinear effects such as aeroelasticity. This classic mod-
eling is accurate, but contains many parameters and takes 
long to optimize over, which is to be avoided for onboard 
optimization. It is commonly used as a benchmark model to 
verify the numerical performances of the guidance offline. 
Alternatively, we can base our model on the empirical 
observation that the parafoil rate of fall r and the horizontal 
speed v are roughly constant for a given air density, leading 
to a 4-DOF model. The horizontal motion is fixed by the 
heading angle and the horizontal speed. One can control 
the rate of heading angle and the last degree of freedom is 
considered uncontrollable and models the vertical position. 
This kinematics model is illustrated in Fig. 1, and as in [37], 
it depends on the wind strength w as an additive term to 
the speeds. This model is representative of the global para-
foil motion and is therefore useful for guidance purposes. 
However, the 4-DOF model does not allow optimization for 
flare maneuver and generally ignores ground effect. Those 
dynamical limitations of the model will result in the sub-
optimality of the solution of the parafoil landing problem. 
As it will be seen later, using a simpler model allows to 
run the optimization online. Both models, the one based on 
forces and torques (6-DOF) and the overall motion (4-DOF), 

Fig. 1   Schematic representation 
of the parafoil along the trajec-
tory. x

0
 and xf  are, respectively, 

the initial and final positions. v 
and r are the horizontal speed 
and vertical speed. � is the 
heading angle, defined as the 
angle between the horizontal 
speed v and the inertial axis x

1I . 
𝜓̇m is the maximum heading rate

Table 1   Comparison between 4-DOF and 6-DOF parafoil model

Model 4-DOF 6-DOF

Common use Trajectory optimization Simulation
Limitations Roll and pitch angle Flexible modes
Nature Kinematics Dynamics
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are compared in Table 1. The 4-DOF model will be used to 
derive the optimal parafoil guidance while the 6-DOF from 
[25] will be used as a benchmark to assess the performance 
of the Algorithm.

Choosing xj and wj as, respectively, the position and the 
wind speed in the j-direction, � as the heading angle, and z 
as the altitude, the 4-DOF parafoil model used for the opti-
mization is the following:

The control input �(t) corresponds to an asymmetrical 
deflection of the parafoil trailing edges. The time of flight 
tf  , the horizontal speed v(t), and the vertical speed r(t) are 
derived in the Sect. 2.3.

2.1.2 � Environment

A precise model of the environment, such as the wind and 
the air density, will improve the representativeness of the 
problem and naturally improve the quality of the solution. 
In the optimization parafoil model of Eq.(1), the horizontal 
and vertical velocities depend on the air density modeled as 
a function of the altitude as

w h e r e  ch = 1.225kgm−3  ,  cz = 2.256e − 5m−1 a n d 
ce = 4.2559 [37].

As for the wind, it is generated with a Dryden wind tur-
bulence model, similarly to [27]. A Dryden wind turbulence 
model is a Linear Parameter Varying (LPV) Gw . It can be 
implemented using a digital filter which that takes a band-
limited white-noise with unitary variance nw as input and 
outputs the wind speed given the altitude and the ground 
speed as parameters. The wind generator is made up of three 
terms; a steady-state profile Gwss

 , a low-frequency/high-
amplitude gust GwLF

 , and a high-frequency/low-amplitude 
gust GwHF

 . They are parametrized with the altitude z and the 
ground speed va . The resulting wind model used is

where we dropped the Laplace variable s for readability. 
The wind in both horizontal directions is generated with 
a Dryden wind turbulence model [27]. Figure 2 shows the 

(1)

ẏ(t) = f4DOF(y(t)) + B𝛿(t) =

⎡⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)

𝜓̇(t)

ż(t)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

v(z(t)) cos𝜓(t) + w1(z(t))

v(z(t)) sin𝜓(t) + w2(z(t))

0

r(z(t))

⎤
⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦
𝛿(t).

(2)�(z) = ch(1 − z ⋅ cz)
ce ,

(3)

Gw(z, va) =
wx,y(z, va)

nw
= Gwss

(z) + GwLF
(z, va) + GwHF

(z, va),

envelope of the wind profile, as a function of the altitude. 
Those wind profiles are used later for simulation in Sect. 4. 
We consider the vertical wind speed to be negligible com-
pared to the vertical speed of the parafoil. However, it could 
be easily integrated inside the time-of-flight estimation.

2.2 � Optimization problem

2.2.1 � Description

The parafoil landing problem consists in finding an opti-
mal time-varying reference control input �(t) for the rate of 
change of the heading angle, leading the parafoil towards 
the landing site with the desired heading angle while mini-
mizing the squared control cost in the objective function. 
Compared to other objective functions, such as 1-norm for 
instance, it will naturally yield higher control margins. With-
out loss of generality, the desired final position will be taken 
as zero and the desired final heading angle is defined as zero, 
aligned with the inertial frame vector x

1I . The objective of 
the problem is captured by the cost function (4a) that we 
seek to minimize. Formally, the solution of the problem is 
the functions of time y⋆(t) and 𝛿⋆(t) which are required to 
respect a list of constraints1. We will see in the following 
that 𝛿⋆(t) is used as a feed-forward, or guidance, while y⋆(t) 
is used for the feedback control. As such, the constraint (4b) 
enforces the states y(t) and input variable �(t) to respect the 
4-DOF dynamics of the parafoil, leading the solution to be 
dynamically feasible. The actuation faces a physical satura-
tion, and has to be bounded between −𝜓̇m and 𝜓̇m as depicted 
by the constraint (4c). The constraint (4d) shows that the 
initial states’ values y0 are imposed from the navigation sen-
sors. An accurate estimation of the final time tf  is derived in 
Sect. 2.3.2, decoupling the horizontal and vertical channels 
of the problem. The parafoil landing problem writes 

Fig. 2   Set of wind profiles generated by the Dryden wind turbulence 
model with a single wind outlined

1  The uppercase .⋆ is used to disambiguate the solution of the prob-
lem from its variables.
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 where y0 is the state at the initial time y(0) , 
xf = [x1(tf ), x2(tf )]

⊤ , and �f = �(tf ) . As we seek to minimize 
both the control cost, the final position xf  , and final heading 
angle �f  , the parafoil landing problem is multi-objective. 
The parameters � are used to add penalty on the terms in 
the cost function with

2.2.2 � Feasibility

A feasible solution to an optimization problem is a solu-
tion that satisfies all the equality and inequality constraints. 
We define an �-feasible solution as a solution that violates 
at most one of the constraints by � , with � being a small 
numerical value. Although strictly speaking, an �-feasible 
solution is infeasible, it is still useful in practice. Namely, 
the modeling errors are reasonably assumed greater than 
� , which justifies why a violation of � in the constraints is 
negligible.

The parafoil Problem (4) has always a trivial feasible 
solution, since there are no state constraints. One can take, 
for instance, �(t) = 0 ∀t ∈ [0, tf ] and the corresponding 
state. However, a feasible solution that is also optimal is 
non-trivial to achieve. The non-convexity of the constraint 
(4b) prevents the use of a convex solver, known for providing 
a global solution reliably. The procedure to convexify those 
constraints is outlined in Sect. 3.1.1. This work focuses on 
finding a local optimum solution to Problem (4) with a good 
level of optimality.

2.3 � Parameters

2.3.1 � Speed

The two most important parameters of the model (1) are the 
horizontal v and vertical speed r. Because the density of the 
air decreases with the altitude, both v and r will be altitude 
dependent and considering this variation will improve the 
fidelity of the model and subsequently the landing precision. 
To determine their functions of the altitude, respectively, 
v(z) and r(z), we assume the lift force constant and equal 
to the weight along the trajectory. The quantity �v2

a
 will 

remain unchanged [14] where va =
√
r2 + v2 . Based on the 

measure of the speeds and density at the initial altitude z0 , 

minimize
y(t),𝛿(t)

𝛼1
‖‖‖xf

‖‖‖ + 𝛼2|𝜓f | + �
tf

0

𝛿(t)2dt cost function (4a)

subject to ẏ(t) = f4DOF(y(t)) + B𝛿(t) dynamics (4b)

− 𝜓̇m ≤ 𝛿(t) ≤ 𝜓̇m control input saturation (4c)

y0 known initial conditions, (4d)

(5)𝛼1 >> 𝛼2 >> 1.

respectively, v(z0) , r(z0) , and �(z0) , we have the value of the 
horizontal and vertical speed at any altitude z

This equation provides a way to estimate the speed at any 
altitude z, given the speed at the altitude z0 . The speeds v(z0) 
and r(z0) can be measured onboard using a subset of the fol-
lowing sensors: a variometer, an Inertial Measurement Unit 
(IMU), Global Positioning System (GPS) receiver, Radio 
Detection and Ranging (RADAR), Laser imaging, Detec-
tion, and Ranging (LiDAR), or barometer combined, for 
instance, with a Kalman filter [6].

2.3.2 � Altitude evolution

From Eq.(6), it follows that knowing the speed at any alti-
tude z, we can estimate the speed at any time t. Indeed, we 
have

with cf = ce∕2 + 1 . The relation can also be inverted to 
recover the corresponding altitude as a function of time. 
The idea to exchange the time and altitude variable is also 
used in [36]

Using these relations, we will be able to transform the con-
trol �(t) as a function of the altitude �(z) . This is an asset, 
since the wind is considered known as a function of the 
altitude and it will contribute heavily to the dynamics of 
the system. In practice, during the terminal phase, the den-
sity does not change dramatically over the altitude covered 
by the parafoil and the influence of the altitude evolution 
may become negligible. Taking the density of the air into 
the computation becomes more relevant at high altitudes. 
These considerations will allow swapping the time and alti-
tude dependency in the notation. More importantly, we can 
evaluate this function for the final altitude zf  to get an esti-
mation of the fixed final time of the trajectory

(6)v(z) = v(z0)

√
�(z0)

�(z)
and r(z) = r(z0)

√
�(z0)

�(z)
.

(7)

t(z) = �
z

z0

1

r(�)
d� = 0 +

∫ z

z0

√
�(�)d�

r(z0)
√
�(z0)

=

√
c�

r(z0)
√
�(z0)

�
(1 − z0cz)

cf

(cf )ch
−

(1 − zcz)
cf

(cf )cz

�

(8)

z(t) =
1

cz

⎛⎜⎜⎜⎝
1 −

cf

�����
⎡
⎢⎢⎣
(1 − z0cz)

cf

cf cz
− t

� √
ch

r(z0)
√
�(z0)

�−1⎤
⎥⎥⎦
cf cz

⎞⎟⎟⎟⎠
.
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The final time depends only on the current air density and 
vertical speed, which can both be measured in-flight. An 
accurate estimation of the time of flight will drive the land-
ing accuracy. Having a variable final time would constitute 
another non-convexity to get rid of, as shown in [35].

3 � Resolution of the non‑convex parafoil 
problem

3.1 � Approach

When a problem is convex, it has a clear global minimum 
and many numerical solvers exist to retrieve this optimal 
solution efficiently. Indeed, in a convex optimization prob-
lem, a local minimum is be guaranteed to be global. When 
possible, it is always judicious to convert a non-convex 
problem into an equivalent convex counterpart. The parafoil 
landing problem as introduced in the Problem (4) is non-
convex because of the trigonometric functions in the dynam-
ics. Intuitively, a trigonometric function does not exhibit a 
clear global minimum and should be avoided in numerical 
optimization. The general idea of the resolution will be to 
substitute the highly non-convex trigonometric functions by 
constrained linear functions with. As such, to exploit the 
convergence speed of the resolution of convex problems, 
we will solve the problem via a Sequential Convex Program-
ming (SCP) Algorithm similarly as in [26]. Although the 
solution of the SCP is not guaranteed to be globally optimal, 
SCP is a heuristics used to find a solution with a good level 
of optimality in a quick time, when compared to non-convex 
solvers. For every iteration, we solve a convexified version of 
the problem, linearized around the previous solution. We ini-
tialize with a dynamically feasible zero-input trajectory and 
the problem is then sequentially solved until convergence.

At each iteration, we have a convex problem, which can 
be solved in polynomial time. The relative value of the cost 
function between two consecutive iterations is chosen as a 
stopping criterion for the iterative Algorithm. However, the 
parafoil landing problem is continuous and its solution has 
an infinite dimension. It is finally shown how to discretize 
the problem. By constraining the input function u(t) to be 
piece-wise linear, we limit the number of parameters needed 
to describe the input and state functions.

3.1.1 � Input substitution

To form the convexified problem, we introduce a change of 
variables and a quadratic constraint to remove the inherently 

(9)tf = t(zf ) =

√
ch

r(z0)
√
�(z0)

�
(1 − z0cz)

cf

cf cz
−

(1 − zf cz)
cf

cf cz

�
.

non-convex trigonometric functions. A similar method was 
used in [7]. Instead of optimizing over �(t) and �(t) , we 
introduce a new variable u(t) and will adapt the constraints 
and cost function accordingly. We define

where we simplify the notation v(t) = v(z(t)) . Conversely, 
we have the following relation for the heading angle 
�(t) = atan2 (u1(t), u2(t)) , and we have

It follows that �𝛿(t)� = ‖u̇(t)‖
‖u(t)‖ . Likewise, we define the state 

vector x(t) =
[
x1(t), x2(t)

]T . The parafoil landing Problem 
(4) is equivalent to 

 where the parameters x0 and u0 are inferred from Problem 
(4). Namely, u0 = [v0 cos𝜓0, v0 sin𝜓0]

⊤ . The solution of 
Problem (4) {𝛿⋆(t), y⋆(t)} can be recovered from the solu-
tion of the Problem (12) {u⋆(t), x⋆(t)} using the following 
transformation:

The estimation of the wind profile w(z) goes beyond the 
scope of this article. As emphasized in [7], it is important 
to consider the wind proactively rather than reactively to 
achieve better landing precision performances.

3.1.2 � Discretization

Standard numerical tools such as [9] require the variables of 
the optimization problem to be real numbers. To convert the 
continuous problem into a discrete counterpart, we define a 
temporal mesh and express the cost function, the dynamical 
equations, and the constraints as a function of the state and 

(10)u(t) =

�
v(t) cos�(t)

v(t) sin�(t)

�
=

�
u1(t)

u2(t)

�
and ‖u(t)‖ = v(t),

(11)𝛿(t) = 𝜓̇(t) =
u2(t)u̇1(t) − u1(t)u̇2(t)

‖u(t)‖2 .

(12a)
minimize

x(t),u(t)
�
⊤

����x)f
���

u1(tf )

�
+ ∫

tf

0

‖u̇(t)‖2
‖u(t)‖2 dt cost function

(12b)subject to ẋ(t) = u(t) + w(z) dynamics

(12c)‖u(t)‖ − v(t) = 0 input constraint

(12d)
‖u̇(t)‖
‖u(t)‖ ≤ 𝜓̇m input saturation

(12e)x
0
and u

0
fixed initial conditions,

(13)𝛿⋆(t) =
𝜕

𝜕t
atan2

�
u⋆(t)

�
y⋆(t) =

⎡⎢⎢⎣

x⋆(t)

atan2
�
u⋆(t)

�
r(z(t))

⎤⎥⎥⎦
.
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input variables evaluated on the temporal nodes. Motivated 
by [18], we choose to constrain the input function to the 
following format:

which interpolates linearly the value between u(tk) and 
u(tk+1) with

In doing so, we restrict the search space to the set of piece-
wise-affine functions. Although Δt was selected constant, the 
algorithm could easily be modified to account for a variable 
step size, potentially denser closer to the landing site. The 
drastic reduction of the dimension of the problem introduced 
by this discretization results in an approximated solution. 
Given the nature of the problem, its solution is smooth and 
well fitted by a piece-wise linear function provided that the 
mesh is dense enough. In practice, increasing iteratively the 
number of nodes, the quality of the solution did not improve 
further beyond 40 nodes, indicating the convergence to the 
continuous problem’s solution for a fixed final time. Based 
on this observation, N = 31 was chosen as the number of 
nodes for the discretization.

In the following, to simplify the notation, the subscript 
will refer to the corresponding time value, such as, xk = x(tk) 
and uk = u(tk) . Using this input format and skipping the 
algebraic details, we can derive an approximation of the 
integral in the objective function (12a) as

where  we assume ‖u(t)‖ = vk ∀t ∈ [tk, tk+1) and 
u̇(t) ≈

uk+1−uk

Δt
∀t ∈ [tk, tk+1) . Likewise, we have an approxi-

mation of the rate of change of the heading angle as a quad-
ratic function using the substituted input variables. In dis-
crete time, the constraints (12d) is approximated with

We discretize the dynamics without loss of precision using 
the state-transition matrix [26]. In the time-invariant case, 
we can recover its explicit formulation. With piece-wise aff-
ine input from (14), the dynamics constraint (12b) can be 
expressed as

where wk represents the integrated influence of the wind 
between tk and tk+1 , and the state-transition matrices are

(14)u(t) = �−
k
(t)u(tk) + �+

k
(t)u(tk+1) ∀t ∈ [tk, tk+1),

(15)�−
k
(t) =

tk+1 − t

Δt
�+
k
(t) =

t − tk

Δt
.

(16)∫
tf

0

‖u̇(t)‖2
‖u(t)‖2 dt ≈

N−2�
k=0

��uk+1 − uk
��2

vk
2Δt

,

(17)
‖‖uk+1 − uk

‖‖
vkΔt

≤ 𝜓̇m.

(18)xk+1 = Axk + B−uk + B+uk+1 + wk,

3.1.3 � Linearization of constraints

For the problem to be convex, the last step is to linearize the 
following non-convex equality constraint:

This equality is replaced by two inequalities

where the first one is non-convex and the second one is 
convex. This approximation will also introduce a � level of 
infeasibility in the solution of the original problem. Relax-
ing an equality constraint by two inequalities is a common 
method to avoid numerical infeasibilities. The first inequal-
ity is linearized using a first-order truncated Taylor series 
expansion around a known previous iteration ū(t) , and it 
gives the following approximated linear constraint which is 
valid for ū(t) ≈ u(t):

Knowing that ū(t)⊤ū(t) = ‖ū(t)‖2 , we can reformulate as

Finally, we have two convex inequalities 

where � is close to 0. Figure 3 shows how the non-convex 
constraint (20) is replaced by two convex constraints, which 
automatically ensures ū(t) ≈ u(t).

Remark  Using this method, we allow for a small constraint 
violation, which is a common heuristic. In general, one 
needs to add a linearization tubes to ensure that the line-
arized constraint approximates well the original nonconvex 
constraint. However, in this specific case, the linearization 
validity is automatically ensured geometrically. It explains 
why we can guarantee a small level of infeasibility and why 
this heuristics works especially well for the parafoil problem 
considered.

(19)A =

[
1 0

0 1

]
B− =

Δt

2

[
1 0

0 1

]
B+ =

Δt

2

[
1 0

0 1

]
.

(20)‖u(t)‖ − v(z) = 0.

(21)−� ≤ ‖u(t)‖ − v(z) ≤ �,

(22)‖ū(t)‖ − v(z) +
ū(t)⊤

‖ū(t)‖ (u(t) − ū(t)) ≥ −𝜀

(23)
ū(t)⊤u(t)

‖ū(t)‖ − v(z) ≥ −𝜀.

(24a)
ū(t)⊤u(t)

‖ū(t)‖ − v(z) ≥ −𝜀

(24b)‖u(t)‖ − v(z) ≤ �,
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3.2 � Algorithm and convex programming

3.2.1 � Two stages’ description

Based on all the previous transformations, we can transform 
the Problem (12) into a discrete convex problem solved for 
each iteration. More specifically, the convex problem can be 
described as a Second-Order Cone Program (SOCP). Using 
ūk as the solution of the problem at the iteration (n), we solve 
the following problem at the iteration (n+1): 

 The cost function J(xk, uk) is evaluated between each itera-
tion and the convergence of the SCP is assumed when its 
variation reaches a chosen threshold �J . The SCP based on 
(25) will yield a solution with a small dynamical infeasibility 
� , because of the approximation introduced in Eq.(21). To 
remove this small infeasibility, once the SCP has converged 

(25a)

minimize
xk ,uk

J(xk, uk) = �
⊤

[‖‖‖xf
‖‖‖

u1(tf )

]
+

N−2∑
k=0

‖‖uk+1 − uk
‖‖2

vk
2Δt

cost function

(25b)
subject to xk+1 = Axk + B−uk + B+uk+1 + wk dynamics

(25c)
ūk

⊤uk
‖‖ūk‖‖

− vk ≥ −𝜀 substitution input

(25d)‖‖uk‖‖ − vk ≤ � substitution input

(25e)
‖‖uk+1 − uk

‖‖
vkΔt

≤ 𝜓̇m ∀k heading angle rate

(25f)x0 and u0 known initial conditions.

a first time, we consider � to be a decision variable, add a 
new constraint � ≥ 0 and a new term �3� to the cost function 
which will minimize the small dynamical infeasibility � [8]. 
As a second stage of the Algorithm, the convex problem to 
be solved iteratively until convergence is the following: 

Basically, we solve two different but very similar SCP, 
where the first one gives an initial guess to the second one, 
as suggested in [13]. The second step tends to the idea of 
exact penalty functions [8]. The guidance Algorithm is 
shown below

Algorithm 1: SCP-based guidance for a parafoil

Initialization of ε , N,α, ch, cρ , ce, A, B− and B+ % mission independent;
Initialization of ψ̇m;% mission dependent;
Initialization of t f , tk, zk, vk, wk, u0, x0 based on the navigation sensors;
Initial guess of the trajectory ūk. n=0.;
while cost has not converged do

Resolution of the problem (25);
Update ūk with the new solution at iteration (n);
n = n+1;

end
while cost has not converged do

Resolution of the problem (26);
Update ūk with the new solution at iteration (n);
n=n+1;

end
Output u�k = ūk and x�k as the solution of the Problem (12);
Evaluate Eq.(13) to recover the solution of Problem (4);
Send the solution δ �(t) and y�(t) to the controller function;
Result: Feasible reference trajectory for the guidance problem

3.2.2 � "‑Feasible sequential convex programming 
for the parafoil problem

Most sequential convex programming implementations does 
not provide a feasible solution of the non-convex problem 
at each iteration (even though at each iteration, we solve a 
convex problem whose global optimum can be recovered 
efficiently). Especially, in [17], the use of artificial input 
is stressed as a mean to avoid numerical infeasibility and 
dynamic feasibility can only be recovered at convergence, if 
ever. This artificial input, or slack variable, on the dynamics 
has no physical meaning and yields a dynamically infeasible 
trajectory at intermediate iterates. In this contribution, how-
ever, we can prove by induction that each iterates yields an �
-feasible solution of the non-convex Problem (4).

Lemma 1  Each iteration of the Algorithm contains a convex 
problem whose optimum solution is �-feasible for the non-
convex Problem (4).

minimize
xk ,uk ,�

J(xk,uk) + �3� cost function (26a)

subject to Eq. (25b) → Eq. (25f) identical (26b)

� ≥ 0 penalty (26c).

Fig. 3   The intersection of the convex regions, (24a) and (24b) (grey 
areas), shows an approximation of the non-convex constraints (20) 
(dashed grey line) (valid close to ū(t) for t = tk).
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Proof  First, we can always find an feasible solution for the 
non-convex Problem (4), at the iteration n = 0 using a zero-
input trajectory (see Sect. 2.2.2). This feasible solution is by 
definition also �-feasible. The convex optimization problem 
of the first iteration will then be feasible by construction.

Second, if we assume that the convex problem at the itera-
tion (n) is feasible, we can also show that the convex prob-
lem at the iteration (n+1) is also feasible. For instance, we 
can always take uk = ūk in Problem (25), since ūk is known 
and we can verify that all constraints are satisfied 

 Equation (27a) is satisfied, since there is no constraints on 
xk . Equations (27b)–(27d) are satisfied, since the iteration 
(n) if feasible by assumption. This shows recursive feasibil-
ity of the Algorithm by induction.

Finally, by construction, a feasible solution to the convex 
Problem (25) always provides a �-feasible solution of Prob-
lem (4). In particular, the optimum solution of the convex 
Problem (25) is also �-feasible solution of Problem (4). This 
completes the proof. 	�  ◻

(27a)xk+1 = Axk + B−ūk + B+ūk+1 + wk

(27b)
ūk

⊤ūk
‖‖ūk‖‖

− vk ≥ −𝜀

(27c)‖‖ūk‖‖ − vk ≤ 𝜀

(27d)
‖‖ūk+1 − ūk

‖‖
vkΔt

≤ 𝜓̇m ∀k.

Furthermore, as shown in Fig. 3, there are several �-fea-
sible solutions at the iteration (n+1) as long as 𝜀 > 0 . This 
proves that all the iterates will yield a linearly decreasing 
cost function [10, 20, 22]. In the simulations, each iteration 
of the Algorithm yields a �-feasible solution, as depicted in 
Fig. 4. Among all the �-feasible trajectories, the optimizer 
will yield the one with the lowest cost function. If the mis-
sion real-time constraints require guarantees on the refresh 
rate of the reference trajectory provided by the Algorithm, 
one can always output the result of the last iteration, which 
will be sub-optimal but �-feasible and, therefore, useful. 
Finally, [22] stresses that if the Algorithm converges to a 
feasible solution, then that solution is also locally optimum.

3.2.3 � Numerical parameters

In practice, the selection of � is driven by the following 
trade-off. When � is small, the convergence of the SCP is 
slower, but the resulting solution is more accurate. Oppo-
sitely, when � is larger, fewer iterations will be needed and 
the resulting solution will be more dynamically accurate. It 
determines the quality of the �-feasible solution if we were to 
stop the Algorithm before it can switch to the second stage. 
Choosing � ≈ v0∕200 for the first stage offers a comfort-
able trade-off. In practice, the second SCP converges usually 
much quicker. The number of time step N is discussed in 
Sect. 3.1.2. If we select a higher N, the discrete-time solution 
will be closer to the continuous-time solution. However, the 
resulting convex optimization will take longer to be solved 
by the numerical solver.

Fig. 4   Sequential iterations of 
the Algorithm. (top left) State 
trajectory x for each iterate. (top 
right) Reference �(t) constrained 
between 𝜓̇

m
 and −𝜓̇

m
 for each 

iterate. (bottom left) Level of 
infeasibility for each iterate, 
bounded by −� and � . (bottom 
right) Value of each term of the 
cost function across iterates.
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3.2.4 � Implementation

To start the iterative process, we choose a constant initial 
guess for u(t) , propagating from the initial state, such as 
ū(t) = [v(t) cos𝜓0, v(t) sin𝜓0]

⊤ . Details of the implemen-
tation can be found on https://​github.​com/​antoi​nelee​man/​
paraf​oil_​SCP_​guida​nce. To reduce the number of iterations 
required to converge, further development could focus on a 
better feasible initial guess, such as Dubin’s path. To accel-
erate the convergence, we can also infer an initial feasible 
trajectory based on a previously computed optimal trajec-
tory with different initial states. Figure 4 shows the succes-
sive iterations of the Algorithm constituted with 2 SCP. The 
top left shows how the trajectory iteratively bends towards 
the point [0, 0]⊤ . The shape of the resulting trajectory is not 
obvious, since it takes into account the wind perturbation. 
The top right shows that the reference �(t) remains within the 
input constraints for each iteration, a necessary condition for 
each trajectory to be dynamically feasible. Because of the 
choice of discretization, �(t) is piece-wise constant. We see 
that towards the end of the iterative process, the reference 
�(t) converges to a fixed function. The bottom left illustrates 
that each iteration is �-feasible by construction and that the 
last iteration achieves exactly ‖u(t)‖ = v . Finally, the bottom 
right shows the value of each term of the sum in Eq.(25a). 
The switch to the second stage arises around 1–2 iterations 
before the end and we will see that ||xf || is the main con-
tributor of the cost for the first half of the iterates when it is 
still strictly positive.

3.3 � Controller

3.3.1 � Benchmark model

The guidance Algorithm is applied to a 6-DOF model from 
[25]

where y6-DOF(t) is the state of the 6-DOF parafoil and uasy(t) , 
usym(t) represent, respectively, the asymmetrical and sym-
metrical deflections of the trailing edges. The symmetrical 
deflection controls the rate of fall, whereas the asymmetrical 
controls the rate of turn of the parafoil. The longitudinal 

(28)ẏ6-DOF(t) = f6-DOF(y6-DOF(t), [uasy(t), usym(t)]
⊤),

control compensates for the error in the estimation of both 
the time of flight and the rate of fall. The state is assumed to 
be measured perfectly the navigation sensors of the parafoil.

3.3.2 � Guidance and control strategy

The controller is needed to compensate for the modeling 
approximations, unmodelled perturbations, and noise. The 
algorithm presented above gives a reference for the input 
𝛿⋆(t) and for the position x⋆(t) , used as a feed-forward to 
the controller as illustrated in Fig. 5, where we drop the 
time dependency.

The control function operates independently on both the 
lateral and longitudinal channel to ensure that the parafoil 
has, respectively, a minimum lateral and longitudinal error. 
Inspired by [25], we have the following asymmetrical deflec-
tion for the lateral control:

We have the symmetrical deflection for the longitudinal 
control

The controller is implemented only for illustrative purposes 
and further development could focus on an optimally tuned 
controller. C1 and C2 are controllers, respectively, on the 
cross-track error and the along-track error.

4 � Results

The 6-DOF model developed by Rademacher [25] was used 
as a benchmark of the physical reality to assess the perfor-
mances of the Algorithm, including the saturations on the 
actuators. The reference trajectory is applied to the 6-DOF 
model with 600 different randomly sampled initial condi-
tions x0 and �0 from a uniform distribution. The conditions 
of the simulation are exposed in Table 2.

(29)uasy(t) = 𝛿⋆(t) + C1(y6-DOF(t), x
⋆(t)).

(30)usym(t) = C2(y6-DOF(t), x
⋆(t)).

Fig. 5   Architecture of the guid-
ance and control strategy

https://github.com/antoineleeman/parafoil_SCP_guidance
https://github.com/antoineleeman/parafoil_SCP_guidance


381Autonomous parafoil precision landing using convex real‑time optimized guidance and control﻿	

1 3

4.1 � Convergence

The 600 runs of the Monte Carlo simulation show the con-
sistent convergence of the Algorithm. In Fig. 6, we can see 
the solution x⋆(t) and 𝛿⋆(t) of the Algorithm for each of the 
600 different initial conditions. We can make the following 
three observations on the four subplots (from left to right). 
First, each of the 600 realizations of the Algorithm succeeds 
in finding a feasible trajectory, with a good cost. In this case, 
since the set of initial conditions x0 is relatively close to the 
desired landing position at [0, 0]⊤ , each trajectory is able to 
reach that position xf = [0, 0]⊤ . The Algorithm converges 
for any initial conditions, where it always seeks to minimize ‖‖‖xf

‖‖‖ . The final angle �f  is also close to 0 for each trajectory. 
Second, as the constraint (20) is non-convex, we approxi-
mated with two inequalities (21) and the second stage of the 
Algorithm aims at minimizing that approximation. The plot 
shows that the value of the infeasibility on the constraint 
‖‖u⋆‖‖ − v is negligible for each of the 600 runs, demonstrat-
ing that, using the second stage of the Algorithm, we got rid 
of the �-infeasibility. Third, we see that the constraint on �(t) 
is satisfied for each of the simulations. Fourth, we see that 
the number of iterations is rarely above 30, which gives a 
convergence time to a feasible solution under 1 s for each of 
the 600 trajectories of the Monte Carlo. The convergence 
time has been measured on a processor i7 8th Gen, 16Go 
RAM with the default setting of ECOS [11]. No attempt was 

made to improve the numerical code efficiency which can 
be obtained via specific customization and code adaptation. 
Eventually, Fig. 6 provides evidence that the Algorithm used 
provides consistently and rapidly a locally optimal solution 
to the non-convex Problem (4).

4.2 � Performance

In the previous section, we showed that the Algorithm could 
provide consistently a reference trajectory, often called feed-
forward. In this section, we explore the quality of that ref-
erence trajectory when applied to a 6-DOF model. Using 
the same initial conditions as in the previous section, Fig. 7 
shows the landing accuracy on a 6-DOF parafoil. In this 
case, the guidance and control architecture is outlines in 
Sect. 3.3.2. A single reference trajectory has been com-
puted and tracked, hence the ”open-loop guidance” nam-
ing. In practice, better results can be achieved when a new 
trajectory is computed as soon as the parafoil is too far from 
the reference (”closed-loop guidance”). Using an accurate 
wind model, Fig. 7 shows that most of the simulation runs 
see the parafoil landing below 30 m away from the target and 
below 20 deg difference with the target heading angle. Better 
results can be achieved with the guidance in closed-loop, 
with an optimized controller, and with a final angle aligned 
with the wind direction. Closed-loop guidance is made avail-
able because of the low convergence time of the Algorithm 
and should be implemented in practical applications. Fur-
thermore, one could argue that the Monte Carlo does not 
have enough simulation to give an accurate estimation of 
the landing precision. Figure 7(right) intends to disprove 
this. Indeed, as we increase the number of simulations for 
the estimation of the average landing distance 𝜇̂(||xf ||) and 
the average landing angle 𝜇̂(𝜓f ) , the reliability of the estima-
tion goes higher, by the statistical law of large numbers. The 
same goes for the corresponding standard deviation 𝜎̂(||xf ||) 
and 𝜎̂(𝜓f ) . Therefore, the most useful value is the one corre-
sponding to the highest number of simulations, on the right. 
However, this estimation was already achieved relatively 
accurately after 200 simulations, indicating that we do not 

Table 2   Parameters value for the 600 Monte Carlo simulations

Parafoil Numerical

Parameter Value Unit Parameter Value Unit

v
0

18.5 [m/s] �J 0.01 [-]
z
0

1200 [m] � 0.1 [m/s]
r
0

 − 7.9 [m/s] N 31 [-]
𝜓̇
m

0.14 [rad/s] �
1

100 [-]
x
0 [200,400]2 [m] �

2
10 [-]

�
0

[− �,�] [rad] �
3

1 [-]

Fig. 6   Monte Carlo simula-
tion with hard constraints in 
dashed lines. (left) Set of all 
the trajectories x⋆(t) with a 
randomly initialized x

0
 inside 

the box. (Center left) Dynami-
cal infeasibility remaining after 
convergence for each trajectory. 
(Center right) Optimal reference 
𝛿⋆(t) for each trajectory. (Right) 
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need more simulations to capture the true performance of 
the Algorithm.

4.3 � Comparison

The online trajectory generation method is compared 
against a more traditional method from [31, 32] referenced 
as Parafoil Guidance, Navigation and Control (PGNC) in 
the following. The PGNC method is tested for a 4-DOF 
X-38 parafoil model calibrated with flight data, while the 
aforementioned Algorithm is used on a comparable 6-DOF 

parafoil model, with the same wind model in both cases. 
With similar initial conditions, we can observe the difference 
in landing precision in Fig. 8. The final heading angle con-
straint has been removed for higher consistency and com-
parability since the EM method does not target a specific 
heading angle. The dispersion of the landing precision is 
much smaller for the online optimization method.

5 � Conclusion

The parafoil guidance problem has been solved by the appli-
cation of sequential convex progrmming. Using a substitu-
tion for the trigonometric function and linearization, it is 
possible to convert the non-convex problem into a sequence 
of convex problems, suitable for onboard implementation 
and real-time use. Especially, each iteration yields an �-fea-
sible solution of the physical problem in polynomial time 
and can be used as a sub-optimal feed-forward trajectory, to 
comply with the real-time computational requirement. The 
algorithm takes into account the influence of the altitude-
varying density of the air on the aerodynamics and requires 
only the control saturation level for the parafoil model as a 
parameter for the model. It also considers the wind distri-
bution and finds a locally optimal solution, minimizing the 
control energy or the missed landing, or both when possible. 
The algorithm is tested on a 6-DOF parafoil model. The nav-
igation error is not included in the simulation. Future work 
could take the measurement noise explicitly into account 
in the problem formulation. Further tests will include hard-
ware-in-the-loop simulations.

Fig. 7   Monte Carlo simula-
tion where the reference 𝛿⋆(t) 
computed by the Algorithm 
is applied to a 6-DOF parafoil 
model. (Left) final position and 
heading angle with open-loop 
guidance, lateral and longitudi-
nal control, perfect knowledge 
of the strong wind. (Right) 
estimation of the mean and 
variance of the missed distance 
and missed heading angle. The 
horizontal axis corresponds to 
the number of simulations used 
for the estimation.
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