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Abstract
Different metocean conditions have an impact on the detectability of ship signatures on Synthetic Aperture Radar (SAR) 
images. During the EMSec Project algorithms for retrieval of wind and sea state fields from TerraSAR-X data have been 
developed in conjunction with a near real-time-capable constant false alarm rate ship detection processor. This paper presents 
a new model connecting these three information extraction systems into a ship detectability model by setting the probability 
of detection in dependency to the four parameters: Wind speed, significant wave height, incidence angle and ship length. 
The model is based on a binary L2-regularized logistic regression classifier trained on a large dataset of X-band SAR ship 
samples, which are identified using Automatic Identification System messages co-located automatically in space and time 
and further checked manually to avoid possible mismatches. Results are compared to the state-of-the-art simulation-based 
ship detectability model available in literature. For the first time it has been possible to evaluate not only qualitatively but 
also quantitatively the effects of acquisition geometry and metocean conditions for the different image resolution classes 
obtainable with the high-flexible SAR sensor on-board the TerraSAR-X satellite.

Keywords Ship detection · Probability of detection · Machine learning · Synthetic Aperture Radar

1 Introduction

With a crescent interest in global maritime situation aware-
ness, new earth observation methods and sensors have 
been developed to overcome the actual limitations of radio 
communication and coastal monitoring systems. Synthetic 
Aperture Radar (SAR) is a well-suited sensor for oceano-
graphic observations and ship surveillance activities due to 
its capability of all day and weather operations, with suitable 
coverage and image resolutions [1–3].

New satellite systems like Sentinel-1 and TerraSAR-
X are pushing the limits of SAR resolution and coverage 
capabilities, making possible the use of SAR images in 
complex scenarios and applications [4]. In the framework 

of the Echzeitdienste für die Maritime Sicherheit-Security 
(EMSec) project new processors are developed, which 
exploit images essentially acquired by the TerraSAR-X satel-
lite to generate value-added products for maritime safety and 
security under near real-time (NRT) requirements [5]. These 
processors include new information extraction methods for 
oil [6] and ship recognition [7–12] as well as wind field [13] 
and sea state retrieval [14, 15].

The TerraSAR-X satellite is equipped with a X-band 
radar that allows a wide set of operational modes: From the 
high-resolution SpotLight (SL) mode to a wide coverage 
area with the ScanSAR Wide (SCW) mode. Different Ter-
raSAR-X image modes and their characteristics are briefly 
summarized in Table 1. A detailed description of the Ter-
raSAR-X Multimode SAR Processor (TMSP) with the image 
products and processing level characteristics available, can 
be found in [16, 17].

In Fig. 1 are highlighted the effects of image resolution 
and ship size by showing the same identical ship (one for 
each ship size class as introduced in Table 2) observed with 
different TerraSAR-X image resolution classes. Therefore, 
understanding the impact of different SAR imaging modes 
and acquisition settings on the respective information 
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extraction methods is fundamental to estimate their perfor-
mance and correctly plan future acquisitions. This paper 
presents a new ship detectability model to support the ship 
recognition processor. The new model is an empirical model 
trained on a large ground truth dataset, in which messages 
from the Automatic Identification System (AIS) have been 
intersected with SAR acquisitions. Probability of detection 
of ships is modelled in dependency to the parameters ship 
size, incidence angle, and the metocean parameters wind 
speed and significant wave height. In the view of a fully 
data-driven approach, the metocean parameters are directly 
estimated using the SAR data making use of empirical func-
tions tuned for TerraSAR-X. The new wind field and sea 
state retrieval methods developed during EMSec project are 
named XMOD2 and XWAVE [13, 14]. Hence, the analysis 
conducted in this paper takes the full benefit of the different 
processors developed during the EMSec project, demonstrat-
ing the possible advantages of the outcomes of such project. 
In this way, ship detectability performances are provided 
for each class of image resolution, i.e. high, medium and 
low, in terms of probability of detection maps derived from 

the trained model. State-of-the-art ship detectability mod-
els are based on theoretical assumptions of the ship radar 
response and surrounding background distribution. For the 
purposes of this study, the ship detectability model proposed 
by Vachon et al. [31] for RADARSAT-1 and -2 has been 
taken as reference and adapted to TerraSAR-X using the 
dataset described in the next section.

This work is structured as follows: Sect. 2 describes the 
dataset this paper is based on. Section 3 presents the devel-
opment process of the data-driven detectability model and 
Sect. 4 contains the results. The development of the simula-
tion-based detectability model and a visualisation of results 
is presented in the Sects. 5 and 6, respectively. A confronta-
tion of both models is discussed in Sect. 7. Finally, Sect. 8 
brings the conclusions and final remarks.

2  TerraSAR‑X data pre‑processing

The underlying TerraSAR-X dataset includes 1095 high-res-
olution (Stripmap and Spotlight, 686 with HH, 105 with VV 
and 304 with HH/VV polarisation), 104 medium-resolution 

Table 1  Basic characteristics about TerraSAR-X Multilook Ground 
range Detected (MGD) Radiometrically Enhanced (RE) imaging 
modes and defined resolution classes

Image mode Standard size 
Rg × Az (km)

Inc. angle 
range (°)

Spatial resolution (m) 
(class)

SpotLight 10 × 10 20–55 0.9–8.5 (high)
StripMap 30 × 50 20–45 7.0–11.8 (high)
ScanSAR 100 × 150 20–45 18.5–19.2 (medium)
ScanSAR Wide 270 × 200 15–50 40 (low)

Fig. 1  Exemplary of detected 
ships (small, medium and large 
from left to right as introduced 
in Table 2) using the differ-
ent resolution classes (high, 
medium and low from top to 
bottom) defined for TerraSAR-
X

Table 2  Ship size classes definition according to the AIS reported 
length

AIS Automatic Identification System

Descriptive term Ship length (m)

Small 1 < l ≤ 25
Medium 25 < l ≤ 150
Large 150 < l ≤ 400
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(ScanSAR, 100 with HH and 4 with VV polarisation) and 
24 low-resolution (ScanSAR Wide, 9 with HH and 15 with 
VV polarisation) images, which were acquired between 2013 
and 2017 in North Sea, Baltic Sea and Mediterranean Sea. 
The selected processing level of the SAR data is Level-1b 
Multilook Ground range Detected (MGD) Radiometrically 
Enhanced (RE), which maximises the radiometric resolution 
at expense of the spatial resolution. The three datasets have 
been augmented by space and time co-located AIS data. The 
majority of AIS messages were recorded by coastal receiv-
ers, with few samples provided by satellite AIS in Open 
Ocean and/or not in the field of view of coastal receivers. 
After a first automatic SAR-AIS fusion processing, which 
i.a. includes filtering of azimuth ambiguities and correc-
tion of the Doppler azimuth offset based on AIS velocity, 
a manual inspection of the results of this process has been 
carried out to obtain clean samples of detected and non-
detected ships without ambiguous SAR-AIS assignments. 
The detection of the ship signatures and respective labelling 
of ship samples is performed by the constant false alarm 
rate (CFAR)-detector using a fixed false alarm rate smaller 
than PFA < 10−13. The false alarm rate has been chosen to 
be as small as possible to only detect true ship signatures 
and is therefore only limited by numerical double precision. 
To achieve NRT performances, the CFAR implementation 
is based on the Gaussian probability density function for 
modelling of background clutter and therefore the detec-
tor is applied on the amplitude image representation. The 
use of Gaussian function is motivated by the fact that the 
input SAR image has been processed with high number of 
looks (~ 9 looks). All pixel’s amplitude values exceeding 
the derived threshold are marked as detection. In a subse-
quent processing step the single pixels are connected to ship 
signatures [10]. More details about CFAR are introduced 
in Sect. 5. To each ship sample the SAR-based wind speed 
is allocated, which is derived by XMOD2 as described in 
[13, 18]. The SAR-based significant wave height is retrieved 
by XWAVE as published in [14, 15]. The significant wave 
height can only be calculated for high-resolution images and 
is assigned only to each high-resolution ship sample. The 
amount of ship samples with high sea state above 4 m sig-
nificant wave height or with high wind speed above 10 m/s is 
low. Therefore, this paper only concentrates on low (< 1 m) 
and moderate (1–4 m) sea state and the few ship samples 
with high sea state or high wind speed are discarded. Fur-
ther, samples marked as invalid in the manual inspection, 
with an incidence angle outside the TerraSAR-X full per-
formance incidence angle range (from 20° to 45°) and/or 
with image artefacts that disrupt the metocean parameters 
estimation are also filtered out. Finally, three main datasets 
and two high-resolution subsets for respectively HH and VV 
polarisation are defined, for which the detectability models 
are built:

1. TerraSAR-X high-resolution with 9856 ship samples

(a) 8016 ship samples with HH polarisation
(b) 1840 ship samples with VV polarisation

2. TerraSAR-X medium-resolution with 1762 ship samples
3. TerraSAR-X low-resolution with 688 ship samples.

According to the ship size provided by the co-located AIS 
reports, ships are categorized into three labels, i.e. small, 
medium, and large, as summarized in Table 2.

Figure 2 shows the overlaid histograms of the dataset dis-
tribution as function of image class resolution (three histo-
grams given each by a different colour) and ship size class 
(three common bin sizes of the histogram according to the 
range lengths given in Table 2), i.e. each bin provides the 
samples count for the specified image resolution class and 
ship size class. Please note that the number of small ships 
that have been detected and assigned to a valid AIS message 
is limited for all image resolution classes, because accord-
ing to International Convention for the Safety of Life at Sea 
(SOLAS) Chapter V on the use of AIS system, these ships 
are often not mandatory required to be equipped with such 
safety system [19].

3  Development of the data‑driven ship 
detectability model

The detectability model is represented by a binary clas-
sifier, which differentiates detectable and non-detectable 
ship samples based on ship length, incidence angle, wind 
speed and significant wave height. For the binary classifica-
tion task the L2-regularized Logistic Regression classifier, 
as explained in [20, 21], has been selected. This classifier 
provides optimal linear separating hyperplanes in the four 

Fig. 2  Ship’s dataset distribution according to the image resolution 
classes and ship sizes defined in Tables 1 and 2
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dimensional space, which are useful also for qualitatively 
interpretation of the detectability model to understand the 
underlying dependencies. As qualitative interpretation is not 
possible in the four dimensional space for a human observer, 
the dependent variable that is not of interest, is removed by 
setting a fixed value hence obtaining a three dimensional 
representation.

Classifiers like support vector machines, which also esti-
mate optimal separating hyperplanes, are not capable of cal-
culating probabilities of class affiliation [22], but these prob-
abilities are used here to represent probability of detection. 
The use of this non-complex linear classifier also reduces the 
possibility of overfitting. L2-regularization has been applied 
because the training datasets are fully filled. The classifier 
training is explained as a minimization task of the following 
function:

where, the cost parameter is C = 1 , N defines the number of 
training samples, xi defines the training instance vector and 
yi ∈ {1,−1} the class label with index i in the training set. 
The set of weights, which are optimized during the train-
ing process are represented by w . The term log(1 + e−yiw

Txi ) 
represents the logistic regression loss function, giving the 
classifier its name. 10-fold cross-validation was used to 
determine the cost parameter of C = 1 . However, the cost 
parameter was identified to have almost no effect on the clas-
sification accuracy [23].

After training the set of weights w the classification of 
new samples x is performed by calculating the probability 
of class affiliation P by the following probability model:

where y defines the class label for the binary classification 
task. This means the two probabilities of class affiliation 
sum up to one.

4  Visualisation of data‑driven detectability 
model

To outline the dependency of ship detectability from the 
four parameters ship length, incidence angle, wind speed 
and significant wave height, for each dataset 2D detectabil-
ity charts are derived. The models are built for each resolu-
tion dataset using the full scalar value range of the parame-
ters. For visualisation of the three-dimensional models for 
medium- and low-resolution data the ship length is binned 
into the three size classes: small, medium and large. For 

(1)min
w

f (w) ≡ 1

2
w
T
w + C

N∑

i=1

log
(
1 + e−yiw

T
xi

)

(2)P(y = ±1|x,w) = 1

1 + e−yw
T
x

the four dimensional models for high-resolution data also 
the significant wave height needs to be binned into the 
two considered sea state classes: low and moderate. By 
setting fixed values to the rounded median value of each 
bin for these two parameters the corresponding third and 
fourth dimension can be removed to obtain 2D plots. The 
median is calculated for each class as a rounded value 
over all input samples of all datasets. This means for the 
small ships the bin median is fixed to 20 m, for medium 
ships to 100 m and for large ships to 200 m ship length. 
Similarly, for low sea state the bin median is set to 0.5 m 
and for moderate sea state to 2.5 m significant wave height. 
With sea state information only available for the high-
resolution data, for the respective high-resolution models 
12 charts and for the medium and low-resolution model, 
respectively, three charts are derived. Each chart is created 
in two steps:

1. Sampling the co-domain of incidence angles (from 20° 
to 45°) and of wind speeds (from 2 to 16 m/s) into inte-
gers.

2. Calculating the probability of class affiliation to class 
“detected” for each combination of incidence angle 
integers and wind speed integers, while ship length and 
significant wave height parameters are kept fixed by the 
respective bin center.

3. Assigning a representative colour for each probability 
value and placing the colour at its corresponding posi-
tion in the chart (wind speed integers plotted on x-axis 
and incidence angle integers plotted on y-axis).

The following Figs. 3, 4, 5, 6, 7 and 8 display the derived 
detectability charts. In all charts the linear nature of the 
underlying model can be observed. Large ships are generally 
better detectable and the impact of low versus moderate sea 
state is significant. The probability of detection from worst 
case scenario (high wind speed, low incidence angle) to best 
case scenario (low wind speed, high incidence angle) is ris-
ing for all resolution plots, but only in the high-resolution 
dataset the incidence angle has a pronounced impact. As in 
the underlying dataset no samples with wind speed above 
10 m/s are included, the charts represent an extrapolation of 
the data in the value range of 10–16 m/s. This extrapolation 
is displayed to achieve consistency with the charts provided 
for the simulation-based models in Sect. 6, which are valid 
for the full performance wind speed range of XMOD2.

The detectability models can also be utilized to estimate 
and compare the minimum detectable ship sizes subject to 
the other parameters between the different image resolu-
tion classes given a defined minimum level of probability 
of detection. In the following two plots, the minimum ship 
size is plotted either in dependency to wind speed (Fig. 9) or 
incidence angle (Fig. 10), where all other parameters must 
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Fig. 3  Dataset(1)—TerraSAR-X high-resolution HH and VV polarisation ship detectability chart for low sea state conditions based on wind 
speed, incidence angle and from left to right small, medium and large vessels

Fig. 4  Dataset(1)—TerraSAR-X high-resolution HH and VV polarisation ship detectability chart for moderate sea state conditions based on 
wind speed, incidence angle and from left to right small, medium and large vessels

Fig. 5  Dataset(1)—TerraSAR-X high-resolution HH polarisation ship detectability chart for low sea state conditions based on wind speed, inci-
dence angle and from left to right small, medium and large vessels
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Fig. 6  Dataset(1)—TerraSAR-X high-resolution VV polarisation ship detectability chart for low sea state conditions based on wind speed, inci-
dence angle and from left to right small, medium and large vessels

Fig. 7  Dataset(2)—TerraSAR-X medium-resolution ship detectability chart based on wind speed, incidence angle and from left to right small, 
medium and large vessels

Fig. 8  Dataset(3)—TerraSAR-X low-resolution ship detectability chart based on wind speed, incidence angle and from left to right small, 
medium and large vessels
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be set to fixed values. The minimum level of probability of 
detection has been set to 95% for both plots.

While all plots for the high-resolution datasets reflect 
well-known impacts of the four investigated parameters 
on the detectability of ships, the plots for medium- and 
low-resolution suggest that ship detectability is almost 
independent from the incidence angle.

The low dependency of incidence angle and ship detect-
ability is contradicting to state-of-the-art detectability 

models. The next section presents such a detectability 
model based on simulated target and background intensity 
distribution as comparison to the data-driven detectability 
model. This simulation-based model provides theoretical 
probabilities of detection requiring only a less extensive 
dataset for tuning.

Fig. 9  TerraSAR-X minimum 
detectable ship size in depend-
ency to wind speed using fixed 
incidence angle of 30°, low sea 
state conditions and minimum 
probability of detection of 95% 
(stars: low-resolution dataset, 
triangles: medium-resolution 
dataset and circles: high-resolu-
tion dataset)

Fig. 10  TerraSAR-X minimum 
ship size in dependency to 
incidence angle using fixed 
wind speed of 6 m/s, low sea 
state conditions and minimum 
probability of detection of 95% 
(stars: low-resolution dataset, 
triangles: medium-resolution 
dataset and circles: high-resolu-
tion dataset)
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5  Review of the simulation‑based 
detectability model

Due to its simplicity and capability to fulfil Near Real Time 
(NRT) requirements, the CFAR algorithm is commonly used 
in SAR ship detection. The ideology to have a detector with 
constant false alarm rate for a known distribution of the clut-
ter is here used for the implementation of simulation-based 
ship detectability model.

The practical implementation of the CFAR algorithm is 
composed by three nested image sub-regions named: target 
sub-window Tw ; guard sub-window Gw ; background sub-
window Bw [24]. The background window is assumed to be 
big enough to capture the underling statistical clutter distri-
bution, and small enough to preserve ergodicity. The guard 
window is used to avoid that the ship signature affects the 
signal of the background window.

If H0 represents the hypothesis that the cell under test 
contains only clutter and H1 represents the hypothesis that 
the cell under test contains a combination of clutter and tar-
get, the probability of false alarm Pfa for a given detection 
threshold Th is expressed by:

and the probability of detection Pd is calculated by:

Therefore, a model capable to simulate the expected 
probability of detection needs to be able to model the back-
ground distribution FA(x) and the target distribution PD(x) , 
where x represents the random variable of the observation. 
The simulation model used in this analysis is based on 
the settings and assumptions of the established procedure 
proposed by Vachon et al. for diverse C-band SAR satel-
lites [25–28], where the sea clutter is modelled using the 
K-distribution and the target is assumed to follow the Swer-
ling Type III fluctuation model [29]. Inspired by the initial 
results obtained for X-band SAR satellite images in [30, 31], 
a simulation model based on a larger dataset, i.e. the one 
described in Sect. 2, is briefly described in the next sections.

5.1  The background distribution

The ability of the K-distribution to model the underling 
imaging process of sea surface images are explored in 
many works [8–10]. The K-distribution is illustrated in Eq. 5 
below:

(3)Pfa = ∫
∞

Th

P(x|H0) dx = ∫
∞

Th

FA(x) dx

(4)Pd = ∫
∞

Th

P(x|H1) dx = ∫
∞

Th

PD(x) dx.

where L is the number of statistically independent looks, 
G(⋅) is the Gamma function, and K(⋅) is the modified Bessel 
function of second kind, (�, �) are respectively the mean 
value and shape factor of the distribution.

The shape parameter � is associated with the skewness 
of the K-distribution, and is connected with the sea state 
[14]. In [32] the shape parameter variation is analysed to 
different X-band image resolutions and incidence angles, 
showing that it provides satisfactory fitting for images with 
VV polarizations in a large range of incidence angles. Draw-
ing on previous observations [32] and the final setting of 
the ship detectability model for C-band SAR images [25], 
the shape parameter � has been set to 4 and 20 during our 
simulation runs, to take into account for moderate and low 
sea state conditions present in the real dataset. Those val-
ues of the shape parameter are used independently of the 
image resolution class. The � value corresponds to the mean 
value of the ocean backscatter captured by the background 
window. To simulate the mean value of the sea’s surface in 
X-band SAR images at varying wind speeds, the empirical 
Geophysical Model Function (GMF) XMOD2, as described 
in [13], has been used. The XMOD2 function is a non-linear 
GMF which is able to depict the difference in the sea surface 
radar backscatter in upwind and crosswind conditions [13], 
in contrast to the previous linear model XMOD, that has 
been used for the first results on ship detectability in [31]. 
In brief, XMOD2 is used to provide an estimation of the � 
parameter of the K-distribution by varying wind speed U10 , 
wind direction � and SAR incidence angle �:

Please note that although the XMOD2 function has been 
trained with VV polarisation data, it is able to estimate accu-
rately wind speed also for HH polarisation data using the 
Polarisation Ratio (PR) function [13].

Once the background distribution is defined, Th is deter-
mined from Eqs. 3 and 5, for a given sea state, i.e. here 
expressed by the estimated parameter �̃� which assumes the 
values 4 and 20, and wind condition, i.e. here expressed by 
the estimated parameter �̃� . In other words, Th can be seen as 
the critical value of sigma nought �c that would be detected 
as target for a given probability of false alarm Pfa . Taken 
into account that the background distribution is modelled 
as K-distribution in Eq. 5, it is clear that:

To invert such relationship the approach proposed in 
[25] is implemented by finding �c numerically and setting a 
Pfa = 0.5% . Finally, taking into the critical value of sigma 
nought �c and the SAR spatial resolution characteristics in 

(5)P(x) =
2

x

(
L�x

�

)L+�∕2
1

G(L)G(�)
K�−L

[
2

(
L�x

�

)1∕2
]

(6)�̃� = XMOD2(U10, 𝜃,𝜙).

(7)𝜎c = f (Pfa, �̃�, �̃�, L).
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ground range �r and azimuth �a , the minimum point target 
radar cross section that triggers the detection is [25]:

5.2  The target distribution

The ship signal in a SAR image is composed by the con-
tribution of many scatter centres and different scattering 
processes and interactions [33]. The Swerling Type III fluc-
tuation model is employed here to describe the statistical 
properties of the RCS of the three classes of ship size (see 
Table 2). The Swerling type III probability density function 
(pdf) belongs to the �2-distribution which is able to capture 
statistically the fluctuations of the reflected signal when the 
target can be considered as a superposition of a dominant 
isotropic reflector and many smaller ones [29]. The pdf of 
the RCS � of such target is given in Eq. 9:

where �r is a free-parameter that stands for sigma-reference, 
and represents the arithmetic mean of all values of RCS 
of the reflecting target. Making use of the large database 
of ships’ radar signatures at hand, the �r can be empiri-
cally derived for each of the three ship size groups: small, 
medium, and large. For a given confidence � , the sigma-
reference �r is calculated by means of the quantile function 
which is provided in the Eq. 10

where �ship and �ship are the arithmetic average and standard 
deviation of the respective ships’ mean distribution. The 
choice of using the quantile function to obtain �r is justified 
by the fact that in each ship’s size class, i.e. small, medium, 
and large, different types of ships with different geometry 
of observation are included. Figure 11a–i show the ships’ 
mean distributions for each case considered with the relative 
�ship and �ship . For reference the Gaussian pdf curves (dotted 
blue curve) are plotted over the histograms. As expected, the 
mean value �ship and standard deviation �ship increase going 
from small (left column in Fig. 11) to large (right column in 
Fig. 11) size. In general, they also decrease going from high 
(top row in Fig. 11) to low (bottom row in Fig. 11) class, 
with the exception of the large size where �ship is almost con-
stant. This is probably due to the limited amount of samples 
present for medium and low-resolution dataset.

Setting � = 0.8 for the nine resolution–size combina-
tions the obtained �r according to Eq. 10 are summarized 
in Table 3.

(8)RCSmin = �r�a�c.

(9)p(�) =
4�

�2
r

e
−

2�

�r

(10)�r = �ship −
√
2 × erf−1(2� − 1) × (�ship)

6  Visualisation of simulation‑based 
detectability model

Similar to the data-driven ship detectability model results 
shown in Sect. 4, the simulation-based dependency from 
the four parameters ship size, incidence angle, wind speed 
and significant wave height, can be visualized in form of 2D 
detectability charts. Taking into account that there are three 
classes of image resolution, three classes of ship size (see 
Fig. 1 for details) and two sea state conditions are modelled 
(low and moderate), 18 charts showing the probability of 
detection with varying incidence angle and wind speed are 
generated. The probability of detection is calculated using 
Eqs. 4 and 9, for: a given �r in Table 3, sensor and XMOD2 
setup parameters summarized in Table 4 and the result of 
Eq. 8 as threshold.

The following Figs. 12, 13, 14, 15, 16 and 17 display the 
simulation-based detectability results. As can be seen, the 
model is capable of taking into account the different sea 
state conditions, although the difference is very limited. On 
the other hand, the influence of the ship size on the results 
obtained for the resolution class high (Figs. 12, 13), seems 
to be not very pronounced. Also the prediction on the prob-
ability of detection of small ship (Figs. 12, 13 left panel) 
seems a bit too optimistic and in practise does not reflect 
what we have observed in real data. In fact, the slope from 
the possible best favourable condition (low wind − high inci-
dence angle) and the worst one (high wind − low incidence 
angle) is quite flat with the impact of the nonlinearity of the 
XMOD2 almost unperceivable. Indeed, for the class medium 
and low, the slope rapidly decreases and the nonlinearity of 
the wind speed is quite present.

7  Confrontation of data‑driven 
and simulation‑based approach

All datasets were found sufficiently large to qualify for clas-
sifier training. The obtained high-, medium- and low-resolu-
tion data-driven models are thus confronted with the respec-
tive state-of-the-art simulation-based models. As sea state 
information is only available in the high-resolution data-
set, in this section only high-resolution data-driven model 
results for low and moderate sea state are confronted with 
the respective simulation-based results. The results of the 
medium and low-resolution models are compared without 
taking sea state information into account.

In general, the well known impacts of the four inves-
tigated parameters, i.e. ship size, incidence angle, wind 
speed and sea state, on the detectability of ships is accu-
rately represented in the data-driven model and qualita-
tively represented in the simulation-based model results:
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• The larger the ship, the higher the probability of detec-
tion

• The higher the incidence angle, the higher the prob-
ability of detection

• The lower the wind speed, the higher the probability of 
detection

• The lower the sea state, the higher the probability of 
detection

These outcomes are not new, but hereby they validity 
is quantitatively proven. Further, the following expected 
correlations are also quantified:

• The higher the image resolution, the higher the probability 
of detection

• On HH-polarised images the probability of detection is 
higher than for VV-polarised images

Fig. 11  Measured ships’ mean distribution extracted for each class of image resolution and ship size, see Tables 1 and 2

Table 3  Ship reference values �
r
 (dB) obtained for the detections in 

TerraSAR-X images

Class Size

Small Medium Large

High 0.14 0.49 0.70
Medium 0.09 0.47 0.79
Low 0.06 0.41 0.78

Table 4  Sensor and XMOD2 model simulation setup parameters

Resolution 
class

�
r
 (m) �

a
 (m) � range (°) � (upwind) � (crosswind)

High 6 6 20–45 180° 90°
Medium 22 22 20–45 180° 90°
Low 35 37 20–45 180° 90°
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While the models for the three resolutions show signifi-
cant differences in the probability of detection, the two mod-
els with different polarisation are similar. This means, HH 

polarisation is only slightly better suited for ship detection 
than VV polarisation.

In contrast to the simulation-based model results the impact 
of incidence angle to the detectability of ships is almost not 

Fig. 12  Simulation results for the image resolution class high and low sea state condition. From left to right small, medium and large vessels

Fig. 13  Simulation results for the image resolution class high and moderate sea state condition. From left to right small, medium and large ves-
sels

Fig. 14  Simulation results for the image resolution class medium and low sea state condition. From left to right small, medium and large vessels
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Fig. 15  Simulation results for the image resolution class medium and moderate sea state condition. From left to right small, medium and large 
vessels

Fig. 16  Simulation results for the image resolution class low and low sea state condition. From left to right small, medium and large vessels

Fig. 17  Simulation results for the image resolution class low and moderate sea state condition. From left to right small, medium and large ves-
sels
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present for medium- and low-resolution data. Only outside the 
full performance incidence angle range a significant depend-
ency to the detectability was observed during experiments. 
However, as TerraSAR-X images are only exceptionally 
acquired outside the full performance range, this is not further 
considered in this paper.

Further the simulation-based models are more optimistic 
about the detectability of ships than the data-driven models. 
The high-resolution models agree only under the extreme con-
ditions given by the couples (high wind speed, low incidence 
angle) and (low wind speed, high incidence angle) under low 
sea state conditions. The agreement between the medium and 
low-resolution models is even worse; here only one extreme 
condition couple (high wind speed, low incidence angle) 
coincide. For the other extreme condition couples (low wind, 
high incidence angle), the simulation-based model predicts a 
certainty of detection even for small ship size. This means in 
reality the probability to detect ships is less than the simula-
tion predicts.

Discrepancies between the data-driven and simulation-
based approach may occur due to several reasons. Main dif-
ference is that the basis of the data-driven approach is a lin-
ear model, while the basis of the simulation-based model is 
non-linear. As the data-driven approach is based on classifier 
training, the model can be easily converted to any non-linear 
basis by replacing the underlying classification method. But 
an increasing model complexity could also result in an over-
fitted model.

The data-driven model actually completely ignores false 
alarms in the calculation of the probability of detection. Theo-
retically, calling the model output then “probability of detec-
tion” is wrong, but the applied probability of false alarm was 
smaller than PFA < 10−13 during the generation of the training 
dataset. This means false alarms can be ignored and naming 
is kept.

8  Conclusion

This paper presents a full data-driven ship detectability 
model for ship signatures on TerraSAR-X SAR images. 
The model is based on a large database of verified ship 
positions and the binary training of a L2-regularized logis-
tic regression classifier. The classifier provides probability 
of detection by calculating probabilities of class affiliation 
for ship samples labelled either with “detected” or “non-
detected”. Using such approach, it was possible for the 
first time to investigate the influence of sensor acquisition 
parameters and metocean conditions on the detectability 
of ships in SAR images not only from a qualitative point of 
view but also from a quantitative perspective. In addition, 
the proposed data-driven model is compared to results 
from a state-of-the-art simulation-based ship detectability 

model in SAR images. Indeed, both methods are capa-
ble of providing probability of detection maps at varying 
target’s, sensor’s and metocean conditions. Comparing 
the results of both methods is not straightforward and the 
models were found to only be in conformity for extreme 
characteristics of wind speed and incidence angle param-
eters. However, the newly presented data-driven model 
is expected to better reflect the reality. Future research 
should verify this statement by application of a different 
non-linear classification technique. Last but not least, the 
outcome of this work is an important achievement that 
could lead future improvements in NRT SAR ship detec-
tion service and represent a quantitative analysis of the 
performances which is very welcome from the end-user 
point of view.
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