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Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms 
occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct 
implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting 
individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), 
wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantita-
tively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the 
details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this 
review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial 
analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those 
distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored 
thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve 
regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are 
introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding 
of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
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3D morphological analysis for organelle 
in injured motor neurons

When cells encounter stress, the organelles respond dras-
tically and alter their shapes to maintain cellular homeo-
stasis. Mitochondria, which are particularly important in 
the nervous system for energy production, Ca2+ regulation, 
and maintenance of plasma membrane potential, have been 
studied extensively in neurological and nerve injury models 

(Knott et al. 2008a; Berman et al. 2009; Bilsland et al. 2010; 
Sheng and Cai 2012; Sleigh et al. 2019; Han et al. 2020; 
Licht-Mayer et al. 2020; Collier et al. 2023).

Mitochondrial dynamics, that undergo a continuous cycle 
of fission and fusion, maintain their own homeostasis, and 
regulate cellular homeostasis as well. Regulatory proteins 
are now well characterized and their ablation leads to neuro-
degenerative diseases (Giacomello et al. 2020; Cheng et al. 
2022). In particular, mitochondrial fission with dynamin-
related protein 1 (Drp1) is one of the representative factors 
for mitochondria to be transported effectively and accelerate 
nerve regeneration after injury (Kiryu-Seo et al. 2016; Pozo 
Devoto et al. 2022).

Sciatic nerve and hypoglossal nerve transection models are 
frequently used as regenerative models after injury (Nakagomi 
et al. 2003). Since the condition without isolated cells and cul-
tured cells is relatively close to in vivo situation, studying the 
response in this model might help explain some regenerative 
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mechanisms. However, the mitochondria within neuronal cell 
bodies display a rich distribution and possess innumerable 
tiny structures. These make their individual detection almost 
impossible due to the limited resolution of light microscopy 
(Fig. 1a). Each mitochondrion can be detected using trans-
mission electron microscopy (TEM), but it is still difficult to 
understand the whole structure and analyse it quantitatively 
(Fig. 1b). Then, Focused ion beam/scanning electron micros-
copy (FIB/SEM) is a powerful tool to solve this problem.

The FIB/SEM is a novel EM technique for obtaining vol-
ume EM images (Knott et al. 2008b; Merchán-Pérez et al. 
2009; Ohta et al. 2012; Narayan and Subramaniam 2015). 
In addition to FIB/SEM, serial block face-scanning elec-
tron microscopy (SBF-SEM) (Denk and Horstmann 2004; 
Wilke et al. 2013) and automated tape-collecting ultrami-
crotome SEM (ATUM-SEM) (Hayworth et al. 2014; Morgan 
et al. 2016) are used. Under these methods, the x, y, z-axis 
images can be obtained by acquiring tremendous number of 
serial EM images and stacking them (Fig. 2a). This makes 
it possible to know three-dimensional ultrastructure even 
for very tine organelle in cells (Fig. 2b). They possess dif-
ferent advantages depending on the process of creating the 
observing surfaces. One of the key advantages of FIB/SEM 
is that very small z-pitches (~ 10 nm) intervals are obtained 
by milling gallium ion beams, which is not possible with 
other methods that uses diamond knives. This allows the 
observation of small organelles which tend to be distributed 
close to each other and their membrane-contact sites.

3D ultrastructure of mitochondria in cell 
bodies

The FIB/SEM analysis revealed a high degree of morphologi-
cal variability of mitochondria in the soma, that is, length, 
width, and roundness (Fig. 3a) (Tamada et al. 2017). One 

of the unexpected findings in the soma after injury was that 
the mitochondrial sizes did not change drastically (Fig. 3b), 
although it has been well established that mitochondrial fis-
sion is accelerated after injury and transported into the axon 

Fig. 1   The difficulty in observa-
tions of mitochondria in cell 
bodies with conditional micros-
copy a The immunohistochem-
istry with cytochrome c (CytC) 
for the neuronal cell bodies in 
mouse hypoglossal nucleus 
stained the whole cytoplasm 
and it was impossible to detect 
each mitochondrion because of 
their sizes and richness. bThe 
transmission electron micros-
copy showed each mitochon-
drion, but the whole structure 
couldn’t be understood. Scale 
bar a 10 µm; b 2 µm (Images 
from Tamada et al. (2017) J 
Comp Neurol)

Fig. 2   FIB/SEM images in soma a The representative x, y, z EM 
images could be obtained with serial images from FIB/SEM. b The 
three-dimensional ultrastructures of organelle in neurons could be 
understood with the FIB/SEM images. N: nucleus, ER: endoplasmic 
reticulum, G: Golgi body, M: Mitochondria, arrows: cell membrane 
Scale bar 5 µm
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tips to provide ATP sources for nerve regeneration (Cho 
et al. 2009; Wang and Schwarz 2009; Kiryu-Seo et al. 2010; 
Chamberlain and Sheng 2019). It is possible that the morpho-
logical response of mitochondria in axons is not necessarily 
the same as that in soma, because axonal mitochondria exist 
in unique environments and possess different properties than 
somatic mitochondria (Hollenbeck and Saxton 2005; Pathak 
et al. 2013). In addition, since the mitochondrial transport 
speed is not very fast and it is assumed to take several days 
to convey mitochondria from the soma to the distal axon part 
(Sheng 2017), mitochondrial fission regulation may occur not 
only in the soma but also in the distal axonal part.

As described above, mitochondria repeat fission and 
fusion for maintaining their homeostasis and cellular home-
ostasis. The regulating proteins have been explored well 
and dynamin-related protein 1 (Drp1) is one of the crucial 
proteins for fission (Ishihara et al. 2009; Kageyama et al. 
2011). The analysis of injury-induced Drp1 knockout (KO) 

mice with FIB/SEM demonstrated alternation processes 
from healthy shapes to degenerative structures (Tamada 
et al. 2017). In a previous study, the mitochondrial fission 
protein Drp1 was found to be crucial for nerve regenera-
tion, and giant mitochondria were detected after injury in 
the same Drp1 KO mouse (Kiryu-Seo et al. 2016). How-
ever, the question of how these structures were formed still 
remains unsolved. The FIB/SEM analysis in Drp1 KO mice 
showed spherical mitochondria together with single or mul-
tiple long and thin processes at one week after injury (Supp 
Fig. a) (Tamada et al. 2017). In some cases, one or more 
spherical mitochondria are connected by tubular mitochon-
dria. Furthermore, the tubular processes of mitochondria 
disappeared, showing an extremely large round shape, two 
weeks after injury (Supp Fig. b). This indicated that the 
mitochondria did not merely swell uniformly, but initially 
formed long tubules by connecting nearby mitochondria and 
subsequently enlarged to form a balloon structure. Based on 

Fig. 3   FIB/SEM analysis of mitochondria in soma and AIS a Each 
mitochondrion in soma of healthy motor neurons was reconstructed 
in different colours. Tremendous number of mitochondria showing 
round and tubular shapes were distributed. b Reconstructed mito-
chondria in soma of motor neuron at one week after injury showed 
almost the same features as that in healthy ones. c The AIS in healthy 
motor neurons didn’t show any mitochondria distribution, although 
the cell bodies, the axon hillock and the myelinated region did. (blue: 

cell membrane including AIS region, green: myelin sheath) d At one 
week after injury, mitochondria distribution could be observed even 
in the AIS. Their shapes and sizes of mitochondria here varied as the 
same as that distributed in the soma, the axon hillock, and the myeli-
nated region. (red: cell membrane including AIS region, green: mye-
lin sheath) Scale bar 5 µm [Images from Tamada et al. (2017) J Comp 
Neurol and Tamada et al. (2021) J Comp Neurol]
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quantitative analysis, their volume was 10-fold more than 
their volume in non-injured motor neurons (3.0 × 108 nm3 in 
non-injured vs 1.0 × 109 nm3 in KO mice). This means that 
under normal conditions, less than 10% of the cytoplasmic 
volume was occupied by mitochondria, but 50% was occu-
pied at two weeks after injury in the Drp1 inhibited model.

With FIB/SEM, details of the inside of the mitochondria 
and cristae structures can also be observed. These extremely 
large spheroid mitochondria were finally degraded with the 
collapse of the interior and mitophagy-like processes accom-
panied by lysosomes (Supp Fig. c, d) (Tamada et al. 2017). 
The degradation of mitochondria from the inside indicated 
that not only the inhibition of mitochondrial transport to 
axonal tips but also the collapse of mitochondrial quality 
control occurred in this Drp1 KO injury model. Usually, 
mitochondrial homeostasis is maintained by the clearance 
of damaged mitochondria. In this process, Drp1-dependent 
fragmentation is crucial (Giacomello et al. 2020). In the 
Drp1 KO injury model, natural mitophagy accompanied by 
healthy fission did not occur, and the whole degenerated 
spherical mitochondria were wrapped with isolation mem-
branes (Tamada et al. 2017).

FIB/SEM analysis provides information about mitochon-
drial membrane dynamics, which are linked to several com-
mon diseases (Giacomello et al. 2020). These results would 
also accelerate the understanding of mitochondrial pathol-
ogy and explore their therapies.

3D ultrastructure of mitochondria in AIS

The axon initial segment (AIS), between the end of the axon 
hillock and the beginning of the first myelin sheath, is an 
anatomically and physiologically crucial point when mito-
chondria are transported from somata to axons. Since AIS 
is the axonal domain responsible for action potential initia-
tion, internal structures and membrane circumstances are 
characteristic (Nelson and Jenkins 2017; Leterrier 2018). 
The distribution of mitochondria in AIS is obscure compared 
to that in axons (Zhang et al 2010; Ohno et al 2011; Cheng 

et al 2022). This may be because it is extremely difficult to 
access the AIS, which are small and short regions embedded 
in neuronal tissues, rendering it impossible to isolate them 
clearly. Next, we demonstrated the mitochondrial distribu-
tion in AIS using FIB/SEM.

Surprisingly, normal AIS possessed almost no mitochon-
drial distribution, although a large number of mitochondria 
could be detected in the cell bodies, axon hillock, and myeli-
nated axons (Fig. 3c, Fig, 4) (Tamada et al. 2021). At pre-
sent, although it is unclear why mitochondria are not distrib-
uted only in the AIS region, we speculate two possibilities: 
(1) the transport velocity along the AIS is so rapid that they 
cannot be captured, (2) only the motile mitochondria are 
distributed in the AIS, although some mitochondria move 
persistently in axons and some are anchored or stationary 
(Morris and Hollenbeck 1993; Pilling et al. 2006; Ohno et al. 
2011).

Frequently, the AIS and the nodes of Ranvier are 
described as similar structures because they share a com-
mon ion channel and a common cytoskeleton comprised of 
βIV spectrin and ankyrin G (AnkG) (Kordeli et al. 1995; 
Berghs et al. 2000; Chang and Rasband 2013; Zollinger et al. 
2015). According to some studies, there is a variation in the 
distribution of mitochondria within the node of Ranvier. For 
example, some nodes do not possess mitochondria or some 
have a few mitochondria (Berthold et al. 1993; Fabricius 
et al. 1993; Edgar et al. 2008; Ohno et al. 2011; Perkins & 
Ellisman 2011). Even in the case of mitochondria existences, 
their size indicated motile mitochondria with short shapes, 
although the stationary mitochondria with long shapes 
were not distributed (Ohno et al. 2011). These results are 
consistent with the hypothesis that mitochondria does not 
accumulate in the normal AIS because the stationary mito-
chondria are not likely to exist. Although the results of nodes 
of Ranvier tend to vary depending on the areas that come 
across due to their short lengths, the continuous observa-
tion of whole AIS structures by FIB/SEM could show more 
obvious trends.

Meanwhile, after axon injury, a tremendous number 
and varying length of mitochondria could be observed 

Fig. 4   The details of mitochon-
dria distribution in the healthy 
AIS. In addition to the AIS 
shown in Fig. 3c, the other AIS 
and long myelinated areas are 
shown. Again, no mitochon-
dria were observed in the AIS 
region. Scale bar 5 µm
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even in the AIS, myelinated area, axon hillock, and somata 
(Figs. 3d,  5c, d) (Tamada et al. 2021). At the same time, 
microglia adhesion around AIS was also explored in the 
same adhesion manner as that around cell bodies (Fig. 5a, b). 
These results indicated that the intracellular and extracellular 
conditions of AIS and somata are likely to become homog-
enous. However, mitochondrial influx in AIS could also be 
detected when the crush mild injury model was adopted to 
maintain AnkG expression (Tamada et al. 2021), which is 
the main scaffolding protein for AIS assembly and mainte-
nance (Buffington and Rasband 2011). The finding indicates 
that this phenomenon of mitochondria is not dependent on 
cytoskeletal depletion.

Thus, the interaction between microglia and mitochon-
drial localisation could be considered. Although microglial 
contacts to the AIS have been reported during development 
and for maintaining axon conditions such as in multiple 
sclerosis, traumatic brain injury, and acute neuroinflam-
matory conditions (Baalman et al. 2015; Clark et al. 2016; 
Benusa et al. 2017; Benusa and Lafrenaye 2020; Gallo 
et al. 2022), the functional details and consistent under-
standing have not yet been explored. Benusa et al. (2017) 
suggested that the expression of microglia around the AIS 

increases the intracellular Ca2+ concentration in the AIS 
and results in the disruption of AnkG expression second-
ary to calpain, which is regulated by Ca2+ (Schafer et al. 
2009; Benned-Jensen et al. 2016). Mitochondria possess 
a Ca2+ regulatory system, and the mitochondrial transport 
is attenuated in the axon when cytosolic Ca2+ levels are 
elevated (Macaskill et al. 2009; Wang and Schwarz 2009; 
Zhang et al. 2010; Ohno et al. 2011; Saxton and Hollen-
beck 2012; Kontou et al. 2021; Kole et al. 2022). With all 
things considered, some regulatory systems coordinated 
with microglia, mitochondria, and Ca2+ might occur in 
AIS in this injury model. Although the details of the func-
tion of microglia in AIS have not yet been explored, the 
microglial attachment does not seem to have a strong and 
direct influence on AIS collapse with AnkG disruption 
(Clark et al. 2016; Benusa et al. 2017). Instead, they might 
mildly maintain AIS circumstances.

Recently, AIS-related mechanisms for nerve regenera-
tion and neurodegenerative disorders have been studied 
(Kiryu-Seo et al. 2022; Teliska et al. 2022; Tjiang and 
Zempel 2022). Parallel analysis with FIB/SEM for intra- 
and extracellular milieu in three dimensions can provide 
a new comprehensive research target and lead to a new 
therapy.

Fig. 5:   3D reconstructed images 
of microglia around AIS a 3D 
reconstructed images show 
the details of the surrounding 
microglia. (Red: neurons with 
AIS, green: myelin sheath, 
yellow: microglia, blue and 
orange: the other neurons which 
the same microglia attaches). b 
Representative one-slice SEM 
images for Fig. 5a showing one 
AIS (red), two neurons (green 
and pink), and one microglia 
(yellow) attached to them. There 
are no other structures between 
microglia and other elements, 
indicating that microglia make 
direct membrane contact with 
AIS and neuronal cell bodies. 
c and d Representative serial 
SEM images around AIS of 
Fig. 5a, b. AIS is surrounded in 
red line and each colours in the 
AIS are showing mitochondria. 
Scale bar a 5 µm (Images from 
Tamada et al. (2021) J Comp 
Neurol)
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Future issues of organelle analysis with FIB/
SEM

This review focuses on mitochondrial structures. Further-
more, the endoplasmic reticulum (ER) is also an impor-
tant factor in regulating cell homeostasis (Westrate et al. 
2015; Hetz and Saxena 2017; Marciniak et al. 2022) and 
the membrane attachment between mitochondria and 
ER (mitochondria-associated membrane: MAM) (Korn-
mann et al. 2009; Csordás et al. 2010; Friedman et al. 
2011; Prinz et al. 2020) is also a hot topic in neurologi-
cal diseases (Hedskog et al. 2013; Paillusson et al. 2016; 
Watanabe et  al. 2016; Area-Gomez et  al. 2018; Kim 
et al. 2022). Apart from MAM structures, mitochondria 
possess a variety of signalling pathways in cells, such 
as mitochondria-derived vesicles (MDV) (Sugiura et al. 
2014; Matheoud et al. 2016; König et al. 2021). For these 
tiny structures, FIB/SEM analysis is required. FIB/SEM 
allows us to approach these structures in mammalian tis-
sues, although these studies have been well-explored in 
yeast and Drosophila so far. Recently, it was reported that 
the fission point, where Drp1 also accumulates, determines 
the mitochondrial fate and functions after fission (Kleele 
et al. 2021; Ul Fatima and Ananthanarayanan 2023). It is 
also possible to determine the details of the location and 
attachment manner of the MAM structure in mitochondria 
with FIB/SEM. As such, the FIB/SEM analysis contrib-
utes to providing novel findings and exploring new study 
fields to understand the physiological meanings by show-
ing organelle structures and interactions with surrounding 
elements at the ultrastructural level, which has never been 
seen before.

However, there are some technical challenges to FIB/
SEM analysis. First, to perform integral analysis spatially 
and temporally, some attempts for new volume correlative 
light-electron microscopy (CLEM) have been challenged 
(Hayashi et al. 2023) with improved accuracy, throughput, 
and accessibility. These include new genetically labelling 
systems such as GFP and APEX (a soybean ascorbate per-
oxidase) (Martell et al. 2012; Okayama et al. 2014; Lam 
et al. 2015; Thomas et al. 2019), with arrangements of 
natural fiducial marks (Maclachlan et al. 2018) or artifi-
cial ones (Maco et al. 2014), developing the workflow of 
image acquisition by devices and application modifica-
tion (Loginov et al 2022), and so on. Although the CLEM 
itself is the classic attempt to observe the same structures 
detected with light microscopy and electron microscopy, 
which could integrate physiological and ultrastructural 
data (Armer et al. 2009; Lidke and Lidke 2012; Maco 
et al. 2014; Blazquez-Llorca et al. 2015; Karreman et al 
2016), the state-of-the-art CLEM is used to visualise the 
nanoscale relationship of specific proteins in the context 

of the global cellular ultrastructure (Hoffman et al. 2020), 
to link live-imaging data to high-resolution ultrastructural 
detail in three dimensions (Loginov et al. 2022) along with 
the development of other advanced technologies.

Second, sample preparation is also a topic to be discussed 
(Korogod et al. 2015; Tamada et al. 2020). The simulation 
model (Tønnesen et al. 2014) and computation geometry 
analysis (Kashiwagi et al. 2019) of spines with actual values 
of morphological data have been performed well, accom-
panied by the development of super-resolution microscopy. 
A variety of spines also affect their functional properties 
(Ofer et al. 2021) and consequently affect brain functions 
such as synaptic plasticity, learning, and memory. Therefore, 
more precise observations of native structures are required to 
obtain correct interpretations, and FIB/SEM analysis can be 
a suitable strategy for this analysis. However, since long ago, 
EM samples have been called into question because strong 
aldehydes are used for sample preparation that might con-
vert native structures (Karlsson and Schultz 1965). There-
fore, high-pressure cryo-fixation without aldehyde fixatives, 
which has been known also as the freeze-substitution (van 
Harreveld et al 1965), was performed in mouse brain tissues 
to maintain a more native structure (Tamada et al 2020). 
In the fixation, through the low-temperature embedding 
process after freezing, the sample in epoxy resin can be 
obtained as normal EM sample. The study suggested that 
some tiny structures, such as spine necks, tended to be swol-
len by conditional chemical fixation (Tamada et al. 2020). 
Because spine shape critically depends on the arrangement 
of actin, which is easily influenced by exposure to aldehydes 
(Honkura et al. 2008), this might contribute to the differ-
ences between cryo- and chemical-fixed tissue. The value of 
FIB/SEM required in the future will depend on the extent to 
which it reveals the native ultrastructure and whether these 
cells are representative of the physiological state (Hoffman 
et al. 2020). Furthermore, also for the study field of orga-
nelle, the influence of sample preparation might be one of 
the discussion points (Möbius et al. 2010). In this situation, 
more accurate methods, such as cryo-FIB/SEM (Schertel 
et al. 2013; Zachs et al. 2020), may be required to remove 
any possible structural changes. Because the present cryo-
fixation has some limits technically, including difficulties for 
obtaining high-quality samples constantly which is strongly 
depending on quickness of preparation (Ohno et al. 2010) 
and limitations of effective sample depth, more technical 
improvement is required to obtain volume FIB/SEM images 
like the whole brain.

Third, the development of an auto-segmentation system 
using image processing and deep learning (DL) is a note-
worthy field of study. The image segmentation is required 
to reconstruct the three-dimensional images from serial EM 
images. At present, the manual segmentation is broadly 
performed and is a very time- and labour-consuming task. 
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Thus, the automated segmentation method is in high demand 
accompanied by an improved ability to acquire larger data-
sets by FIB/SEM, which exceeds the capacity of manual 
annotation. The main strategy for auto-segmentation is a 
three-dimensional convolutional neural network (CNN) 
architecture based on a three-dimensional U-Net (Çiçek 
et al. 2016; Falk et al. 2019). Some developing tools have 
been released by an open source, such as a repository pro-
viding large quantities of reliable data, codes, and trained 
models (Heinrich et al. 2021), a new pipeline to train a CNN 
effectively (Gallusser et al. 2023), improved DL platforms 
(Suga et al. 2021), and so on. However, more challenges 
remain in an ongoing effort to reduce human labour for the 
generation of training data, proofreading predictions, and 
reducing computation costs. Because innovation in this 
field has largely been driven by connectomics focusing on 
segmentation of cell and synaptic junctions (Kreshuk et al. 
2011; Dorkenwald et al. 2017; Januszewski et al. 2018), fur-
ther studies, especially on organelles, are awaited hereafter.

Conclusion

With the arrival of new EM methods, we were able to gather 
three-dimensional ultrastructures even in tissue samples. 
This could accelerate a more direct approach for understand-
ing biological questions. In particular, the ability of FIB/
SEM to image cells and tissues at several-nanometre resolu-
tion over volumes as large as several tens of micrometers is 
an ideal tool. By solving some technical issues and combin-
ing several microscopic technologies, novel findings can be 
understood in the future.
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