Skip to main content

Advertisement

Log in

Supplementation of fenugreek with choline–docosahexaenoic acid attenuates menopause induced memory loss, BDNF and dendritic arborization in ovariectomized rats

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Cognitive impairment due to natural or surgical menopause is always associated with estrogen deficiency leading to reduced brain-derived neurotrophic factor (BDNF). Reduced BDNF levels in menopause affect neuronal maturation, survival, axonal and dendritic arborization and the maintenance of dendritic spine density. Conventional long-term estrogen replacement therapy reported causing the risk of venous thromboembolism and breast cancer. To overcome these undesirable effects, phytoestrogens have been used in menopause-induced condition without the risk of side effects. Therefore, the aim of the present study was to investigate the effect of dietary supplementation of fenugreek seed extract (FG) either alone or in combination with choline–DHA on BDNF and dendritic arborization of pyramidal neurons in CA1 and CA3 regions of the hippocampus in ovariectomized rats. Female Wistar rats of 9–10 months old were divided into six groups as normal control (NC); ovariectomy (OVX); OVX + FG; OVX + choline–DHA; OVX + FG + choline–DHA; and OVX + estradiol. All the groups, except NC, were ovariectomized. After 2 weeks of ovariectomy, dietary supplementation was initiated for a period of 30 days. After supplementation, behavioral studies, BDNF levels and dendritic arborization were estimated. Ovariectomized (OVX) rats showed reduced BDNF levels, dendritic branching points and dendritic intersections of pyramidal neurons in CA1 and CA3 regions of the hippocampus. OVX rats supplemented with FG with choline–DHA showed significantly improved BDNF levels, dendritic branching points and dendritic intersections. These results are demonstrating that FG with choline–DHA supplementation can be an alternative for estrogen replacement therapy to modulate menopause-induced learning and memory deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmadiani A, Javan M, Semnanian S, Barat E, Kamalinejad M (2001) Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J Ethnopharmacol 75:283–286

    CAS  PubMed  Google Scholar 

  • Ahmed HH, Estefan SF, Mohamd EM, Ael-R F, Salah RS (2012) Does melatonin ameliorate neurological changes associated with Alzheimer’s disease in ovariectomized rat model? Indian J Clin Biochem 28(4):381–389

    PubMed  PubMed Central  Google Scholar 

  • Anjaneyulu K, Rai KS, Rajesh T, Nagamma T, Bhat KMR (2018) Therapeutic efficacy of fenugreek extract or/and choline with docosahexaenoic acid in attenuating learning and memory deficits in ovariectomized rats. JKIMSU 7(2):10–20

    CAS  Google Scholar 

  • Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22:383–388

    CAS  PubMed  Google Scholar 

  • Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fattyacids in a parkinsonian animal model. Prog Neuropsycho-pharmacol Biol Psychiatry 33(8):1401–1408

    CAS  Google Scholar 

  • Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH, Manson JE, Stefanick ML, Ockene J, Sarto GE, Johnson KC, Wactawski-Wende J, Ravdin PM, Schenken R, Hendrix SL, Rajkovic A, Rohan TE, Yasmeen S, Prentice RL, Investigators WHI (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304(15):1684–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Churchwell JC, Morris AM, Musso ND, Kesner RP (2010) Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem 93:415–421

    PubMed  Google Scholar 

  • Cry M, Ghribi O, Di Paolo T (2000) Regional and selective effects of estradiol and progesterone on NMDA and AMPA receptors in the rat brain. J Neuroendocrinol 12:445–452

    Google Scholar 

  • Day M, Good M (2005) Ovariectomy-induced disruption of long-term synaptic depression in the hippocampal CA1 region in vivo is attenuated with chronic estrogen replacement. Neurobiol Learn Mem 83:13–21

    CAS  PubMed  Google Scholar 

  • de Waal H, Stam C, Lansberger M, Wieggers R, Kamphuis P, Scheltens P, Maestu F, van Straaten ECW (2014) The effect of Souvenaid on functional brain network organization in patients with mild Alzheimer’s disease: a randomized controlled study. PLoS ONE 9(1):e86558

    PubMed  PubMed Central  Google Scholar 

  • Driscoll I, Martin B, An Y, Maudsley S, Ferrucci L, Mattson MP, Resnick SM (2012) Plasma BDNF is associated with age-related white matter atrophy but not with cognitive function in older, nondemented adults. PLoS ONE 7(4):e35217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan AM, Phipps B, Kurzer MS (2003) Phyto-oestrogens, best practice and research. J Clin Endocrinol Metab 17(2):253–271

    CAS  Google Scholar 

  • Fader AJ, Johnson PE, Dohanich GP (1999) Estrogen improves working but not reference memory and prevents amnestic effects of scopolamine of a radial-arm maze. Pharmacol Biochem Behav 62:711–717

    CAS  PubMed  Google Scholar 

  • File SE, Hartley DE, Alom N, Rattray M (2003) Soya phytoestrogens change cortical and hippocampal expression of BDNF mRNA in male rats. Neurosci Lett 338(2):135–138

    CAS  PubMed  Google Scholar 

  • Gaur V, Bodhankar SL, Mohan V, Thakurdesai PA (2013) Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson’s disease. Pharm Biol 51(5):550–557

    CAS  PubMed  Google Scholar 

  • Gazzaley AH, Weiland NG, McEwen BS, Morrison JH (1996) Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16:6830–6838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genazzani AR, Pluchino N, Luisi S, Luisi M (2007) Estrogen, cognition and female ageing. Hum Reprod Update 13(2):175–187

    CAS  PubMed  Google Scholar 

  • Gibbs R (1999) Treatment with estrogen and progesterone affects relative levels of brain derived neurotrophic factor mRNA and protein in different regions of the adult brain. Brain Res 844:20–27

    CAS  PubMed  Google Scholar 

  • Gibbs RB, Johnson DA (2008) Sex-specific effects of gonadectomy and hormone treatment on acquisition of a 12-arm radial maze task by Sprague Dawley rats. Endocrinology 149(6):3176–3183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green PS, Yang SH, Nilsson KR, Kumar AS, Covey DF, Simpkins JW (2001) The nonfeminizing enantiomer of 17beta-estradiol exerts protective effects in neuronal cultures and a rat model of cerebral ischemia. Endocrinology 142:400–406

    CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez ME, Serrano-Garcia C, Antonio Vazquez-Roque R, Diaz A, Monroy E, Rodriguez-Moreno A, Floran B, Flores G (2016) Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse 70:206–217

    Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    CAS  PubMed  Google Scholar 

  • Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5:1177–1184

    CAS  PubMed  Google Scholar 

  • Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostag Leukot Essent Fatty Acids 70:4361–4372

    Google Scholar 

  • Huang YH, Xin XY, Chen YQ (2004) Effects of genistein and 17β estradiol on the spatial learning and memory in ovariecomized rats. J Fourth Mil Med Univ 25(1):46–49

    CAS  Google Scholar 

  • Hughes I, Woods HF (2003) Phytoestrogens and Health. Food Stand Agency 17–133:237–294

    Google Scholar 

  • Islam F, Sparkes C, Roodenrys S, Astheimer L (2008) Short-term changes in endogenous estrogen levels and consumption of soy isoflavones affect working and verbal memory in young adult females. Nutr Neurosci 11(6):251–262

    CAS  PubMed  Google Scholar 

  • Jezierski MK, Sohrabji F (2000) Region- and peptide-specific regulation of the neurotrophins by estrogen. Mol Brain Res 85(1–2):77–84

    CAS  PubMed  Google Scholar 

  • Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoicacid promotes neurogenesis in vitro and in vivo. Neuroscience 139(3):991–997

    CAS  PubMed  Google Scholar 

  • Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063

    CAS  PubMed  Google Scholar 

  • Li W, Liu YH (2009) Effects of phytoestrogen genistein on genioglossus function and oestrogen receptors expression in ovariectomized rats. Arch Oral Biol 54:1029–1034

    CAS  PubMed  Google Scholar 

  • Luine VN (2008) Sex steroids and cognitive function. J Neuroendocrinol 20:866–872

    CAS  PubMed  Google Scholar 

  • Luine VN, Frankfurt M (2012) Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 33(4):388–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luine V, Frankfurt M (2013) Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 239:34–45

    CAS  PubMed  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    CAS  PubMed  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    CAS  PubMed  Google Scholar 

  • Mukai H, Tsurugizawa T, Murakami G, Kominami S, Ishii H, Ogiue-Ikeda M, Takata N, Tanabe N, Furukawa A, Hojo Y, Ooishi Y, Morrison JH, Janssen WG, Rose JA, Chambon P, Kato S, Izumi S, Yamazaki T, Kimoto T, Kawato S (2007) Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons. J Neurochem 100:950–967

    CAS  PubMed  Google Scholar 

  • Nagamma T, Anjaneyulu K, Nayak CD, Kamath SU, Udupa EGP, Nayak Y (2019) Dose-dependent effect of fenugreek seed extract on biochemical and hematological parameters in high fat diet fed rats. J Taibah Univ Med Sci 14(4):383–389

    PubMed  PubMed Central  Google Scholar 

  • Nakamura A, Suzuki Y, Umegaki H, Ikari H, Tajima T, Endo H, Iguchi A (2001) Dietary restriction of choline reduces hippocampal acetylcholine release in rats: in vivo microdialysis study. Brain Res Bull 56:593–597

    CAS  PubMed  Google Scholar 

  • Newell-Price J, Clark AJ, King P (2000) DNA methylation and silencing of gene expression. Trends Endocrinol Metab 11:142–148

    CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    CAS  PubMed  Google Scholar 

  • Pan Y, Anthony M, Clarkson TB (1999) Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats. Neurosci Lett 261:17–20

    CAS  PubMed  Google Scholar 

  • Pan M, Li Z, Yeung V, Xu RJ (2010) Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr Metab (Lond) 7:75–83

    CAS  Google Scholar 

  • Parhizkar S, Ibrahim R, Latiff LA (2008) Incision choice in laparatomy: a comparison of two incision techniques in ovariectomy of rats. World Appl Sci J 4:537–540

    Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    CAS  PubMed  Google Scholar 

  • Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65:760–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Cansev M, Wurtman RJ (2007) Oral supplementation with docosahexaenoic acid and uridine-5′-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 1182:50–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, Itohara S, Takishima K (2007) Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci 27(40):10765–10776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE, MacLusky NJ (2006) Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 27:415–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Twisk JW, Blesa R, Scarpini E, von Armin CA, Bongers A, Harrison J, Swinkels SH, Stam CJ, de Waal H, Wurtman RJ, Wieggers RL, Vellas B, Kamphuis PJ (2012) Efficacy of Souvenaid in mild Alzheimer’s disease—results from a randomized, controlled trial. J Alzheimer’s Dis 31:225–236

    CAS  Google Scholar 

  • Shankaranarayana BS, Raju TR (2004) The Golgi techniques for staining neurons. In: Raju TR et al (eds) Brain and behavior, Bangalore, India: National Institute of Mental Health and Neurosciences, pp 108–111

  • Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

    Google Scholar 

  • Sreeja S, Anju VS, Sreeja S (2010) In vitro estrogenic activities of fenugreek Trigonella foenum graecum seeds. Indian J Med Res 131:814–819

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Taga C, Nishiga M, Fujiwara M, Konishi F, Tanaka K, Kamei C (2002) Effect of docosahexaenoic acid-fortified Chlorella vulgaris strain CK22 on the radial maze performance in aged mice. Biol Pharm Bull 25:1090–1092

    CAS  PubMed  Google Scholar 

  • Takuma K, Matsuo A, Himeno Y, Hoshina Y, Ohno Y, Funatsu Y, Kitahara Y, Ibi D, Hayase M, Kamei H, Mizoguchi H, Nagai T, Koike K, Inoue M, Yamada K (2007) 17beta-estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience 146:60–68

    CAS  PubMed  Google Scholar 

  • Thomas JD, Biane JS, Bryan O, KA, O Neill TM, Dominguez HD, (2007) Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci 121(1):120–130

    CAS  PubMed  Google Scholar 

  • Tian M, Li Z, Wang G, Pan W, Li K (2016) Effects of docosahexaenoic acid on learning and memory impairment induced by repeated propofol anesthesia in young rats. Exp Ther Med 11(4):1493–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tohda C, Kuboyama T, Komatsu K (2005) Search for natural products related to regeneration of the neuronal network. Neurosignals 14(1–2):34–45

    CAS  PubMed  Google Scholar 

  • Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237

    PubMed  Google Scholar 

  • Vedder LC, Smith CC, Flannigan AE, McMahon LL (2013) Estradiol-induced increase in novel object recognition requires hippocampal NR2B-containing NMDA receptors. Hippocampus 23:108–115

    CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2011) The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J Neurotrauma 28:2113–2122

    PubMed  PubMed Central  Google Scholar 

  • Yen CL, Mar MH, Zeisel SH (1999) Choline deficiency induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J 13:135–142

    CAS  PubMed  Google Scholar 

  • Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, Salem N Jr, Stedman M, Investigators MIDAS (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6):456–464

    CAS  PubMed  Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Manipal Academy of Higher Education for providing research facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

AK, KMRB and KSR conceived and designed the study, conducted the research, and performed the analysis and interpretation of the data. KG and YSRM conducted the methods and performed the analysis. All authors contributed equally and significantly to the draft of the article and provided logistic support. All authors have critically reviewed and approved the final draft and are responsible for the content and similarity index of the manuscript.

Corresponding author

Correspondence to Kumar M. R. Bhat.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konuri, A., Bhat, K.M.R., Rai, K.S. et al. Supplementation of fenugreek with choline–docosahexaenoic acid attenuates menopause induced memory loss, BDNF and dendritic arborization in ovariectomized rats. Anat Sci Int 96, 197–211 (2021). https://doi.org/10.1007/s12565-020-00574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-020-00574-8

Keywords

Navigation