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Abstract The goal of this study was to present a procedure

that would enable mathematical analysis of the increase of

linear sizes of human anatomical structures, estimate

mathematical model parameters and evaluate their ade-

quacy. Section material consisted of 67 foetuses—rectus

abdominis muscle and 75 foetuses- biceps femoris muscle.

The following methods were incorporated to the study:

preparation and anthropologic methods, image digital

acquisition, Image J computer system measurements and

statistical analysis method. We used an anthropologic

method based on age determination with the use of crown-

rump length—CRL (V–TUB) by Scammon and Calkins.

The choice of mathematical function should be based on a

real course of the curve presenting growth of anatomical

structure linear size 9T in subsequent weeks t of pregnancy.

Size changes can be described with a segmental-linear

model or one-function model with accuracy adequate

enough for clinical purposes. The interdependence of size–

age is described with many functions. However, the fol-

lowing functions are most often considered: linear, poly-

nomial, spline, logarithmic, power, exponential, power-

exponential, log-logistic I and II, Gompertz’s I and II and

von Bertalanffy’s function. With the use of the procedures

described above, mathematical models parameters were

assessed for V-PL (the total length of body) and CRL body

length increases, rectus abdominis total length h, its seg-

ments hI, hII, hIII, hIV, as well as biceps femoris length

and width of long head (LHL and LHW) and of short head

(SHL and SHW). The best adjustments to measurement

results were observed in the exponential and Gompertz’s

models.

Keywords Human foetus � Growth curve � Gestational

age � Mathematical modelling

Introduction

Medical literature analysis reveals that foetal growth

assessment requires construction of mathematical models

that may be extrapolated out of the observation period.

This problem is poorly discussed in available literature

(Sztencel and _Zelawski 1984). This may result from scarce

foetal material as well as the rare combination of mor-

phological sciences and mathematics. Foetal period is still

poorly recognized. Our own studies (Dudek et al. 2014;

Kedzia et al. 2010a; 2011a, b, 2013a, b; Woźniak et al.

2012, 2014) have enabled the assessment of foetal struc-

tures by geometric dimension increase curve. Neither

sexual dimorphism nor asymmetry was very characteristic.

Other observations based on less material comprising a

smaller age span (Badura et al. 2011a, b; Grzonkowska

et al. 2014; Szpinda et al. 2011, 2013) revealed similar

results.

The goal of this study was to present a procedure

allowing human anatomical structure linear measure-

ments analysis that arrived at mathematical model
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parameter estimation and evaluation of its adequacy.

Theoretical discussion was substantiated with examples

including body length, rectus abdominis muscle length,

as well as length and width of femoral biceps of foe-

tuses belonging to the Normal Anatomy Dept. of the

Medical University of Wrocław (Kędzia et al.

2010, 2012). Our own examinations presented mathe-

matical model structure algorithms of foetal structure

growth (Dudek et al. 2014).

Mathematical modelling

A physical object model is constructed on the basis of

physical quantities describing the object’s qualities. There

are dimensions of three types:

• Input sizes x1, x2,���,xj (stimulations) regarded as the

causes (e.g., age of foetus - t);

• Output sizes y1, y2, ���, yk (responses) regarded as results

(e.g., foetal structures geometric sizes–y);

• Influent sizes w1, w2 ���, wl describing environmental

influence on the modelled object (e.g., foetus sex,

mother’s height and weight, race).

Input and output sizes are strictly connected with the

model formula:

F x; y; bð Þ ¼ 0

where: x = [x1 x2 … xj]
T—stimulus vector (in the analysed

case-single-element vector x1 = t (foetus life time -weeks);

y = [y1 y2 … yk]T—response vector (anatomical struc-

tures geometrical sizes Yk);

b = [b1 b2 … bm]T—vector of model parameters;

F = [F1 F2 … Fk]T—vector of operators;

0 = [0 0 … 0]T—vector formed of k zeros;

T—symbol of matrix transposition.

The selection of mathematical function should present

the real course of Y size growth curve in subsequent weeks

t of pregnancy. Many functions can be used for size–age

interdependence; however, the following are most often

considered (Jaworski et al. 1992; Kędzia et al. 2010;

Muciek 2012).

1. Linear (Fig. 1a): (this model assumes a size

stable growth rate for the whole period of pregnancy):

Y ¼ b0 þ b1 � t:

2. Segmental-linear (Fig. 3): in this model, size–time

dependence is presented with the use of at least two

segments of various inclinations. For a three-equa-

tion model, independent variable limit values tI and

tII should be established, and the model parameters

should be estimated:

yIðtÞ ¼ b0I þ b1I � t; t� tI
yIIðtÞ ¼ b0II þ b1II � t; tI � t\tII
yIIIðtÞ ¼ b0III þ b1III � t; t� tII

The authors use the following procedure for three-

segment linear function parameter evaluation:

• Estimate linear model parameters for the whole

range of measurement data (b0 and b1).

• Estimate nonlinear model parameters, e.g., cubic

polynomial, for the whole range of data (b0, b1,

b2).

• Define the coordinates of the linear and cubic

model intersection point. (tI and tII).

• Estimate linear model parameters (b0 and b1)

individually for each of the three segments.

The advantage of a linear model is the ease of its

interpretation. Values of regression indices b1

present weekly increase of the analysed size Y.

Fig. 1 Monoequation, biparametric models of crown-rump length (CRL) growth vs. foetal sizes in Scammon’s and Calkins’ tables
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3. Polynomial (Fig. 2A): Y - t characteristics are

described with the use of a function in the form of

a polynomial:

yðtÞ ¼ b0 þ b1 � t þ b2 � t2 þ . . .þ bn � tnn:

4. Spline: the model is composed of segments in which

third order curves are matched to the survey results

with the smallest squares method.

5. Logarithmic:

yðtÞ ¼ b0 þ b1 � lnðtÞ

, where b1[ 0.

6. Power (Fig. 2b).

7. Exponential: the function is defined with the follow-

ing formula:

yðtÞ ¼ exp b0 þ
b1

t

� �
:

Fig. 2 Monoequation, three-parametric models of CRL growth vs. foetal sizes in Scammon’s and Calkins’ tables
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8. Power-exponential (Fig. 2c).

9. Logarithmic-logistic (Fig. 2d).

10. Gompertz’s (Fig. 2f).

11. von Bertalanffy’s (Fig. 2e).

The above functions can be further modified by adding

successive elements. None of the above growth functions is

a universal growth principle. The shape of the growth curve

presents a sort of sublimated course characteristic for an

average individual of the examined population.

During mathematical model construction, model gra-

phic representation proved to be very helpful. Hence, as

the first step, a correlation diagram should be constructed.

On the basis of y(t) - t results dispersion, the equation

form is adopted and (b0, b1…) parameters values are

selected. Such a graph allows one to eliminate ambiguous

results that are distant from ‘‘the cloud of dots’’ repre-

senting foetuses.

Due to a modelled object (human foetus), the following

factors should be considered while mathematical function

matching. The model should well describe the sizes of the

analysed anatomical structures in the whole observed per-

iod, from the first until the 42nd week of foetal life (and

even up to the 48th week). All sizes at t = 1 should be

close to zero (Fig. 1). Such a model enables comparison of

many surveys focusing on foetal development during var-

ious time intervals of pregnancy.

The applied method of anatomical structure measure-

ment (foetus ultrasound measurement, section material

direct measurement), type of tissue (bone, muscle) as well

as the size largely influence measurement errors.

A linear model is the simplest but also the least accurate.

However, in the case of poor correlation of y measurement

with age t (r\ 0.5), this choice is well grounded. However,

it is necessary to be precise about which period of foetal

life its construction refers to. Extrapolation out of the

examined period is very risky.

In the case of stronger correlations (R2[ 0.85) when the

dispersion graph points at growth of a nonlinear character,

monotonically increasing functions should be considered.

Polynomials application enables model extrapolation out of

the examined period of foetal life (in extreme cases, linear

sizes may decrease).

Own examinations (Dudek et al. 2014; Kędzia et al.

2010, 2011a, b, 2012, 2013; Woźniak et al. 2012, 2014)

show that revealed dependencies y(t) - t can be described

accurately enough with one mathematical function only.

Most often, exponential, power, logarithmic-logistic,

Gompertz’s and von Bertalanffy’s models proved to have

the best matching measurement results.

Mathematical analysis of human anatomical structure

growth should finally arrive at model (b) parameters esti-

mation. These parameter estimations are achieved by

objective function minimization (Jaworski et al. 1992; Lee

et al. 2014)

S ¼
Xi¼n

i¼1

y i;meas � y i;cal

� �
2:

where: i—foetus number; yi,meas—measurement result;

yi,cal—calculation result based on mathematical model.

Calculations may be carried out with the use of the smallest

squares method or Marquardt’s method. The authors use

STATISTICA v.10 computer package (StatSoft, Inc. Tulsa,

USA).

Determination index R2 is usually adopted as a criterion

of goodness of fit of a model to measurement results. The

highest value of R2 is a determinant factor in making the

choice of anatomical structure model. In the case of two or

more models of R2 with similar value, the final choice

should be based on the result of ‘‘the remainders’’ distri-

bution analysis—the difference between measurement and

theoretical (model) values. Their distribution should be

close to normal and should not correlate with foetal age.

In the case of a large amount of data, the model should

take into consideration the modifying influence of the

environment, which may inhibit or stimulate foetal growth.

Materials and methods

Section material consisted of rectus abdominis muscle of

67 foetuses and biceps femoris muscle of 75 foe-

tuses (Table 1). The following methods were incorporated

into the study: preparation and anthropologic methods,

image digital acquisition, Image J computer system mea-

surements and statistical analysis method. We used an

anthropologic method based on age determination with the

use of crown-rump length—CRL (V-TUB) by Scammon

and Calkins (Scammon and Calkins 1929). Studies were

conducted on post mortem material and approved by the

ethical committee.

Results

The choice of mathematical function should be based on a

real course of the curve presenting growth of anatomical

structure linear size 9T in subsequent weeks t of pregnancy.

Size changes can be described with a segmental-linear

model or one-function model with accuracy adequate

enough for clinical purposes. The interdependence of size–

age is described with many functions. However, the fol-

lowing functions are most often considered: linear, poly-

nomial, spline, logarithmic, power, exponential, power-

exponential, log-logistic I and II, Gompertz’s I and II and
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von Bertalanffy’s function. With the use of procedures

described above, mathematical models parameters were

assessed for V-PL (the total length of body) and CRL body

lengths increases, rectus abdominis total length h and its

segments hI, hII, hIII, hIV as well as biceps femoris length

and width of long head (LHL and LHW) and of short head

(SHL and SHW).

Example of foetus CRL length increase model

Graphs (Fig. 1) present parameters of analysed monoe-

quation, biparametric (b0 and b1) mathematical models for

CRL of the trunk (verte-tuberale). Approximation was

made on the basis of CRLs included in Scammon’s and

Calkins’ tables (Bo _ziłow and Sawicki 1980; Grzonkowska

et al. 2014). Extrapolation of a linear model from the first

weeks of life results in negative values (Fig. 1—green line)

and assumption of value zero for the stable expression b0

reduces the value of R2—determination value to nonac-

ceptable values (red line). In turn, an exponential model

meets the requirements described above.

Among the examined models with three parameters (b0,

b1 i b2), power (R2 = 0.994), von Bertallanfy’s

(R2 = 0.994) and power-exponential (R2 = 0.992) models

reveal the best adjustment to Scammon’s and Calkins’

tables—Fig. 2.

Three-equation linear models are simple to interpret but

difficult to construct (Fig. 3). They can be used in mea-

surement data involving a long foetal period (at least

10–40 weeks) (Table 1).

Mathematical models of rectus abdominis

and biceps femoris muscle sizes increase

The above rules of mathematical model construction have

been applied to describe the increase in size of rectus

abdominis and biceps femoris muscles. Section material

consisted of 67 foetuses (rectus abdominalis muscle) and

75 foetuses (biceps femoris muscle).

To estimate parameters of mathematical models for

length increases of V-PL and CRL, rectus abdominis
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Fig. 3 Models of v-tub length growth: three-equation linear models

vs. foetal sizes in Scammon’s and Calkins’ tables

Table 1 Statistics

characterizing examined

foetuses

Variable Group I (rectus

abdominis m.) N = 75

Group II (biceps

femoris m.) N = 67

Age (weeks)

M ± SD 21.5 ± 2.0 22.4 ± 2,1

Me (Q1; Q3) 22 (21; 23) 22 (21; 24)

Min 7 Max 17 7 26 18 7 28

V-PL (mm)

M ± SD 240 ± 36 256 ± 32

Me (Q1; Q3) 245 (220; 263) 252 (233; 278)

Min 7 Max 132 7 310 191 7 334

CRL (mm)

M ± SD 166 ± 22 177 ± 22

Me (Q1; Q3) 170 (158; 180) 175 (161; 189)

Min 7 Max 110 7 212 130 7 237

Body mass (g)

M ± SD 313 ± 117 316 ± 112

Me (Q1; Q3) 310 (245; 375) 312 (247; 379)

Min 7 Max 85 7 619 98 7 622

n (%) female foetuses 22 (29.3 %) 33 (49.3 %)

M mean, SD standard deviation, Me median, Q1 lower quartile, Q3 upper quartile, Min minimum,

Max maximum, N number, (%) percentage

Mathematical modelling of the growth of human fetus anatomical structures 525

123



muscle total length—h as well as its segments hI, hII, hIII,

hIV (G-OP) (Table 2), functions discussed earlier were

applied. Gompertz’z model proved the best match with the

measurement results (Fig. 4). Table 3 presents parameters

of compared mathematical models of biceps femoris

muscle-long and short head lengths (LHL and SHL) as well

as its widths (LHW and SHW) (Figs. 5, 6).

A histogram of the rest of CRL lengths (variance between

the model and the measurement), as well as a correlation

diagram of the rest of the foetuses arranged in ascending

order with reference to age, reveal minimal predominance of

the exponential model over Gompertz’s one. The minimally

larger convergence of exponential model rests with normal

distribution in comparison with Gompertz’s distribution

(0.006 vs. 0.003), and the primarily smaller number of

parameters of the model (2 vs. 3) level a small difference of

R2 determination index (0.993 vs. 0.997).

Table 2 Growth model parameters for selected dimensions of rectus abdominis muscle (75 foetuses)

Dimensions (mm) Model

(1) Linear (6) Power (7) exponential (9) log-logistic (10) Gompertz (11) von Bertalanffy

V-PL b0 = 0

b1 = 11.189

R2 = 0.846

b0 = 323.452

b1 = 4.8361

b2 = 17.106

R2 = 0.860

b0 = 6.8323

b1 = -29.010

R2 = 0.832

b0 = 126.95

b1 = 2.2624

b2 = -0.1272

R2 = 0.853

b0 = 30,210

b1 = 0.2417

b2 = 0.0629

R2 = 0.867

b0 = 560.27

b1 = 0.0751

b2 = 19.305

R2 = 0.860

CRL b0 = 0

b1 = 7.753

R2 = 0.911

b0 = 227.847

b1 = 4.7726

b2 = 17.282

R2 = 0.919

b0 = 6.4812

b1 = -29.352

R2 = 0.964

b0 = 82.40

b1 = 2.4566

b2 = -0.1448

R2 = 0.964

b0 = 30,242

b1 = 0.3381

b2 = 0.0773

R2 = 0.972

b0 = 348.92

b1 = 0.0868

b2 = 18.031

R2 = 0.968

H b0 = 0

b1 = 2.109

R2 = 0.466

b0 = 53.317

b1 = 6.0390

b2 = 15.797

R2 = 0.466

b0 = 4.8450

b1 = -22.070

R2 = 0.472

b0 = 17.37

b1 = 2.9855

b2 = -0.2227

R2 = 0.466

b0 = 30,226

b1 = 0.8134

b2 = 0.1325

R2 = 0.472

b0 = 1105.4

b1 = 0.0152

b2 = 98.118

R2 = 0.450

Hi b0 = 0

b1 = 0.452

R2 = 0.190

b0 = 11.418

b1 = 5.8449

b2 = 16.532

R2 = 0.204

b0 = 3.7293

b1 = -32.157

R2 = 0.221

b0 = 4.12

b1 = 2.7002

b2 = -0.1976

R2 = 0.175

b0 = 30,230

b1 = 0.8723

b2 = 0.1167

R2 = 0.220

b0 = 930.98

b1 = 0.0150

b2 = 123.716

R2 = 0.198

hII b0 = 0

b1 = 0.445

R2 = 0.300

b0 = 10.883

b1 = 6.7511

b2 = 15.698

R2 = 0.269

b0 = 3.2959

b1 = -22.222

R2 = 0.301

b0 = 3.71

b1 = 2.7923

b2 = -0.2096

R2 = 0.303

b0 = 30,204

b1 = 1.1494

b2 = 0.1487

R2 = 0.310

b0 = 111.05

b1 = 0.020

b2 = 66.370

R2 = 0.293

hIII b0 = 0

b1 = 0.477

R2 = 0.223

b0 = 17.511

b1 = 3.4844

b2 = 19.371

R2 = 0.248

b0 = 3.6173

b1 = -27.721

R2 = 0.240

b0 = 9.66

b1 = 2.1665

b2 = -0.0706

R2 = 0.239

b0 = 30,200

b1 = 0.9642

b2 = 0.1284

R2 = 0.253

b0 = 116.5

b1 = 0.0251

b2 = 57.015

R2 = 0.253

hIV b0 = 0

b1 = 0.615

R2 = 0.176

b0 = 13.860

b1 = 6.8177

b2 = 14.565

R2 = 0.256

b0 = 3.9726

b1 = -35.256

R2 = 0.244

b0 = 4.56

b1 = 2.7110

b2 = -0.2526

R2 = 0.253

b0 = 30,210

b1 = 0.6892

b2 = 0.0970

R2 = 0.258

b0 = 14.46

b1 = 0.1178

b2 = 12.003

R2 = 0.197

Bold values indicate the best fit model to measured data (the largest value R)
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Fig. 4 Gompertz’s curves (model 12) illustrating development of

analysed parameters of rectus abdominis muscle sizes
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Discussion

In their surveys, Szpinda et al. (Szpinda et al. 2011) studied

musculus biceps femoris and defined its increase in foe-

tuses aged 17–30 weeks with the use of linear function. No

significant sex differences were found (p[ 0.05). All the

parameters were found to increase in a linear fashion

during gestation and significant positive correlations were

found. There were significant laterality differences only in

relation to either parameter of the short head of the biceps

femoris.

In the studies concerning muscular development, which

were carried out on the material of 30 foetuses aged

17–30 weeks of foetal life, linear function was sufficient to

describe development dynamics of the following muscles:

triceps brachii (Grzonkowska et al. 2014), semimembra-

nosus (Badura et al. 2011a), semitendinosus (Badura et al.

2011a) and biceps brachii (Szpinda et al. 2013), due to

their comparatively small sizes and large dispersion results.

Neither male–female nor right–left differences are

observed in morphometric parameters of the triceps brachii

muscle (Grzonkowska et al. 2014). The long head’s belly is

the thinnest, while the lateral head’s belly is the widest.

The long head is the longest and the medial head is the

shortest. The developmental dynamics of the triceps brachii

muscle follow proportionately.

Table 3 Growth model parameters for selected dimensions of biceps femoris muscle (67 foetuses)

Dimensions (mm) Model

(1) Linear (6) Power (7) exponential (9) log–logistic (10) Gompertz (11) von Bertalanffy

The total length of body: (V-PL) b0 = 0

b1 = 11.444

R2 = 0.801

b0 = 335.281

b1 = 5.1305

b2 = 17.705

R2 = 0.940

b0 = 6.8722

b1 = -29.670

R2 = 0.957

b0 = 128.54

b1 = 2.2354

b2 = -0.1257

R2 = 0.947

b0 = 30,214

b1 = 0.2552

b2 = 0.0657

R2 = 0.933

b0 = 560.28

b1 = 0.0757

b2 = 19.158

R2 = 0.947

Crown-rump length (CRL) b0 = 0

b1 = 7.914

R2 = 0.867

b0 = 225.302

b1 = 5.3402

b2 = 17.468

R2 = 0.968

b0 = 6.5003

b1 = -29.603

R2 = 0.993

b0 = 98.81

b1 = 2.0357

b2 = -0.1045

R2 = 0.982

b0 = 30,809

b1 = 0.3455

b2 = 0.0785

R2 = 0.997

b0 = 462.23

b1 = 0.0609

b2 = 21.743

R2 = 0.982

Long head length (LHL) b0 = 0

b1 = 2.027

R2 = 0.692

b0 = 62.925

b1 = 4.8755

b2 = 18.231

R2 = 0.683

b0 = 5.9690

b1 = -42.529

R2 = 0.802

b0 = 18.53

b1 = 3.4922

b2 = -0.2164

R2 = 0.716

b0 = 30,199

b1 = 0.3537

b2 = 0.0789

R2 = 0.834

b0 = 68.71

b1 = 0.1439

b2 = 16.131

R2 = 0.575

Long head width (LHW) b0 = 0

b1 = 0.242

R2 = 0.692

b0 = 10.648

b1 = 4.1047

b2 = 21.849

R2 = 0.835

b0 = 3.0947

b1 = -31.409

R2 = 0.716

b0 = 2.06

b1 = 6.8092

b2 = -0.3881

R2 = 0.462

b0 = 30,738

b1 = 0.6887

b2 = 0.0913

R2 = 0.848

b0 = 7.09

b1 = 0.2967

b2 = 17.151

R2 = 0.213

Short head length (SHL) b0 = 0

b1 = 1.186

R2 = 0.271

b0 = 38.508

b1 = 3.9682

b2 = 17.575

R2 = 0.519

b0 = 4.6774

b1 = -31.168

R = 0.748

b0 = 10.66

b1 = 3.3086

b2 = -0.2177

R2 = 0.537

b0 = 30,806

b1 = 0.6998

b2 = 0.1080

R2 = 0.736

b0 = 33.83

b1 = 0.2056

b2 = 14.516

R2 = 0.565

Short head width (SHW) b0 = 0

b1 = 0.090

R2 = 0.356

b0 = 2.539

b1 = 5.5010

b2 = 17.232

R2 = 0.713

b0 = 1.8310

b1 = -25.163

R = 0.660

b0 = 0.89

b1 = 2.0111

b2 = -0.1341

R2 = 0.359

b0 = 11,403

b1 = 0.6996

b2 = 0.0913

R2 = 0.741

b0 = 3.62

b1 = 0.0871

b2 = 16.141

R2 = 0.359

Bold values indicate the best fit model to measured data (the largest value R)
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Fig. 5 Gompertz’s curves (model 12), illustrating development of

analysed sizes of femoral musculus adductor longus
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In our own studies, growth dynamics proceeded along

with exponential model. Figure 7 reveals that an expo-

nential model is better adjusted to measurement results

(0.802 vs. 0.795) and can be extrapolated towards younger

foetuses. In the case of a linear model, the lengths have

negative values from the first to the sixth week. Linear

model can be applied in foetuses only from the 17th to the

29th week, and in the case of exponential model, foetal

sizes are always bigger than 0 and they can be applied for

the entire foetal period. Adoption of the proposed models

will allow other researchers to carry out meta analysis.

However, the studies should be broadened from the 29th to

the 42nd week (in ultrasound examinations).

Results of nasal cavity geometrical measurements from

138 human foetal head sections aged 14–28 weeks of foetal

life were analysed statistically (Kędzia et al. 2013). The

measurements were made on 68 left and 70 right halves.

Mathematical models were constructed based on nonlinear

models. Considered functions were: logarithmic function

and Gompertz’s function. Gompertz’s model proved best at

matching the measurement results. Nasal cavity anatomical

structures increase more quickly between the 14th and 20th

weeks and then the growth rate decreases. Neither sexual

dimorphism nor anatomical structure asymmetry was

observed. Apart from medial nasal turbinate, the growth is

steady and gradual in all directions (Kędzia et al. 2013).

The study examined 220 human brachial plexuses,

derived from 110 fetuses (including 50 females—45.45 %)

aged 14–32 weeks of fetal life, with a crown-rump length

(CRL) ranging from 80 to 233 mm (Woźniak et al. 2012).

The prenatal development of the brachial plexus was not

constant; the applied mathematical functions proved useful
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Fig. 6 Histograms and correlation diagrams of the rest of the growth models for CRL lengths: exponential and Gompertz’s models

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32 36 40 44

Age  (weeks)

LH
L

 (m
m

)

Fig. 7 Parameters of linear and exponential models of the growth of

musculus biceps femoris long head assessed on the basis of sectional

material (Kędzia et al. 2012)
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in describing its growth rate. Four formulas were used in

the mathematical growth model: linear regression, loga-

rithmic function, the von Bertalanffy growth model and the

Gompertz curve (Woźniak et al. 2012).

The goal of this study was the mathematical assessment

of foetal age with the use of thorax selected dimensions

(Woźniak et al. 2014). The material consisted of 110 foe-

tuses aged 4–7 months of foetal life, including 50 females

in the CRL range: 80–233 mm. Foetus biometrics allows

us to assess the mathematical relation between gestational

age foetus biometric parameters. Six monofunctional

mathematical models were elaborated: a Bertalanffy

growth curve, three Gompertz function based models and

two exponential models to assess examined parameters

increase along with t age (Woźniak et al. 2014).

Gompertz’s model has been used to define life expec-

tancy in elderly people (Ekonomov and Larygin 1989; Lee

et al. 2014) as well as in experimental oncology as far as

tumour growth was concerned (Hartung et al. 2014). This

survey’s practical value is based on its applicability in

foetus age assessment in ultrasound examination. The

proposed models of foetal structure increase, constructed

on the basis of new computer techniques and objectively

high-tech mathematical calculations, allow us to fill the

blanks in the present literature.

Conclusions

Human foetal anatomical structure changes can be descri-

bed accurately enough for clinical and prognostic purposes

with segmental-linear models or one-function models. The

degree of adjustment of model parameters and measure-

ment results is influenced by the function form and espe-

cially the structure size absolute value. For bigger

structures, e.g., femoral musculus adductor longus, deter-

mination index is comprised within the range 58–83 %,

whereas in the case of smaller structures, e.g., musculus

adductor longus width, the R2 value amounts to 52–75 %.
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