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Abstract
Mussels are a group of bivalves that includes the dominant species of shallow-sea, freshwater, and deep-sea chemosynthetic 
ecosystems. Mussels cling to various solid underwater surfaces using a proteinaceous thread, called the byssus, which is 
central to their ecology, physiology, and evolution. Mussels cluster using their byssi to form “mussel beds,” thereby increas-
ing their biomass per unit of habitat area, and also creating habitats for other organisms. Clustered mussels actively filter 
feed to obtain nutrients, but also ingest pollutants and suspended particles; thus, mussels are good subjects for pollution 
analyses, especially for microplastic pollution. The byssus also facilitates invasiveness, allowing mussels to hitchhike on 
ships, and to utilize other man-made structures, including quay walls and power plant inlets, which are less attractive to 
native species. Physiologically, mussels have adapted to environmental stressors associated with a sessile lifestyle. Osmotic 
adaptation is especially important for life in intertidal zones, and taurine is a major component of that adaptation. Taurine 
accumulation systems have also been modified to adapt to sulfide-rich environments near deep-sea hydrothermal vents. The 
byssus may have also enabled access to vent environments, allowing mussels to attach to “evolutionary stepping stones” 
and also to vent chimneys.

Keywords  Bathymodiolus · Foot proteins · Genome · Hypotaurine · Microplastic ingestion · Mytilus · Perna · Underwater 
adhesion

Introduction

Mussels are bivalves, most of which belong to the family 
Mytilidae (Gosling 1992), although some non-mytilid spe-
cies, such as quagga and zebra mussels, belong to the fam-
ily Dreissenidae (Higgins and Vander Zanden 2010). Some 

mussel species are familiar to people world-wide because 
they are abundant in coastal areas, even around human habi-
tations (Veiga et al. 2020). Mussels of the genera Mytilus and 
Perna (Fig. 1), distributed from temperate to polar and sub-
tropical to tropical marine zones, respectively, are popular 
as food and are actively cultured (Gosling 1992; Maquirang 
et al. 2020; Cabre et al. 2021). In addition, mussels are dis-
tributed in freshwater and even in deep seas (Fig. 1), where 
they often dominate their communities (de Paula et al. 2020; 
Laming et al. 2018; Lee et al. 2019). However, many mussel 
species are notoriously invasive, expanding their distribu-
tions to non-native areas (Pickett and David 2018; Rajagopal 
et al. 2006). Some species are major biofoulers, clustering 
on the hulls of vessels, and invade man-made underwater 
structures (Amini et al. 2017; de Paula et al. 2020). These 
unique capacities of mussels derive largely from their ability 
to attach to underwater surfaces using the proteinous hold-
fast called the byssus, which is tough, durable, and resistant 
to chemical and enzymatic degradation (Waite 2017). In this 
article, we discuss mussel biology in terms of the byssus, 
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and we discuss the significance of their sessile lifestyle in 
regard to mussel ecology, physiology, and evolution.

Byssus

The byssus is used by the mussel to attach to underwater 
surfaces. It is composed of a thread and an adhesive plaque 
(Fig. 2) (Waite 2017). These plaques can attach to various 
surfaces such as concrete, metal, and plastic, in addition to 
rock, and not surprisingly, the adhesion mechanisms func-
tion underwater (Lin et al. 2007). Several byssi are bundled 
at a stem (Fig. 2) and connect to byssus retractor muscles 
in the shell (Waite 1992). Therefore, the strength of mus-
sel attachment depends both on the strength of the byssus 
(Waite et al. 2002) and on the mussel’s muscular endur-
ance, known as the “catch phenomenon” (Funabara et al. 
2003). Components of the byssus have been studied since the 
1980s (Waite and Tanzer 1981), and many protein compo-
nents have been discovered and characterized (Waite 1992; 

2017; Bandara et al. 2013; Priemel et al. 2017 for review). 
Such studies are motivated by basic science, to understand 
the phenomenon of tough, durable underwater adhesion, but 
also by practical applications to develop underwater or sur-
gical adhesives and useful polymers (Forooshani and Lee 
2017; Zhang et al. 2017a, b; Guo et al. 2020; Basak 2021), 
and to develop antifouling paints or materials by understand-
ing plaque chemistry (Damodaran and Murthy 2016; Amini 
et al. 2017). The main structure of the thread comprises a 
gradient of stiff and elastic collagens (Col-D and Col-P, 
respectively) connected by a third type (Col-NG) (Qin and 
Waite 1998; Waite et al. 2002). In the plaque and in the cuti-
cle surrounding the byssus, proteins known as foot proteins 
(Fps) have been identified. Since the discovery of Fp-1 in 
Mytilus edulis (Waite and Tanzer 1981), Fps-2 through -6 
have been discovered (Bandara et al. 2013; Waite 2017), and 
corresponding proteins and genes have also been identified 
in Perna viridis (Guerette et al. 2013; Zhang et al. 2019). 
Fps-3, -5, and -6 are thought to function at the plaque–sub-
strate interface (Hwang et al. 2010). In addition, many other 
Fps have been suggested from transcriptomic analyses of 
Mytilus californianus (DeMartini et al. 2017). Most Fps 
contain 3,4-dihydroxyphenylalanine (Dopa) residues, which 
are thought to contribute to polymerization of Fps (Bandara 
et al. 2013; Waite 2017). These Dopa residues are encoded 
as tyrosine in corresponding genes (Inoue and Odo 1994; 
Inoue et al. 1995a; 1996), and are hydroxylated posttransla-
tionally (Waite 2017). Tyrosinases, which convert tyrosine 
to Dopa, have been discovered by molecular cloning, tran-
scriptomic, genomic, and proteomic analyses (Guerette et al. 
2013; Qin et al. 2016; Zhang et al. 2017a, b; Wang et al. 
2019; Zhang et al. 2019; Inoue et al. 2021). Other enzymes 
involved in collagen and Fp processing have also been sug-
gested by transcriptomic and genomic analyses (Inoue et al. 

Fig. 1   Mytilid mussels. Upper panel, Mytilus galloprovincialis; mid-
dle panel, Perna  viridis; lower panel, Bathymodiolus  septemdierum. 
Adapted from Sassa et al. (2019)

Fig. 2   Green mussels Perna viridis, attached to a transparent acrylic 
board, using the byssus. Adapted from Inoue et al. (2021)
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2021). Moreover, a recent genomic and foot-specific tran-
scriptome analysis in P. viridis revealed that many proteinase 
inhibitors and defense proteins are expressed in the foot and 
are thought to protect the byssus from degradation (Inoue 
et al. 2021). Interestingly, despite the tough and durable 
nature of the byssus, attachment of mussels is not perma-
nent; mussels can gradually change their positions by mak-
ing new byssi and discarding old ones (Imai S, Takabayashi 
Y, unpublished observations in M. galloprovincialis). 

Byssus and mussel beds

Using their byssi, mussels can also attach to another. By so 
doing, mussels can form large aggregations called “mussel 
beds.” From an ecological viewpoint, mussel beds are very 
important (Gosling 1992; Engel et al. 2017). These multi-
layered structures enable mussels to achieve extremely high 
biomass. Mussels actively capture plankton and small par-
ticles in the water by filter feeding, which influences entire 
ecosystems, and occupy important positions in the food web. 
In addition, mussels are known as ecosystem engineers as 
mussel beds offer habitat or shelter for other organisms 
(Koivisto and Westerbom 2012; Engel et al. 2017; de Fouw 
et al. 2020; Ricklefs et al. 2020). Spaces between individual 
mussels are especially suitable habitat for small organisms. 
Thus, the byssus is central to mussel ecology.

Filter feeding and pollution studies

Filter feeding (Jorgensen 1996; Hawkins et al. 1998) is an 
efficient way for sessile animals to collect food. Mussels 
in beds hardly move as they are interconnected by multi-
ple byssi. Mussels filter water through the gills, trapping 
plankton, detritus, and biotic and abiotic particles, which 
are passed by cilia to the digestive tract.

As mussel body composition reflects the condition of the 
environment, mussels have been objects of environmental 
pollution studies (Viarengo and Canesi 1991; Beyer et al. 
2017). Some Mytilus species are particularly accessible. For 
that reason, Goldberg (1975) proposed the “mussel watch” 
concept to monitor global aquatic pollution (see also Far-
rington et al. 2016), and this concept has been expanded 
to include Perna species for monitoring warmer waters 
(Monirith et al. 2003; Ramu et al. 2007).

Ingestion of microplastics

As active filter feeders, mussels ingest microplastic particles 
(Fig. 3 and Online Resource 1 for time-lapse movie), which 
have become a world-wide concern. Since early reports 

about microplastic contamination in mussels (Browne 
et al 2008; von Moos et al. 2012; Wegner et al. 2012), an 
increasing number of papers have been published, mainly 
on species of Mytilus and Perna (Chae and An 2020; Gedik 
and Eryasar 2020; Kazour and Amara 2020; Piarulli and 
Airoldi 2020; Christoforou et al. 2020; Cole et al. 2020; 
Li et al. 2020a; Stamataki et al.2020; Wakkaf et al. 2020; 
Webb et al. 2020; Alnajar et al. 2021; Cappello et al. 2021; 
Cho et al. 2021; Klasios et al. 2021; Kumar et al. 2021; Liu 
et al. 2021; Perez et al. 2021; Seuront et al. 2021; Wang 
et al. 2021a,b). Considering their distributions around cit-
ies and other human habitations, mussels are ideal organ-
isms for monitoring microplastic pollution. They are also 
useful in laboratory experiments to understand effects of 
microplastics, because laboratory rearing and experimental 
administration of microplastic particles are quite easy. For 

Fig. 3   Ingestion of microplastic particles by the Mediterranean mus-
sel Mytilus  galloprovincialis. A mussel was placed in a 200  mL 
beaker filled with filtered seawater. Then, 200 µL of water containing 
2.5% (w/v) fluorescent-labeled polystyrene (PS) particles (Fluores-
brite YG, Polysciences, 90  µm in diameter, Warrington, PA, USA) 
was added to the seawater. Photographs were taken under an LED 
illuminator (Oriental Instruments, Sagamihara, Japan). The upper 
photo was taken just after addition of PS particles, and the lower 
photo was taken 72  min later. PS particles appear as a yellow mist 
just after addition. The mussel ingested most of the PS particles, and 
the seawater became clear within 30  min. Some PS particles were 
excreted as pseudofeces (arrow in lower panel) without proceeding to 
the alimentary canal. A time-lapse movie is also available in Online 
Resource 1
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example, we have reported size-dependent elimination pat-
terns of ingested particles (Kinjo et al. 2019a). Such stud-
ies are important because Mytilus and Perna are popular 
seafoods that are consumed whole; thus, they vector micro-
plastics to humans. In addition to ingestion by filter feeding, 
direct interaction of microplastics with the byssus has also 
been reported (Li et al. 2019). 

The byssus and metals

Byssi have also been the object of metal pollution analyses 
because the metal content of byssi is higher than that of 
soft tissues (Yap et al. 2003; Szefer et al. 2006). However, 
as metals are important for crosslinking of byssal proteins 
(Sever et al. 2004; Harrington et al. 2010; Waite 2017), mus-
sels may incorporate metals selectively for that purpose. 
Therefore, more studies are needed to understand the metal 
content of the byssus. For example, proteins involved in 
metal intake, transportation, binding, and exclusion should 
be identified and characterized. Omics-based studies may 
offer clues to understand such mechanisms (Zhang et al. 
2017a, b; 2019). Also, known and novel metal-regulatory 
genes or proteins can be searched from omics data (Sassa 
et al. 2021). Since byssal proteins contain many reactive 
side chains and have affinities for various metals, Montroni 
et al. (2020) proposed the use of mussel byssi, collected 
from aquaculture waste, for bioremediation of metal-pol-
luted water.

The byssus and biological invasion

Another ecological issue is invasiveness. Major mussel 
species are expanding their geographic distributions owing 
to human activities, and they are disturbing local ecosys-
tems at invasion sites. For example, Mytilus galloprovin-
cialis and Dreissena polymorpha are included among 100 
of the World’s Worst Invasive Alien Species (Lowe et al. 
2000). Also, M. galloprovincialis, Perna viridis, Xenostro-
bus securis, and Limnoperna fortunei are included in the List 
of Invasive Species of Japan (https://​www.​nies.​go.​jp/​biodi​
versi​ty/​invas​ive/​resou​rces/​listen_​mollu​scs.​html; accessed on 
12 May 2021). The invasion of Japan by M. galloprovincialis 
has been described by Kuwahara (1993) and Inoue et al. 
(1997). Kimura et al. (1999) and Iwasaki (2013) detailed 
the arrival of Xenostrobus securis, Ueda (2001) and Yoshi-
yasu et al. (2004) discussed Perna viridis, and Kimura et al. 
(2011) have written about Limnoperna fortunei. Expansion 
of invasive species has been accelerated by increased over-
sea traffic, and ballast water of vessels is a major carrier of 
plankton and planktonic larvae around the globe (Lim et al. 
2020). However, among the many marine organisms that 

have planktonic larval stages, mussels seem to be one of the 
most widespread groups of organisms. One possible reason 
for their success is their high environmental adaptability, 
which will be mentioned later. Another reason is that indi-
vidual adults can hitchhike on ships by attaching to the hulls 
(van der Gaag et al. 2016). When adult mussels are trans-
ported to new locations, they immediately start reproducing. 
In addition, exposure to changing environmental conditions 
during transport may offer them an opportunity to adapt to 
stresses associated with the new location (Lenz et al. 2018). 
Moreover, in destination areas after transport, mussels often 
occupy vacant or less competitive niches, e.g., piers, quay 
walls, inlets of power plants, and aquaculture nets (Gilg et al. 
2010), using their byssi. Thus, not only appropriate manage-
ment of ballast water but also development of antifouling 
strategies is important to reduce invasion by mussels.

Species markers based on byssal protein 
sequences

For surveys of invasive species, accurate species identifica-
tion is important. However, morphological identification of 
mussels is often challenging. In particular, distinguishing 
three major mussels, Mytilus edulis, M. galloprovincialis, 
and M. trossulus, which all belong to the M. edulis species 
complex, is quite difficult (McDonald et al. 1991; Kuwa-
hara 2001). For this purpose, a convenient polymerase chain 
reaction (PCR) marker to distinguish the three species was 
designed using the sequence of a byssal protein gene (Fp-1) 
(Inoue et al. 1995b). This marker has been utilized for more 
than 25 years, but is still robust (Larraín et al. 2019), perhaps 
because it is based on a 12- or 54-bp insertion/deletion site, 
which may be less variable than nucleotide substitutions. 
However, species identification using single markers is not 
infallible, especially for specimens containing introgressed 
sequences (Larraín et al. 2019; Vendrami et al. 2020).

Environmental adaptations of intertidal 
mussels

Mussels, as well as other sessile organisms, must cope 
physiologically with various environmental stresses 
because they have no means to escape from sudden, unfa-
vorable changes of environmental conditions. Species 
inhabiting intertidal zones must have high tolerance for 
environmental changes, as they are continuously exposed 
to fluctuation of ambient conditions, including temperature 
and salinity (Gosling 2003; Gracey et al. 2008). Various 
studies have investigated physiological adaptations to tem-
perature changes and their impact on species distributions 
(Pernet et al. 2007; Tomanek and Zuzow 2010; Somero 

https://www.nies.go.jp/biodiversity/invasive/resources/listen_molluscs.html
https://www.nies.go.jp/biodiversity/invasive/resources/listen_molluscs.html
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2012; Seuront et al. 2019; Moyen et al. 2020; Chao et al. 
2020; Popovic and Riginos 2020). Mechanisms of osmotic 
adaptation have also been studied, through physiological, 
transcriptomic and proteomic, and behavioral analyses 
(Gosling 2003; Lockwood and Somero 2011; Tomanek 
et al. 2012; Wang et al. 2013). Mussels are generally con-
sidered osmoconformers, as are other bivalves, which 
adjust body fluid osmolality to that of the environment, 
although osmoregulatory ability has been suggested for 
Perna perna (Rola et al. 2017). In Mytilus spp., free amino 
acids are thought to facilitate osmoconforming (Gosling 
2003), and glycine and taurine are reported as the major 
osmolytes (Kube et  al. 2006). In addition, the taurine 
transporter (TAUT) is involved in adaptation (Hosoi et al. 
2005; Toyohara et al. 2005). Interestingly, TAUT expres-
sion is elevated under hypoosmotic conditions, although 
the authors suggested that TAUT expression responds to 
decreased taurine rather than to osmotic changes (Hosoi 
et al. 2005; Toyohara et al. 2005).

Mussels inhabiting deep‑sea hydrothermal 
vent areas

Interestingly, more than 25 mytilid species, including 
those of the genus Bathymodiolus, have been reported 
from hydrothermal vent and seep habitats, according 
to the World Register of Marine Species (http://​www.​
marin​espec​ies.​org/​aphia.​php?p=​taxde​tails​&​id=​138214, 
accessed on 12 May 2021) (Lorion et al. 2013). Vent- and 
seep-adapted species are thought to have evolved from 
an ancestral species inhabiting shallow seas, and whale 
carcasses and sunken wood may have mediated the transi-
tion to deep-sea habitats (Distel et al. 2000; Smith et al. 
2015). Bathymodiolin mussels form dense beds around 
hydrothermal vents and cold seeps (Fig. 4), and their large 
biomass is supported by “chemosynthetic bacteria” that 
synthesize organic matter using chemical substances, such 
as hydrogen sulfide, hydrogen, and methane, abundant in 
vent or seep effluents (Dubilier et al. 2008). Bathymodiolin 
mussels maintain chemosynthetic bacteria as symbionts 
in their gill tissues (Duperron et al. 2009; Fujinoki et al. 
2012a, b; Ikuta et al. 2016); thus, they obtain nutrients 
without foraging. Accordingly, mussels are obliged to stay 
near vents or seeps, to absorb chemical substances, and 
to deliver them to the symbionts. Typical symbionts are 
sulfur-oxidizing bacteria that use hydrogen sulfide, which 
is toxic to most organisms (Powell and Somero, 1986). 
Therefore, mussels harboring sulfur-oxidizing bacteria 
must cope with hydrogen sulfide toxicity; however, mecha-
nisms to accomplish that are not fully understood.

Hypotaurine of deep‑sea mussels

Hypotaurine, a substance similar to taurine, and hydrogen 
sulfide ion can be converted to thiotaurine, a nontoxic sub-
stance that can be passed to symbionts (Pruski and Fiala-
Médioni 2003; Yancey 2005; Koito et al. 2010; Nagasaki 
et al. 2018; Kuroda et al. 2021). As mussels are always 
exposed to sulfides in hydrothermal-vent water, gill cells 
must maintain high hypotaurine levels. To accumulate 
hypotaurine in the gill, involvement of the taurine trans-
porter (TAUT) has been reported (Inoue et al. 2008). In 
addition, GAT-1, a transporter for gamma-aminobutyric 
acid (GABA), may participate in this process (Kinjo et al. 
2019b). Moreover, cysteine dioxygenase (CDO) and cysteine 
sulfinate decarboxylase (CSAD) may synthesize hypotaurine 
from cysteine (Nagasaki et al. 2015, 2018).

As mentioned above, TAUT is reportedly involved in 
osmotic adaptation by shallow-sea mussels (Hosoi et al. 
2005; Toyohara et  al. 2005). As TAUT involvement in 
osmotic adaptation is also reported in oysters (Hosoi et al. 
2007), it is likely a common mechanism among shallow-
sea bivalves. Phylogenetic analysis of TAUT and related 

Fig. 4   A colony of deep-sea mussels Bathymodiolus  septemdierum, 
in a hydrothermal vent area at a depth of approximately 1303  m at 
Myojin Knoll Caldera. New active chimneys (1, 2) are growing 
between old “dead” chimneys (3, 4). Chimney 1 is actively spouting, 
and chimney 2 is slowly emitting hot seawater containing hydrogen 
sulfide. Mussels are attached where they are not exposed directly to 
vent effluent, but can access effluent diluted with ambient seawater. 
The surface of chimney 2, exposed directly to effluent from chimneys 
1 and 2, is occupied by polychaete worms, Paralvinella hessleri and 
Polynoidae gen. sp. (Koito et  al. 2018). The crab Gandalfus  yuno-
hana is a common species around beds of B.  septemdierum. Osmo-
lalities of vent effluent, just above the mussel and polychaete colonies 
and of surrounding seawater, are presented in Table  1. The photo-
graph was taken by remotely operated vehicle Hyper-Dolphin during 
research cruise NT11-09 of the research vessel, Natsushima, in 2011. 
Copyright, The Japan Agency for Marine-Earth Science and Technol-
ogy (JAMSTEC)

http://www.marinespecies.org/aphia.php?p=taxdetails&id=138214
http://www.marinespecies.org/aphia.php?p=taxdetails&id=138214
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transporters indicated that bathymodiolin TAUT is quite 
similar to that of shallow-sea Mytilus (Koito et al. 2010; 
Kinjo et al. 2013). Although CDO and CSAD have not been 
characterized in shallow-sea mussels, like TAUT, they are 
found in the oyster taurine synthesis pathway, and their 
roles in osmotic adaptation have been suggested (Meng 
et al. 2013; Zhao et al. 2017). Therefore, these transporters 
and enzymes have not evolved specifically for adaptation to 
hydrothermal vents. Rather, they may have been co-opted 
for osmotic adaptation in an ancestor that inhabited shallow 
seas, although functions of individual components may have 
been modified to augment hypotaurine accumulation (Koito 
et al. 2016; Nagasaki et al. 2018). Interestingly, seawater 
ejected from hydrothermal vents at Myojin Knoll and Suiyo 
Seamount is slightly hypoosmotic relative to surrounding 
seawater (Fig. 4, Table 1, and Nakamura-Kusakabe et al. 
2016), and this may influence TAUT mRNA expression 
(Nakamura-Kusakabe et al. 2016).

The byssus and deep‑sea mussels

Given that hypotaurine can be accumulated by modifying 
taurine biosynthesis and its transport mechanisms, many 
other mollusks also have the potential to adapt to the hydro-
thermal vent environment, because mollusks generally con-
tain high levels of taurine (Allen 1961; Welborn and Mana-
han 1995). Then, what is the basis of the success of mussels 
there? It may also be related to attachment using the bys-
sus. Deep-sea hydrothermal vents generally form tall, steep 
structures called “chimneys” (Fig. 4), composed of minerals 
contained in vent fluid. After ejection, the hot mineral-rich 
water cools in contact with surrounding seawater, and miner-
als are deposited around the vent, forming chimneys. Envi-
ronments with such topographic relief are advantageous for 
sessile organisms, which may be a reason that mussels have 
flourished in these habitats.

Attachment using the byssus may be more advantageous 
than other forms of attachment. Chimneys are not stable 
structures. They become taller with time because minerals 

are deposited continuously, and they sometimes decay 
(Nozaki et al. 2016). Chimneys may go dormant when vent 
fluid is rerouted to new locations, forming new chimneys. 
Bathymodiolin mussels seem to have the capacity to adjust 
their positions to the vicinities of new vents (Fig. 4). If they 
are too far from a vent, they cannot obtain the raw materi-
als needed for chemosynthesis, such as hydrogen sulfide. In 
contrast, if they are too close to the vent, high temperatures 
and hydrogen sulfide concentrations become prohibitive. 
Therefore, vent mussels likely adjust their positions to keep 
adequate distance to the vent, by means of the byssus. We 
have observed that the hydrothermal vent mussel, Bathy-
modiolus septemdierum, reared in the laboratory, can move 
by making new byssi and cutting old ones (Nemoto S. and 
Sugimura M., unpublished observations).

Furthermore, as mentioned above, deep-sea vent and seep 
mussels are thought to have evolved from shallow-sea mus-
sels in stages by utilizing whale falls or sunken wood as 
“evolutionary stepping stones” (Distel et al. 2000; Smith 
et al. 2015). Byssi are ideal for this, and attachment to and 
clustering on whale bones using byssi has been reported in 
several mussel species (Okutani et al. 2003; Okutani and 
Miyazaki 2007). Mussels on sunken wood are also likely 
to “hang on” using byssi (Pailleret et al. 2007). While the 
foregoing materials provide substrates for attachment, they 
are also thought to have offered sulfide-rich environments 
suitable for chemosynthesis (Smith et al. 2015). Therefore, 
the byssus has contributed to evolution of symbiotic rela-
tionships with chemosynthetic bacteria, allowing mussels 
to exploit deep-sea environments.

Conclusion

As described above, the byssus is central to the ecology, 
physiology, and evolution of mussels, and the ecosystems 
in which they reside. Enormous numbers of studies have 
been conducted on the components, structure, and polym-
erization processes of the byssus, employing chemical, bio-
chemical, histological, molecular biological, and behavioral 
approaches, although this review cannot possibly cover all 
of them. However, detailed mechanisms of byssus forma-
tion, adhesion, and many other related phenomena are still 
little understood. Fortunately, “omics” data about mussels 
have begun rapidly accumulating in recent years. Genomic 
information regarding mussels has accumulated much more 
rapidly than for many other marine invertebrates (Murgarella 
et al. 2016; Sun et al. 2017; Uliano-Silva et al. 2018; Gerdol 
et al. 2020; Li et al. 2020b; Inoue et al. 2021 for mytilids; 
Calcino et al. 2019 for a dreissenid). Such comprehensive 
information is expected to unify knowledge from molecular 
biological and chemical studies.

Table 1   Osmolality of seawater and vent effluent around a hydrother-
mal vent at Myojin Knoll Caldera, shown in Fig. 4

Water sampling points Osmolality 
(mOsm/
kg)

Vent effluent of active chimney 1 982
Seawater just above a polychaete colony on chimney 2 995
Seawater just above a mussel colony on chimney 3 999
Seawater 3.5 m above chimneys 1007
Seawater 635 m above chimneys 1014
Surface seawater 1012
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12562-​021-​01550-5.
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