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Abstract
In addition to clinical efficacy, safety is another important outcome to assess in ran-
domized controlled trials. It focuses on the occurrence of adverse events, such as 
stroke, deaths, and other rare events. Because of the low or very low rates of observ-
ing adverse events, meta-analysis is often used to pooled together evidence from 
dozens or even hundreds of similar clinical trials to strengthen inference. A well-
known issue in rare-event meta-analysis is that some or even majority of the avail-
able studies may observe zero events in both the treatment and control groups. The 
influence of these so-called double-zero studies has been researched in the literature, 
which nevertheless focuses on reaching a dichotomous conclusion—whether or not 
double-zero studies should be included in the analysis. It has not been addressed 
when and how they contribute to inference, especially for the odds ratio. This paper 
fills this gap using comparative analysis of real and simulated data sets. We find that 
a double-zero study contributes to the odds ratio inference through its sample sizes 
in the two arms. When a double-zero study has an unequal allocation of patients in 
its two arms, it may contain non-ignorable information. Exclusion of these studies, 
if taking a significant proportion of the study cohort, may result in inflated type I 
error, deteriorated testing power, and increased estimation bias.

Keywords  Adverse event · Clinical trial · Odds ratio · Rare event · Unequal 
allocation · Zero event

1  Introduction

Efficacy and safety are pivotal issues in clinical treatments and procedures. Clear 
and sufficient evidence, demonstrating a new treatment or procedure is effective and 
safe, is required before its approval by the Food and Drug Administration [18]. Dif-
ferent from efficacy assessment aiming to prove effectiveness, a safety study seeks 
to identify adverse effects potentially associated with the new treatment [18]. The 
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adverse effects are detected by capturing certain adverse events, which are those 
events with dangerous and unwanted tendencies, such as death, stock, and heart fail-
ure. Oftentimes, the adverse events of interest are rarely observed, as their occur-
rence rate could be extremely low. As a result, a single clinical trial, even with hun-
dreds of patients enrolled, may be powerless to detect safety issues, if there is any. 
In this so-called rare-event situation, synthesis of the evidence from dozens or even 
hundreds of clinical trials may be the only way to make a reliable and meaningful 
conclusion [8]. This evidence synthesis process is often termed as meta-analysis in 
statistical and clinical literature. In the past decade, meta-analysis has been recog-
nized and demonstrated as an effective tool in the discovery of safety issues. For 
example, in a high-profile meta-analysis of 48 clinical trials, Nissen and Wolski [12] 
concluded that the diabetic drug Rosiglitazone had a significant association with 
myocardial infarction. Such a discovery would not be possible if the 48 trials were 
not pooled together, as an analysis of any single-trial data did not yield statistical 
significance.

A common issue in meta-analysis of adverse events is the existence of the so-
called double-zero studies. A double-zero study is a situation in which no adverse 
events occur in either the control or treatment arm of a study. Such studies may take 
a great proportion in the study cohort when the event rates are very low. There are 
extensive discussions on how to deal with double-zero studies in the literature (see, 
e.g., [2, 6, 8, 9, 19, 26]). A consensus so far is that the common continuity correc-
tion (i.e., adding 0.5 to zeros) may result in severe bias [8, 9, 14, 19]. However, 
there is still an unsettling question—when and how double-zero studies contribute 
to inference?

The impact of double-zero studies on statistical inference for the odds ratio (or rela-
tive risk) has been researched in the literature. Note that the odds ratio and relative risk 
have similar values when event rates are low. Some argue that in theory such studies 
provide information for inference. For example, Xie et al. [23] showed that double-zero 
studies can contribute to the full likelihood of the common odds ratio and therefore they 
contain information for meta-analysis inference. Nevertheless, others have reported 
numerical results that are not consistent or even contradictory to each other. For exam-
ple, in the analysis of 60 clinical trials on the coronary artery bypass grafting, Kuss [7] 
observed the relative risk changed little with the 35 double-zero studies either included 
or excluded. In their development of an exact meta-analysis approach, Liu et  al. [9] 
and Yang et al. [26] observed that the inclusion of double-zero studies always results 
in wider confidence intervals for the odds ratio and relative risk, which implies that the 
influence of double-zero studies may make inference conservative and potentially less 
efficient. Ren et al. [14] showed odds ratio disagreement between inclusion and exclu-
sion of double-zero studies (c.f. Tables 3-4 therein) in 386 real data meta-analyses. But 
their comparison in this regard was limited to the inverse-variance method and Man-
tel-Haenszel method which required continuity corrections to incorporate double-zero 
studies. Xu et al. [25] used the generalized linear mixed model and performed a similar 
comparison in 442 meta-analyses. They reported noticeable numerical changes (e.g., 
odds ratio direction or statistical significance) when double-zero studies were excluded 
from meta-analysis. Xu et al. [24] used Doi’s inverse variance heterogeneity (IVhet) 
model with continuity corrections (of 0.5) to include double-zero studies, which led to 
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improved performance. However, they noted that this may be due to the addition of 0.5 
to zero cells. So far, the focus of the existing literature is on reaching a dichotomous 
conclusion—whether or not double-zero studies should be included in the analysis. 
There is still a lack of clear understanding of when and how double-zero studies con-
tribute to the odds ratio inference.

The goal of this paper is to use real and simulated data analyses to explain when 
and how double-zero studies contribute to the odds ratio inference. We use as a proto-
type of the cohort of Kuss [7]’s 60 clinical trials on the coronary artery bypass grafting 
(CABG) to generate new data for our numerical investigation. We use a classical bino-
mial-normal hierarchical model [4, 16] and conduct fixed- and random-effects analysis. 
Our finding is that a double-zero study contribute to the odds ratio inference through its 
sample sizes in the two arms. Roughly speaking, a double-zero study with an unequal 
allocation in the two arms (e.g., nc > nt ) contains non-ignorable information for infer-
ence. Exclusion of these studies will lead to inflated type I error, deteriorated testing 
power, and increased estimation bias.

The rest of the article is organized as follows. In Sect. 2, we review the binomial-
normal hierarchical model and a fully Bayesian inference for the odds ratio. In Sect. 3, 
we conduct a case study of Kuss [7]’s CABG data, through which we explain heuristi-
cally and numerically how the arm sizes of a double-zero study contribute to inference. 
The insights are used to guide the design of simulation studies in Sect. 4, where the 
impact of double-zero studies is demonstrated. In Sect. 5, we repeat the same investiga-
tion but in a random-effects model setting. The paper is concluded with a discussion in 
Sect. 6.

2 � A Classical Meta‑analysis Model for Odds Ratios

Given K independent clinical trials, we use the classical binomial-normal hierarchical 
model to make inference [4, 16, 17]. We assume that in the ith study, the numbers of 
(adverse) events Yci and Yti , in the control and treatment arms, respectively, follow bino-
mial distributions

where nci and nti are the numbers of participants. The goal is to compare the proba-
bility pci of the control arm with the probability pti of the treatment arm. To gauge 
the difference between pci and pti , we consider the odds ratios �i =

pti

1−pti
∕

pci

1−pci
 . The 

odds ratio is a risk measure commonly used in clinical trials, and it is studied in [9, 
14, 23] in meta-analysis of rare events.

The logarithm of the odds ratios is �i = log(�i) = log(
pti

1−pti
) − log(

pci

1−pci
) =

logit(pti) − logit(pci) . Using the log odds ratios �i , the model can be reparameterized as

where �ci is the baseline probability in the control arm of the ith study. In the clas-
sical fixed-effects model, the treatment effects �i are fixed and identical across all 

Yci ∼ Binomial(nci, pci), Yti ∼ Binomial(nti, pti), i = 1,… ,K,

(1)logit(pci) = �ci, logit(pti) = �ci + �i,
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the studies, i.e., �i = � . The fixed-effects assumption can be relaxed to allow �i to 
vary across studies. This so-called random-effects model will be examined later 
in this paper. In both fixed- and random-effects models, the baseline effects �ci are 
allowed to vary between studies. Oftentimes, they are assumed to follow a normal 
distribution

where a and b are nuisance parameters.
In this paper, we use a fully Bayesian method to make inference about � . We 

follow the convention to specify its non-informative prior as � ∼ N(0, 104) . The 
non-informative priors for the two nuisance parameters a and b in Eq. (2) can be 
specified as a ∼ N(0, 104) and b2 ∼ IG(10−3, 10−3) (see, e.g., [16, 17, 21]). We draw 
posterior samples using Markov Chain Monte Carlo via Gibbs sampling. Our imple-
mentation of Gibbs sampling uses the R package Rjags which calls the comput-
ing programs in JAGS [13]. Specifically, we run three Markov chains with distinct 
starting values to ensure that they converge to the same distribution. In each Markov 
chain, we use 10,000 burn-in iterations followed by 50,000 iterations to collect pos-
terior samples. To reduce autocorrelation within the samples, we implement a thin-
ning process, selecting every fourth value from the posterior samples of each chain.

3 � A Case Study of Coronary Artery Bypass Grafting

Ischaemic heart disease refers to a condition of insufficient blood supply to the 
myocardium. A medical therapy for this condition is coronary artery bypass graft-
ing (CABG) surgery (see, e.g., [1, 10, 27]). Traditionally, a CABG surgery is per-
formed with cardiopulmonary bypass to provide artificial circulation, and the coro-
nary artery bypass can be performed with the heart stopped. This procedure is called 
“on-pump” CABG. The on-pump CABG operation, however, may result in adverse 
events, such as myocardial, pulmonary, renal, coagulation, and cerebral complica-
tions (see, e.g., [11, 20]). In an effort to reduce the occurrence of adverse events, 
“off-pump” CABG, a relatively new procedure that does not require cardiopulmo-
nary bypass, has been developed and used in recent years (see, e.g., [5, 11, 15]).

To compare the off-pump and on-pump methods, [11] collected 60 studies to 
examine the occurrence of postoperative strokes. Out of the 60 studies, 35 studies 
did not observe any postoperative strokes in either arm. The full data set is displayed 
in Table  1. In their analysis, [11] calculated the relative risk using the standard 
inverse-variance method. The relative risk was 0.73 with a 95% confidence interval 
of [0.53, 0.99] with the p value being 0.04. Therefore, they concluded that the off-
pump method results in lower chance of postoperative strokes. Yet, their analysis 
ignored all of the 35 double-zero studies, which accounted for 58.3% of the available 
studies.

To investigate the impact of the 35 double-zero studies, [7] compared the results 
by excluding and including them in the beta-binomial model (which is different from 

(2)�ci ∼ N(a, b2),
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Table 1   Data of the 60 independent studies comparing the off-pump and on-pump methods used in the 
coronary artery bypass grafting surgery with regard to the occurrence of postoperative strokes [11]

Study Off-pump On-pump

Strokes No. of patients Strokes No. of patients

OCTOPUS2001 2 142 5 139
BHACAS I+II 2002 3 200 6 201
SMART 2003 2 100 2 100
Al-Ruzzeh 2006 2 84 1 84
DOORS 2009 10 450 18 450
MASS III 2009 3 156 5 155
ROOBY 2009 14 1104 8 1099
PROMISS 2010 0 73 0 74
BBS 2011 16 176 11 163
Matata 2000 0 10 0 10
Penttila 2001 0 11 0 11
Caputo 2002 0 20 0 20
Zamvar 2002 0 30 0 30
Carrier 2003 0 32 1 33
Raja 2003 3 150 4 150
Gerola 2004 0 80 0 80
PRAGUE-4 2004 0 208 2 192
Legare 2004 2 150 0 150
Lingaas 2004 0 60 2 60
Gasz 2005 0 10 0 20
JOCRI 2005 0 81 1 86
Ascione 2005 0 10 0 10
Niranjan 2006 1 40 1 40
Michaux 2006 0 25 0 25
Ascione 2006 0 20 0 20
Motallebzadeh 2006 1 108 5 104
Tatoulis 2006 0 50 0 50
Ozkara 2007 0 22 0 22
Hernandez 2007 0 102 3 102
Rasmussen 2007 0 18 0 17
Mandak 2008 0 20 0 20
Vural 1995 0 25 0 25
Gulielmos 1999 0 20 0 20
Czerny 2000 0 15 0 15
Diegeler 2000 0 20 1 20
Kochamba 2000 0 29 0 29
Wandschneider 2000 0 52 0 67
Czerny 2001 0 40 0 40
Sahlman 2003 1 24 1 26
Muneretto 2003 0 88 2 88
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the model used in [11]). When the double-zero studies were excluded, the relative 
risk was 0.53 with a 95% confidence interval of [0.31,0.91]. When the double-zero 
studies were included, the relative risk was 0.51 with a 95% confidence interval 
of [0.28, 0.92]. The results in the two scenarios are similar to each other, which 
suggests that information in the double-zero studies may be negligible for inference. 
However, this conclusion contradicts arguments made in other existing publications 
[9, 19, 22, 24–26].

Our intuition is that a double-zero study may contain useful information in the 
sample size of each of its arm. To illustrate this, we start with a toy example and then 
use the proof-by-contradiction method to re-analyze the CABG data set. Suppose 
the number of adverse events follows a binomial distribution Y ∼ Binomial(n, p) , 
and we observe no event, i.e., y = 0 . If the sample size n = 10 , the Bayesian method 
with a non-informative prior Beta(1, 1) on p yields a mean estimate p̂ = 0.083 with a 
95% credible interval (0.002, 0.285). However, if n = 1000 , the same inference pro-
cedure yields a mean estimate p̂ = 0.001 with a 95% credible interval (0.000, 0.004). 
The upper end 0.004 is much smaller than 0.285, and it is closer to 0. This implies 
that observing a zero event out of a larger sample size gives more confidence that 
the underlying probability is closer to zero. In other words, the same observation 
y = 0 but with different sample sizes ( n = 10 or n = 1000 ) may yield very different 
results.

Table 1   (continued)

Study Off-pump On-pump

Strokes No. of patients Strokes No. of patients

Lee 2003 0 30 1 30
Vedin 2003 0 33 0 37
Velissaris 2003 0 27 0 27
Parolari 2003 0 11 0 14
Motallebzadeh 2004 0 15 1 20
Selvanayagam 2004 0 30 1 30
Gasz 2004 0 10 0 10
Synnergren 2004 0 26 0 26
Blacher 2005 0 13 0 15
Rachwalik 2006 0 21 0 21
Malik 2006 0 25 0 25
Cavalca 2006 0 25 0 25
Gnenc 2006 0 30 0 12
Rainio 2007 0 10 0 10
Kunes 2007 0 17 0 17
Parolari 2007 0 14 0 15
Sajja 2007 0 60 1 60
Jares 2007 0 10 1 10
Formica 2009 0 30 0 30
Modine 2010 0 35 0 36
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To further manifest how the sample sizes of the two arms of a double-zero study 
may contribute to meta-analytical inference, we use the proof-by-contradiction 
method. We begin with an assumption that a double-zero study does not contrib-
ute any information to statistical inference, even through the sample sizes of its two 
arms. If this assumption is true, we can arbitrarily change its nci or nti and expect no 
or minimal numerical change in analysis result. For the CABG data set, we increase 
nci of the control arms in the 35 double-zero studies (only) and monitor the change 
in numerical results. Specifically, we multiply nci in the double-zero studies by the 
factors 2, 3, 4, and 5. Note that we do not alter the sample sizes in non-double-zero 
studies. We only alter the control-arm size nci in the 35 double-zero studies, which 
means any numerical change observed in subsequent analysis is due to the alteration 
of nci in the context of observing 0 event out of nci patients in the control arm.

Table  2 shows the odds ratio estimates and credible intervals obtained using the 
method presented in Sect. 2. When the scale factor is 1, results are shown for the analy-
sis of the original CABG data set (the first row of Table 2). When the scale factor is 
larger than 1, the sample size nci of the control arm of the 35 double-zero studies has 
been increased. Table 2 shows that when all the 35 double-zero studies are excluded 
from the analysis, the odds ratio estimates and credible intervals change little, regard-
less of the scale factors. This is in line with our expectation as we have only altered 
nci in the double-zero studies and the data in those non-double-zero studies remain the 
same. On the other hand, when the 35 double-zero studies are included in the analy-
sis, scaling up nci clearly moves the odds ratio estimate toward 1 (i.e., from 0.705 to 
0.787). In particular, when the scaling factor is 2 (e.g., nci is doubled), the upper end of 
the credible interval becomes 1.006 > 1 , which indicates a non-significant difference 
between the off-pump and on-pump methods. This is in contrast with the analysis of 
the original data set (scale factor = 1) where the upper limit of the credible interval is 
0.942 < 1 , which indicates a significant difference between the two surgical methods. 
To summarize, the numerical changes seen after nci of the double-zero studies scaled 
up contradicts the assumption that a double-zero study does not contribute any infor-
mation to inference. In fact, our experiment here (by altering nci in double-zero studies 
only) has provided numerical evidence that nci (or nti ) can contribute to meta-analysis 
nonignorable information that may change the significance conclusion.

Table 2   Analysis of the CABG data set in [11] with nci artificially increased

Excluding double-zero studies Including double-zero studies

Scale factor Odds ratio 
estimate

95% Credible interval Odds ratio 
estimate

95% Credible interval

1 0.705 [0.473, 0.942] 0.705 [0.475, 0.942]
2 0.706 [0.468, 0.945] 0.756 [0.499, 1.006]
3 0.708 [0.477, 0.949] 0.779 [0.519, 1.044]
4 0.705 [0.472, 0.946] 0.785 [0.517, 1.051]
5 0.705 [0.477, 0.945] 0.787 [0.528, 1.063]



	 Statistics in Biosciences

1 3

The numerical evidence in this section has provides critical insights into when and 
how a double-zero study may contribute to the inference. Roughly put, if a double-zero 
study contributes to the overall inference, it is through the sample sizes nci and nti of 
its two arms, and this contribution is more manifest when its two arms have unequal 
allocations (e.g., nci >> nti ). The simulation studies in the following section will 
further demonstrate this heuristic statement by considering different allocations in the 
two arms in trial designs.

4 � Simulation studies

The goal of our simulation studies is to compare the “full analysis” that includes all 
available data with “partial analysis” that excludes double-zero studies. We assess their 
performance with respect to the type I error, testing power, and estimation bias. We 
consider a variety of settings by varying (1) the odds ratio, (2) the number of subjects in 
each clinical study, and (3) the total number of clinical studies. Our results are based on 
1000 simulation repetitions.

We simulate Yci and Yti for K independent studies from Model (1). To ensure low or 
very low baseline event rates, we set the parameters Eq. (2) as a = logit(pmax∕2) and 
b =

(

logit(pmax) − a
)

∕3 . The value of pmax controls the upper bound of the baseline 
probabilities pci . When pmax = 1% or 0.5% , we summarize the distribution of pci ’s in 
Table 3. For example, when pmax = 1% , the 99% quantile of the the baseline probabili-
ties is 0.86%.

4.1 � Equal allocation

We begin with an equal allocation setting where the sample sizes of the treatment and 
control groups are the same for each clinical study (e.g., nci = nti = 200 ). We set (i) the 
total number of clinical studies K = 60 or 180, (ii) pmax = 0.5% , and (iii) the odds ratio 
� = 1, 1.2, 1.4, 1.6, 1.8 and 2 . Table 4 shows that the varying odds ratios result in dif-
ferent percentages of the double-zero studies ranging between 23% and 37% . Our goal 
is to test testing power when the null hypothesis is H0 : the odds ratio � = 1.

We compare the full and partial analyses in terms of the type I error and testing 
power. When K = 60 , the top panel of Table 4 shows that these two types of analyses 
produce similar type I error rates, both of which are close to the 5% nominal level. 
The partial analysis also yields similar testing power to that of the full analysis across 
all the odds ratios greater than 1. This observation implies that in this equal allocation 
setting, the partial analysis may perform as well as the full analysis. In other words, 
the inclusion/exclusion of double-zero studies has little influence on the inference 

Table 3   Distribution of the 
baseline probabilities pci

p
max

Mean Standard deviation 95% quantile 99% quantile

1.00% 0.51% 0.12% 0.73% 0.86%
0.50% 0.26% 0.06% 0.37% 0.43%
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even when double-zero studies take a significant proportion (23–37%) of the available 
studies. This conclusion holds when the number of studies increases to K = 180 as 
seen in the bottom panel of Table 4.

In Table 5, we examine the bias in odds ratio estimates produced by the partial 
and full analyses. The results show that both partial and full analyses yield small 
biases, which are comparable to each other. This observation suggests that in this 
equal allocation setting, the inclusion/exclusion of double-zero studies has negli-
gible influence on the estimation bias. This conclusion holds for both K = 60 and 
K = 180.

Remark 1  We use Gelman–Rubin diagnostic test to assess convergence of Markov 
chains [3]. For example, Table  6 presents a summary of the Gelman–Rubin 
diagnostic test statistics for the equal allocation setting where K = 60 . The mean and 
maximum statistics show that Gelman–Rubin diagnostic test statistics in all 1000 
simuation replications are close to 1, indicating satisfactory convergence of Markov 
Chains.

4.2 � Unequal allocation

Unequal allocation ( nci > nti ). We continue to carry out our comparative analyses 
but using an unequal allocation setting, where the sample sizes of the treatment and 
control groups could be very different. The simulation setting is similar to the previ-
ous one except that 120 out of 180 clinical studies are unequally allocated. Specifi-
cally, we set nci = 100 in the control arm and nti = 50 in the treatment arm. For the 
remaining 60 studies, the treatment and control groups have equal sample sizes (e.g., 
nci = nti = 200 ). The total sample size ( nci + nti ) is not comparable across all the 
studies, which is intentional as it is not uncommon (see the meta-data in [12]).

In this setting that contains unequal-allocation studies, we continue to compare 
the full and partial analyses in terms of the type I error and testing power. When 

Table 4   Power for testing the null hypothesis H
0
∶ � =1 (equal allocation)

Odds ratio 1.0 1.2 1.4 1.6 1.8 2.0

K = 60

 Full analysis 5.30% 6.00% 16.90% 38.40% 59.80% 80.70%
 Partial analysis w/o double-zero studies 5.30% 6.30% 16.90% 37.40% 59.70% 81.70%
 Average number of double-zero studies 22 20 18 16 15 14

K=180
 Full analysis 4.60% 17.50% 61.80% 91.60% 99.10% 99.90%
 Partial analysis w/o double-zero studies 4.60% 17.80% 61.10% 91.60% 99.40% 99.90%
 Average number of double-zero studies 67 61 55 50 45 41
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pmax = 0.5% , the number of double-zero studies in each meta-analysis ranges from 
86 to 104 (the proportion ranging from 48 to 58% ). The top panel of Table 7 shows 
that the type I error produced by the partial analysis is 10.10% , which is twice as 
large as the 5 % nominal level. In contrast, the full analysis yields a type I error of 
4.80% , which is close to the 5 % nominal level. Furthermore, the partial analysis has 
much lower testing power across all the odds ratios greater than 1, when compared 
to that of the full analysis. For example, if we examine the odds ratio = 1.4 in 
the third column of Table  7, the testing power of the partial analysis is 15.20% , 
which is less than a half of that of the full analysis (33.50% ). These observations 
demonstrate that in this unequal allocation setting, the full analysis outperforms the 
partial analysis. The exclusion of double-zero studies from the analysis can result 
in substantially inflated type I error and substantially undermined testing power. 
When pmax increases to 1 % , the bottom panel of Table 7 shows that the exclusion 
of double-zero studies severely inflates the type I error (e.g., 11.30% ) and adversely 
undermines its power as well (e.g., 10.30% as compared to 21.90% from the full 
analysis when the odds ratio is 1.2).

In Table 8, we examine the bias in odds ratio estimates produced by the partial 
and full analyses. When pmax=0.5% , the top panel shows that the estimation 
bias in the partial analysis is double or even triple of those produced in the full 
analysis across all the odds ratios considered. For example, when the odds ratio 

Table 6   Summary of Gelman–
Rubin diagnostic test statistics 
in 1000 simuation replications 
for the equal allocation setting 
where K = 60

Odds ratio 1.0 1.2 1.4 1.6 1.8 2.0

Full analysis
 Mean 1.002 1.001 1.002 1.002 1.002 1.002
 Maximum 1.018 1.017 1.018 1.017 1.017 1.018
 Minimum 1.000 1.000 1.000 1.000 1.000 1.000

Partial analysis
 Mean 1.003 1.003 1.002 1.003 1.003 1.003
 Maximum 1.020 1.019 1.020 1.020 1.019 1.020
 Minimum 1.000 1.000 1.000 1.000 1.000 1.000

Table 7   Power for testing the null hypothesis H
0
∶ � =1 (unequal allocation: nci > nti)

Odds ratio 1.0 1.2 1.4 1.6 1.8 2.0

p
max

= 0.5%

 Full analysis 4.80% 9.80% 33.50% 66.20% 88.20% 97.20%
 Partial analysis w/o double-zero studies 10.10% 4.70% 15.20% 43.80% 73.90% 90.90%
 Average number of double-zero studies 104 100 97 93 90 86
p
max

=1%
 Full analysis 6.00% 21.90% 67.60% 95.00% 99.60% 100.00%
 Partial analysis w/o double-zero studies 11.30% 10.30% 46.90% 86.40% 97.80% 99.99%
 Average number of double-zero studies 65 61 57 54 50 48
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is 1.2, the bias produced from the partial analysis is −0.09. which is three times 
as large as bias (0.03) produced by the partial analysis. When pmax = 1% , our 
observation in the bottom panel of Table  8 is similar. The full analysis shows 
much smaller bias. These observations again confirms double-zero studies can 
contain useful information for inference in the unequal-allocation setting, and 
including them in the analysis can decrease the estimation bias.

Remark 2  We carry out additional simulations when the total number of studies K 
is much smaller (e.g.,K = 60) , and the total sample size (nci + nti) is comparable 
across all the clinical studies (e.g., (nci = 300, nti = 100) and (nci = 200, nti = 200)) . 
The results are similar and can be found in Supplementary Materials A.

Unequal allocation ( nci < nti ). We consider another unequal-allocation set-
ting but set nci = 200 < nti = 400 in 120 studies, out of the 180 simulated studies. 
Treatment and control arms have equal sample sizes in the remaining 60 studies 
(i.e., nci = nti = 200).

Table 9 shows that the type I error produced by the partial analysis is slightly 
inflated (7.00% ), whereas the type I error (6.20% ) yielded by the full analysis is 
closer to the 5 % nominal level. On the other hand, the full analysis yields higher 
testing power than that of the partial analysis across all the odds ratios greater 
than 1 (e.g., 49.60% versus 41.10% when the odds ratio = 1.3). For example, the 
full analysis has an increase of 2.0–8.5% in testing power across odds ratios, when 
compared to that of partial analysis. These observations indicate that the full 
analysis outperforms the partial analysis. Meta-analyses with double-zero studies 
can have greater testing power in an unequal-allocation setting.

In Supplementary Materials B, we compare bias in odds ratio estimates 
between partial and full analyses. The full analysis shows much smaller bias (see 
Table S3 for details).

Table 9   Power for testing the null hypothesis H
0
∶ � =1 (unequal allocation: nci < nti)

Odds ratio 1.0 1.1 1.2 1.3 1.4 1.5 1.6

p
max

= 0.5%

 Full analysis 6.20% 9.00% 23.00% 49.60% 74.00% 89.70% 96.40%
 Partial analysis 

w/o double 
studies

7.00% 6.10% 17.90% 41.10% 66.40% 84.70% 94.40%

 Average number 
of double-zero 
studies

49 46 43 40 37 34 32
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5 � Results in a Random‑Effects Model Setting

In this section, we examine the difference between the partial and full analyses in 
a random-effects model setting. In the random-effects model, the treatment effects 
�i ’s are assumed to be drawn from a normal distribution �i ∼ N(�, �2) . More 
specifically,

In the random-effects model, the parameter of interest is the mean parameter � of the 
distribution of �i in Model (3). The non-informative priors for � and �2 can be speci-
fied as N(0, 104) and IG(10−3, 10−3) , respectively (see, e.g., [16, 21]). The priors for 
both a and b can be specified in the same way as in the fixed-effects model.

We simulate data from Model (3) to compare the full and partial analyses. We set 
the parameter �=0.1 to mimic the heterogeneity in the last column of Table 11. The 
rest of simulation settings is similar to that of the fixed-effects model in Sect. 4.2, 
unequal allocation ( nci > nti ). Table  10 shows that the type I error produced by 
the partial analysis is severely inflated (11.30% ), whereas the type I error (6.90% ) 
yielded by the full analysis is close to the 5 % nominal level. On the other hand, when 
the odds ratios are greater than 1, the full analysis yields higher testing power than 
the partial analysis (e.g., 60.20% versus 48.80% when the odds ratio=1.6). These 

(3)
logit(pci) = �ci, logit(pti) = �ci + �i, i = 1,… ,K.

�ci ∼ N(a, b2), �i ∼ N(�, �2).

Table 10   Power for testing the 
null hypothesis H

0
∶ � =1 in the 

random-effects model

Odds ratio 1.0 1.2 1.4 1.6 1.8 2.0

Full analysis 6.90% 7.80% 30.20% 60.20% 83.80% 93.90%
Partial analy-

sis w/o 
double-
zero studies

11.30% 6.10% 21.30% 48.80% 78.10% 91.20%

Average 
number of 
double-
zero studies

104 100 96 92 89 86

Table 11   Random-effects analysis of the CABG data set in [11] with the sample size nci in the control 
arms of the double-zero studies artificially increased

Scale factor Excluding double-zero studies Including double-zero studies

Odds ratio est. 95% Credible 
interval

� est. Odds ratio est. 95% Credible 
interval

� est.

1 0.599 [0.294, 0.893] 0.110 0.555 [0.230, 0.866] 0.123
2 0.590 [0.294, 0.882] 0.105 0.654 [0.305, 0.979] 0.103
3 0.602 [0.305, 0.899] 0.113 0.691 [0.356, 1.028] 0.086
4 0.598 [0.287, 0.901] 0.109 0.715 [0.396, 1.033] 0.093
5 0.598 [0.300, 0.889] 0.106 0.706 [0.361, 1.047] 0.098
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observations indicate the inclusion of double-zero studies increases testing power 
while reducing the type I error.

Similar to the real data analysis conducted in Sect. 3, we assume that a double-
zero study does not contribute to statistical inference, even when taking into consid-
eration the sample sizes of both arms. If this premise is true, we can alter the sample 
size nci or nti and expect little or no numerical change in the analysis results. Specifi-
cally, we increase the sample size of the control arm by multiplying it by the factors 
of 2, 3, 4, and 5.

Table 11 shows odds ratio estimates, credible intervals and estimates of the het-
erogeneity parameter � obtained using the method presented in Sect. 5. When the 
scale factor is set to 1, analysis results are shown for the original CABG data set 
(the first row of Table 11). When the scale factor exceeds 1, the sample size nci of 
the control arm in the 35 double-zero studies has been increased. Table 11 shows 
when all of the 35 double-zero studies are removed from the analysis, the odds ratio 
estimates, credible intervals, and heterogeneity estimates remain almost unchanged, 
regardless of the scale factors. This is consistent with our expectations, as we have 
only modified nci in the double-zero studies, while the data in the non-double-zero 
studies remains unchanged (from the second to the fourth columns of Table  11). 
Conversely, when the 35 double-zero studies are incorporated into the analysis, 
increasing nci leads to a noticeable shift of the odds ratio estimate towards 1 (from 
0.555 to 0.706). Furthermore, if the scaling factor is set to 3 (i.e., nci is tripled), the 
upper end of the credible interval becomes 1.028 > 1 . This suggests that there is 
no significant difference between the off-pump and on-pump methods. This stands 
in contrast to the analysis of the original dataset (scale factor = 1), in which the 
upper bound of the credible interval is 0.866 < 1 , indicating a significant difference 
between the two surgical methods. In summary, the numerical alterations observed 
after scaling up nci in the double-zero studies contradict the assumption that a dou-
ble-zero study does not provide any information for inference. In fact, our experi-
ment here (by modifying nci solely in the double-zero studies) has provided numeri-
cal proof that nci (or nti ) can supply non-ignorable information to meta-analysis that 
may alter the conclusion of significance.

In Supplementary Materials B, we examine bias in odds ratio estimates produced 
by the partial and full analyses. The full analysis shows much smaller bias (see 
Table S4 for details).

6 � Discussion

Rare adverse events, such as strokes and deaths, are of crucial concerns in safety 
studies of clinical treatments and procedures. However, their low occurrence 
rates pose challenges and questions for statistical inference. Many of them are 
surrounding double-zero studies. The debate concerning the inclusion and exclu-
sion of double-zero studies was prominently sparked by the high-profile study 
by [12]. To examine the safety of the diabetic drug Rosiglitazone, they used 
Peto’s method through which double-zero studies did not contribute anything to 
the inference. This practice has been questioned by many statisticians, leading to 
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two lines of research. One line has focused on the development of new methods 
that can incorporate double-zero studies without using 0.5 corrections (see the 
review article by [8]). The other line has attempted to reach a inclusion/exclusion 
conclusion, which is nevertheless dichotomous (see the references cited in the 
introduction). Before recommending an action (inclusion/exclusion), one ques-
tion needs to be answered; that is, when and how double-zero studies contribute 
to the odds ratio inference. This is the main purpose of our investigation, and 
we intentionally avoid advocating a specific inclusion/exclusion action. As shown 
in our paper, double-zero studies may contribute significantly in some scenarios 
while in other scenarios they contribute little.

Through numerical studies, we have empirically found that when the following 
two conditions are met, double-zero studies may likely contribute to the odds ratio 
inference to a notable extent. 

	 (i)	 The group of non-double-zero studies itself contains adequate information for 
double-zero studies to borrow.

	 (ii)	 There is a substantial number of double-zero studies with unequal allocation 
in the two arms.

Basically, to see notable impact of double-zero studies, Condition (i) says that the 
number of non-double-zero studies Knon−DZ can not be small. Otherwise, there is not 
adequate information to borrow from. Condition (ii) says that the number of double-
zero studies with unequal allocations KDZ−uneqaul should be (moderately) large. Oth-
erwise, the impact of double-zero studies may not accumulate sufficiently to make 
a practical difference. These two conditions can be explained more intuitively in a 
non-meta-analysis setting where all the K studies have the same baseline probability 
and odds ratio. In this setting, we can stack the data throughout the K studies and 
form a single 2 by 2 contingency table to draw an inference. If Condition (i) is not 
met and Knon−DZ is too small, the odds ratio inference may be too unreliable as the 
numerators of the control and treatment arms may be small. If Condition (ii) is not 
met and KDZ−uneqaul is not large, we may not see disproportionate increases in the 
denominators of the control and treatment arms and thus a difference in the odds 
ratio inference. An implication is that if the total number of studies K is small, at 
least one of the two conditions cannot be met, and therefore, the impact of double-
zero studies may not be significant enough to make a clinical difference.

When the impact of double-zero studies is non-ignorable, our finding is that 
they contribute to odds ratio inference through the sample sizes in their two arms. 
When a double-zero study has unequal allocation in its two arms, it may contain 
non-ignorable information. If double-zero studies as such make up a large propor-
tion of the study cohort, they should not be excluded from analysis. If excluded, the 
inference may not be valid or efficient as we have seen severely inflated type I error, 
deteriorated testing power, and increased estimation bias in our numerical study.

In practice, study level characteristics may explain the variation in the preva-
lences of adverse event outcomes as well as the differences between active treat-
ment and control. These factors may be accounted for in meta-analyses through 
meta-regression. It is interesting to examine how double-zero studies may impact 
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inference especially when the site-level characteristics may be related to the occur-
rence of double-zero studies.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s12561-​024-​09431-y.
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