
Vol.:(0123456789)

Statistics in Biosciences
https://doi.org/10.1007/s12561-024-09428-7

1 3

ORIGINAL PAPER

Integrative Analysis of Site‑Specific Parameters 
with Nuisance Parameters on the Common Support

Ho Yi Alexis Ho1 · Shuoxun Xu1 · Xinzhou Guo1

Received: 30 September 2023 / Revised: 2 February 2024 / Accepted: 17 March 2024 
© The Author(s) 2024

Abstract
High-throughput technologies in bioscience have pushed us into an era with high 
dimensionality. Swamped by thousands of predictors, detecting the valuable sig-
nal from the noise in clinical studies becomes challenging. As a common strategy, 
integrative analysis utilizing similarities across multiple studies might help lift the 
curse of dimensionality and enhance statistical power. However, due to the growing 
concern about individual data privacy, data-sharing constraints are often imposed in 
integrative analysis. These might lead to results inequivalent to ones without sharing 
constraints and reduce statistical power in integrative analyses. In this paper, built 
on Abess, we propose an integrative analysis method to estimate the site-specific 
parameters in the presence of high dimensional nuisance parameters in multi-site 
studies. Implemented with a carefully designed L2,0 penalization on nuisance param-
eters, the proposed method satisfies both the DataSHIELD constraint, which only 
allows the transmission of summary statistics from sites, and the equivalence prop-
erty that the solution is exactly the same as the solution merging all datasets into one 
on a single location. Assuming the nuisance parameters share a common support, 
the proposed method has support recovery and selection consistency with high prob-
ability and exhibits improved estimation accuracy on the site-specific parameters 
and low computational cost in numerical experiments. We demonstrate the merit of 
the proposed method by investigating the relationship between the CD8 T cell count 
and the treatment effect of zidovudine-incorporated therapy in the AIDS Clinical 
Trials Group Study 175.
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1  Introduction

1.1 � Integration Analysis Under DataSHIELD Constraint

Advancements in high-throughput technologies enable bioscientists to access 
data from numerous angles within one biological sample, and hundreds, even 
thousands of variables associated with the genome, transcriptome, proteome, 
metabolome, epigenome, etc., are of interest [1]. Extracting and statistically 
analyzing informative features area primary step in understanding the biologi-
cal mechanisms of diseases, such as HIV [2–4]. However, because of the limited 
observational sample size, detecting the signal of informative features is rather 
challenging due to the high dimensionality [5]. In practice, a natural solution 
to address the curse of dimensionality is to increase the sample size by merg-
ing datasets from different sources, often known as integrative analysis in the lit-
erature [5, 6]. Such integration is regular in evidence-based medicine apart from 
the group-centered studies [7], as valuable medical topics are often repetitively 
examined by more than one research unit and share similarities across different 
locations [8]. Still, the discrepancy exists in the patient population, and heteroge-
neity between various studies becomes a significant challenge in integrative anal-
ysis [5, 9]. Another obstacle in the integrative analysis is related to data-sharing 
constraints; analysts might not be able to share individual-level data because of 
legal and privacy concerns. For instance, the patient-level medical information 
linked with electronic health records (EHR) usually cannot go past the firewall of 
its associated hospital [5].

Facing such data-sharing constraints, [10] proposed a widely adopted indi-
vidual privacy-preserving framework, DataSHIELD, for integrative analysis. The 
mechanism of DataSHIELD is to pass only summary statistics from decentralized 
local nodes to the central node in integrative analysis. However, current Data-
SHIELD-supported approaches under the high-dimensional setting often fail to 
consider or cannot be easily extended to accommodate cross-site heterogeneity 
without sacrificing statistical efficiency; see [5, 6]. These examples include, but 
are not limited to, the aggregated debiased lasso estimator adopted by [11–13] 
where local debiasing might incur additional estimation errors. Other works, such 
as [14, 15], can avoid efficiency loss but only work for cross-site homogeneous 
scenarios and demand successive communications between local machines and 
central nodes, which could waste time and resources.

Recently, several improvements have been made to accommodate cross-site 
heterogeneity in integrative analysis within the DataSHIELD framework [5, 6], 
but these require the calculation of the estimator at local sites and an approxima-
tion of the loss function. Such an approximation can lead to inequivalent solu-
tions in contrast with the solutions obtained by merging all datasets into one, 
followed by potentially associated accuracy and efficiency loss. In addition, the 
DSILT Algorithm proposed by [5] requires the summary statistics to be updated 
and transmitted frequently, which may pose further privacy concerns besides 
increased computational complexity. Relevant work has also been considered 
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under the names of distributed learning [16] and federated learning [17–20]. 
However, similar to the existing literature in integrative analysis, they often fail to 
address one or some of the issues concerning high dimensionality, site heteroge-
neity, data privacy, computational cost, estimation accuracy, and equivalence, and 
we aim to bridge the gap.

In this paper, we focus on the DataSHIELD constraint and propose a L2,0 method to 
conduct integrative analysis. The proposed method can naturally accommodate high 
dimensionality and site heterogeneity with low computational cost, and improve the 
estimation accuracy by utilizing the common supports across different sites and imple-
menting L2,0 penalization solely on nuisance parameters. The most distinctive feature 
of our algorithm is that it can achieve equivalence (in contrast with approximated ones) 
under the DataShield constraint, which means the results produced by our algorithm 
are exactly the same as the ones if all datasets across different sites have been merged 
into one. The equivalence property helps eliminate the concern of potential estimation 
accuracy and efficiency loss induced by approximation algorithms for integrative anal-
ysis under the data-sharing constraint. We introduce the model setting and outline of 
the proposed method, particularly the common support assumption and the L2,0 penali-
zation in Sects. 1.2 and 1.3, respectively.

Notations: |⋅| denotes the size of the set. [i] represents the set {1,… , i} . Suppose a, b 
are constants. a[i] ∶= {a,… , ai} and [i] − b ∶= {1 − b,… , i − b} . That is, we operate 
on each element in the set. S1⧵S2 symbolizes the set difference operation. We define 
S1 × S2 as the cartesian products of two sets S1 and S2 . X[S1×S2]

 means the submatrix 
whose entires are in the kth row and � th column of matrix X, where k ∈ S1 and � ∈ S2 . 
Inspired by [21], we modified their notations and practiced as follows. Define selected 
set A = {j ∈ [p] ∶ ||�Gj

||2 ≠ 0} . The unselected set is I = [p]�A = A
c . We let 

�A = (�Gj
, j ∈ A) ∈ R

M⋅|A| . That is, the dimension of �A is the scalar product between 
the total number of sites M and the set size |A| . We define 
XA = (XGj

, j ∈ A) ∈ ℝn×(M⋅|A|) and denote �∗ as the true regression coefficients. The 
true subsets of groups is A∗ = {j ∈ [p] ∶ ‖�∗

Gj
‖2 ≠ 0} . I∗ =

(
A

∗
)c.

1.2 � Model Statement

We consider an integrative analysis problem with multiple datasets of linear models, a 
setting broadly considered in practice; see [22, 23]. Suppose there are M independent 
studies. The m-th study contains nm random observations on the outcomes 
y(m) = (y

(m)

1
,… , y(m)

nm
)⊤ , vector D(m) = (D

(m)

1
,… ,D(m)

nm
)⊤ ∈ ℝnm and covariate matrix 

X(m) = (X
(m)⊤

1
,… ,X(m)⊤

nm
)⊤ ∈ ℝnm×p . Within each study, we assume the same regres-

sion model:

where �(m) ∈ R denotes the site-specific parameter of our interest. Here, we focus 
on a one-dimensional site-specific parameter for the sake of presentation, but the 
model can be naturally extended to multi-dimensional site-specific parameters. The 

(1)y
(m)

i
= D

(m)

i
⋅ �(m) + X

(m)

i
�(m) + �

(m)

i
, i = 1,… , nm
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coefficient vector �(m) = (�
(m)

1
,… , �(m)

p
)⊺ represents nuisance parameters, which are 

out of our interest but used for model adjustment in practice. �(m)
i

 are i.i.d. error 
terms satisfying �(�(m)

i
|D(m)

i
,X

(m)

i
) = 0.

One motivating example of Model (1) is the estimation of treatment effects in 
multi-site observational studies where the potential confounder bias needs to be 
accounted for by appropriate statistical methods, such as matching methods [24, 
25] and AIPWE [26]. Here, as suggested by [27, 28], we consider using a regres-
sion model to adjust the potential confounder bias and let D(m) denote the treatment 
indicator and X(m) denote the potential confounder of the m-th site. Then, the site-
specific parameter �(m) is the treatment effect of the m-th site, which is of our inter-
est, and �(m) is the confounder effect, a nuisance parameter. Other motivating exam-
ples include but are not limited to the repeated measurement design, where a subject 
might be measured multiple times across different sites [29], and the multiple-meas-
urement-vector (MMV) problem, where signals are collected from different sources 
[30].

Based on Model (1), to borrow similarities across different sites to improve esti-
mation accuracy in integrative analysis, we consider a common support assumption 
that the sparsity sets are the same across different sites. Sparsity is a widely adopted 
assumption to ensure the identifiability of the model in high dimensions [31]; i.e., 
p > nm . Although the parameters might not be the same across different sites due to 
site heterogeneity, the sparsity of the nuisance parameter might be the same in many 
practical applications. Take the multi-site observational study as an example; though 
the specific effects of the confounders might be different, the true confounders (fea-
tures) are often the same due to the similarity of patients’ preferences in choosing 
the drugs regardless of the sites. Other examples naturally bearing the common sup-
port assumption include the repeated measurement design and the MMV problem 
where for each subject or signal, measurement across different sites are expected to 
have the same sparsity set [32–34]. In specific, let

denote the active set. The common support assumption means that

Note that here, we impose the common support assumption solely on the nuisance 
parameter. This is because the site-specific parameter is what we wish to study and 
to improve the estimation accuracy of the parameter of interest, site-specific param-
eters should be retained in the reduced model rather than being screened out during 
the feature selection [35].

The main difference between the common support assumption considered in this 
paper and the similar parameter assumption considered in the fusion method [11, 
36] is where the sparsity arises. Specifically, the common support assumption is 

(2)supp(�(m)) = {j ∶ �
(m)

j
≠ 0}.

(3)supp(�(1)) = ⋯ = supp(�(m)) = ⋯ = supp(�(M));

(4)s = |supp(𝛽(m))| < n.



1 3

Statistics in Biosciences	

w.r.t. the sparsity of the parameters, while the similar parameter assumption is w.r.t 
the sparsity of the distance between the parameters, which is similar to the differ-
ence between lasso and fused lasso [37]. Both the sparsity of the parameters and 
the sparsity of the distance between the parameters have practical implications, and 
we might adopt one or both in real-world scenarios; e.g., the sparsity in genomics 
[38] and the sparsity in the distance between parameters in time-varying/spatial data 
[39]. In this paper, we focus on the common support assumption, which induces the 
same sparsity of the parameter across different sites.

1.3 � Outline of the Proposed Method

Besides passing only summary statistics from the local sites, our proposed method 
consists of two key elements. The first key element of the proposed method is that 
we apply the L2,0 penalization to induce the same support set over the nuisance 
parameter. The second key element of the proposed method is that we place the L2,0 
penalization solely on the nuisance parameter but not on the site-specific parameter.

For the first key element, we consider L2,0 instead of L2,1 , another widely adopted 
strategy to induce the same support, for the following two reasons. First, it is well 
known that L2,1 suffers from the selection bias and over-shrinkage of significant coef-
ficients, while L2,0 is more favorable as it allows an explicit presentation of support 
size [21, 40]. Second, based on L2,0 , with a carefully designed algorithm to assemble 
the summary statistics, we can address inequivalence issues in those approximation 
integrative analysis methods based on L2,1 under the DataSHIELD constraint. The 
second key element, penalization solely on the nuisance parameter, is due to the fol-
lowing two reasons. The first reason is such partial penalization can help improve 
model interpretation. Take the above multi-site observational study as an example; it 
is hard for researchers to conclude or explain the treatment efficacy if the treatment 
indicator is excluded from their selected model [41]. The second reason is that keep-
ing the parameter of interest in the model can help improve estimation accuracy. As 
argued by [35], prior information should be taken into account in feature selection. 
In particular, the parameters deemed important, such as the parameter of interest in 
this paper, should be retained in the selected model to improve estimation accuracy.

The rest of the paper will be organized as follows. We will first review the single-
site algorithm proposed by [21] and then present ours, enabling multi-site function-
ing with penalization solely on the nuisance parameter in Sect. 2. The theoretical 
properties will be in Sect. 3, followed by the simulation and the real-data application 
in Sects. 4 and 5, respectively. At the end, we will have a summary in Sect 6.

2 � Methodology

2.1 � Innovative Use of Splicing Approach

As discussed in Sect. 1.3, we aim to apply L2,0 to induce the same support across dif-
ferent sites. It is well known that L2,0 leads to an intractable nonconvex problem, and 
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among the few existing computational methods for L2,0 , we consider the single-site 
best subset of groups selection (BSGS) algorithm - Abess, which adopts a splic-
ing approach proposed by [21]. In contrast to traditional feature selection methods, 
which focus on each variable individually, BSGS incorporates the grouping infor-
mation of variables and selects features at the group level. By employing the splic-
ing technique, the algorithm iteratively includes the significant groups and discards 
the nonessential ones, enhancing the interpretability of the outcome variable. Under 
mild assumptions, the algorithm has been proven to possess polynomial complexity 
with a high probability of determining the optimal subsets of groups, even in high-
dimensional feature spaces.

In specific, [21] assumed a linear model composed of J non-overlapping groups, 
referred to as a group linear model. The model is formulated as follows:

They denote y ∈ ℝn as the outcome variable and represent the j th group’s regressor 
matrix as XGj

∈ ℝn×pj , where pj is size of the jth group. They define �Gj
∈ ℝpj as the 

j th group’s regression coefficients and � ∈ ℝn as the random error term. Gj refers to 
a collection of indices associated with predictors that belong to the jth group. Addi-
tionally, ∪J

j=1
Gj = [p] , where Gi and Gj are disjoint for all i ≠ j . In the simplest case, 

the model converts to the ordinary linear model when the group size pj = 1 for all 
j ∈ [J].

To use splicing to address the problem of our interest, we need to categorize the 
same variable across different sites as a group in an appropriate way. Suppose we are 
indifferent between the site-specific and nuisance parameters. We can modify 
y = (y(1)

⊺
,⋯ , y(M)⊺)⊺ ∈ R

n , �Gj
= (�

(1)

j
,⋯ , �

(M)

j
)⊺ ∈ ℝM , and 

� = (�(1),⋯ , �(M))⊺ ∈ ℝM . However, because of the unmatched dimensionality, one 
will fail to construct the proper setting when assigning XGj

 as a general matrix previ-
ously permitted by [21]. Such a challenge motivates us to consider a special regres-
sor matrix with a diagonal block structure. Formally, we design 
XGj

= diag(X
(1)

j
,⋯ ,X

(M)

j
) ∈ R

n×M for j ∈ [p] . D = diag
(
D(1),⋯ ,D(M)

)
∈ R

n×M , 
where D(m) ∈ R

nm , �(m) ∈ R , �(m)
j

∈ R for j ∈ [p].
Equivalently, we can write the group linear model in its general matrix form. The 

idea is that we append the treatment indicator to each design matrix of biomarkers 
on each site, intending to show the indifference between the nuisance and site-spe-
cific parameters under our temporary assumption.

where 𝛽 = (𝛽(1)⊺,⋯ , 𝛽(M)⊺)⊺ ∈ ℝM(p+1) and 𝛽(m) = (𝛽(m)⊺, 𝛼(m)⊺)⊺ for m ∈ [M] . 
X̆ = diag(X̆(1),⋯ X̆(M)) ∈ R

n×(M(p+1)) and X̆(m) = [X(m),D(m)] ∈ R
nm×(p+1).

Suppose the entire dataset resides at a single site, and we allow for penalizing 
site-specific parameters. The feature selection and parameter estimation can be per-
formed using the algorithm introduced by [21] after the problem reformulation. 

(5)y =

J∑
j=1

XGj
�Gj

+ �.

(6)y = X̆𝛽 + 𝜖,
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With initially selected predictors, the algorithm repetitively solves an ordinary least 
square problem with the objective function

followed by a splicing procedure. That is, the algorithm exchanges the predictors 
from selected and unselected sets to check for further improvement in the loss.

Yet, there still exist challenges to address the problem of our interest even after 
we modify [21]’s algorithm by Eq. (7). First, the algorithm in [21] does not distin-
guish between the site-specific and nuisance parameters, and � is penalized while it 
is of interest and deemed important. This might lead to less interpretable and accu-
rate results. Second, the algorithm in [21] does not consider the situation of interest 
where data are stored at multiple sites and processed under the DataSHIELD frame-
work. Extending the single-site algorithm in [21] to multiple sites under the Data-
SHIELD framework is desired but challenging. In specific, issues arise when the 
algorithm attempts to compute the optimal solutions of (7). For instance, we need to 
figure out how one of the oracle solutions,

in the k-th iteration will be computed if only the transmission of summary statistics 
is permitted.

2.2 � Proposed Method

Built on the innovative use of splicing in Sect. 2.1, we propose an integrative analy-
sis algorithm to estimate the site-specific parameters. Specifically, we first modify 
the objective function and derive an updated solution when L2,0 penalization is solely 
on the nuisance parameter. Then, we develop Algorithm 1 to assemble the summary 
statistics and outputs requested in the solution of the modified L2,0 objective func-
tion. In the end, based on Algorithm 1, we formally introduced Algorithm 2, which 
satisfies the DataSHIELD framework in a multi-site setting without penalizing the 
site-specific parameter.

To start with, we state the updated objective function

where � =
[
�(1)

⊺
,⋯ , �(M)⊺

]⊺
∈ R

Mp ; � =
[
�(1),⋯ , �(M)

]⊺
∈ R

M , n =
∑M

n=1
nm , 

X = diag
(
X(1),⋯X(M)

)
∈ R

n×(Mp) , D = diag
(
D(1),⋯D(M)

)
∈ R

n×M.
Namely, we consider a multi-site linear regression with block diagonal design 

matrices X and D. The site-specific parameter � is not subject to penalization as we 
no longer treat �Gj

 and �Gj
 as indistinguishable. While the presence of any �Gj

 for all 
j ∈ [p] is indeterminate, we always guarantee the inclusion of � in the model, which 
we refer to as the concept of conditional feature screening. Since the penalization 

(7)min
𝛽∈ℝM(p+1)

1

2n
‖y − X̆𝛽‖2

2
s.t. ‖𝛽‖2,0 ⩽ T ,

𝛽k
A

k = (X̆
⊺

A
k
X̆A

k )−1X̆
⊺

A
k
y,

(8)min
�∈ℝMp,�∈ℝM

1

2n
‖y − X� − D�‖2

2
s.t. ‖�‖2,0 ≤ T ,
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term depends on � purely, given � , the optimization of � exclusively pertains to the 
first term, which is differentiable. Solving it gives us the solution of � . That is,

In turn, once we know the optimal solution of � , we can solve for the one for � by 
splicing. We substitute the given � into (8). Some algebra turns the problem to

Remark  Problem (10) is exactly the question proposed in (7). We can directly apply 
[21]’s results after the variable transformations. Since H is idempotent and symmet-
ric, we will see cancellations in our final solutions.

However, like [21], we still face the obstacle of solving �⋄
A

⋄ , the optimal value of 
� under the optimal selected set A⋄ , without knowing XA

⋄ (the sub-matrix of X under 
the optimal selected set A⋄ ) explicitly. Hence, we are motivated to design local sum-
mary statistics containing sufficient information to restore our interested variables 
�k , �k , and Ak of the k-th iteration of splicing leading to the optimal solution in the 
center. Since for any index set Ak,

the involved pairwise products,

can be assembled by their local counterparts, respectively. That is summary statistics

sent from local sites m = 1,⋯M . Such a procedure, computing distributively and 
then assembling in the center, is achievable due to the diagonal design of the matrix 
X in our problem. As an illustrative example, we give the guidelines of constructing 
X
⊺

A
k
XA

k from X(m)

A
k

⊺
X
(m)

A
k
 in Algorithm (1). For each site m, we generate the site-spe-

cific row and column index sets. The Cartesian product of these sets indicates the 
positions in the resultant matrix, X⊺

A
k
XA

k , where the entries of X(m)

A
k

⊺
X
(m)

A
k
 should be 

placed. We emphasize the structure of the matrix X as it enables the restoration of 
the variables of interest in the center using local summary statistics. Under this 

(9)� = (D⊺D)−1D⊺(y − X�).

(10)min
𝛽∈ℝMp

1

2n
‖ŷ − X̂𝛽‖2

2
s.t. ‖𝛽‖2,0 ≤ T ,

(11)where H =
(
I − D(D⊺D)−1D⊺

)
,

(12)ŷ = Hy; X̂ = HX.

(13)
�kk = (X⊺

kHXk )−1X⊺
kHy

= (X⊺
kXk − X⊺

kD(D⊺D)−1D⊺Xk )−1(X⊺
k y − X⊺

kD(D⊺D)−1D⊺y),

X
⊺

A
k
XA

k ,X
⊺

A
k
y,X

⊺

A
k
D,D⊺D,D⊺y,

X
(m)

A
k

⊺
X
(m)

A
k
,X

(m)

A
k

⊺
y(m),X

(m)

A
k

⊺
D(m),D(m)⊺D(m),D(m)⊺y(m),
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diagonal structure, X⊺

A
k
XA

k is sparse in the sense that its remaining entries not filled 
by the summary statistics are all zeros. The presence of these zero entries eliminates 
the need for site inter-communication when assembling the resultant matrix. This 
would be infeasible if a general matrix were used instead.

Algorithm 1   Assemble X⊺

A
k
XA

k from X(m)

A
k

⊺
X
(m)

A
k

Remark  If we seek to build X⊺

A
k
XI

k , then we replace the column index set C with 
M[|Ik| − 1] + m.

It is noteworthy that, although the pairwise products required in the center, such as 
X
⊺

A
k
XA

k , D⊺D is a direct build-up of their local counterparts, their inverse are not. 
(X

⊺

A
k
HXA

k )−1 and (D⊺D)−1 is unattainable from the direct assembling of local summary 
statistics as every entry of the matrix’s inverse requires information across different 
sites. We, hence, delegate the inverse calculation to the center. Similarly, we can 
decompose �k , dk

I
k
 , the loss L into the pairwise products, which can be directly con-

structed by local summary statistics sent. However, if ever involved, the inverse will be 
calculated in the center. Most importantly, all the transmissions we mentioned above 
only occur once. For example, we only need to transmit X⊺X to the center once. Then, 
for any Ak and Ik , the product of sub-matrices X⊺

A
k
XI

k can be directly obtained from 
X⊺X stored at the center by using linear algebra such that X⊺

A
k
XI

k = (X⊺X)[Ak×Ik]

After overcoming the data privacy constraint, we are ready to introduce Algo-
rithm 2. Following a similar approach to [21], we select potentially important predic-
tors by examining their correlation with the outcome variable y. We initialize set A0 by 
sorting out the corresponding index of T largest {||X⊺

Gj
y||2

2
, j ∈ [p]} in the center, where

That requires the local nodes 1,⋯ ,M send {||X(m)

Gj

⊺
y||2

2
, j ∈ [p]} to the center. It is a 

one-off transmission.

‖X⊺

Gj
y‖2

2
=

M�
j=1

‖X(m)

Gj

⊺
y‖2

2
.
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Algorithm 2   MSplicing (Multi-Site Algorithm)
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Remark  Note that the input of Algorithm 2 is summary statistics rather than the raw 
data for data privacy protection concerns.

Allied with the idea of [21], our algorithm solves a constrained optimization 
problem. There are two major differences between Algorithm 1 and that of [21]. 
The first difference is that we have rewritten the solutions, loss, and set selection 
criteria with � unpenalized. The second difference is that, due to the distributed 
learning setting, we need to expand and break down the expression of pertinent 
variables pairwise, as demonstrated in Eq. (13), before calculating the variables 
of interest. We achieved that by calling the Algorithm 1. However, the conveni-
ence is evident as these pairwise products are already obtainable in the center, 
having no demands for additional communication between sites. Being a one-
time occurrence, the data transmission safeguards data privacy and enables the 
adoption of more advanced security techniques, such as differential privacy, in 
future work.

One may wonder why we employ Euclidian distance for the candidate pre-
screening in the while loop but use a newly defined norm during splicing. That 
is because Sk

1
 is a subset of Ak . The metrics we utilized to select Sk

1
 , hence, are 

associated with the optimal value of Ak , which minimizes the loss. However, the 
new selection criteria could be different if we attempt to move in the direction 
that lessens the loss change, as shown in Lemma 2.1.

Lemma 2.1  For any j ∈ A
k , the loss increase to L(�k) due to the disposal of the jth 

group is

where �Ak∖j represents the estimator, which we assign the entries of jth group to be 
zero.

We, hence, define new selection criteria that appeared in Algorithm 2.

where (D⊺D)−1 has already been computed in the center and requires no updates. �Gj
 

and X⊺

Gj
D are directly attainable from �k , X⊺

A
k
D and X⊺

I
k
D , respectively. For j ∈ A

k , 
X
⊺

Gj
XGj

 are extractable from X⊺

A
k
XA

k . The logic of defining the ‖dGj
‖2
DGj

 and ways of 
computing it with summary statistics is similar.

We end this section by accentuating that Algorithm  2 can automatically 
address high dimensionality and site heterogeneity. The simulations in Sect.  4 
also demonstrate that it can improve estimation accuracy. Furthermore, Algo-
rithm  2 excels in aspects including computation cost, privacy protection, and 
equivalence, and we give remarks to the last three merits.

L(�A
k�j) − L(�k) = �

⊺

Gj

(
X
⊺

Gj

(
I + D(D⊺D)−1D⊺

2n

)
XGj

)
�Gj

,

(14)‖�Gj
‖2
DGj

= �
⊺

Gj

�
X
⊺

Gj

�
I + D(D⊺D)−1D⊺

2n

�
XGj

�
�Gj

,
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•	 Computation cost: We extend the algorithm to multiple sites but only spend a simi-
lar computation cost compared to the original single-site algorithm, except for the 
time spent on assembling the summary statistics in Algorithm 1. That is because the 
proposed method can be viewed as splicing implemented on a single site, i.e., the 
center, once the summary statistics are assembled, and thus, the proposed method 
inherits the merits of computation cost in [21] and possesses polynomial complexity.

•	 Privacy protection: During the data transmission procedure, no individual data 
were exposed or utilized in the algorithm. The summary statistics we constructed 
replace their roles and suffice the need for the algorithms to function properly 
under the distributive setting. No communication has ever occurred between 
local nodes, thus eliminating the potential collusion. The data are only transmit-
ted once, and its receiving end is exclusive to the central node. The favorable 
one-time off data transfer in our algorithm, hence, easily allows for incorporating 
other privacy-preserving techniques, such as differential privacy.

•	 Equivalence: The specially designed block diagonal structure and Algorithm 1 
ensure the exact recovery of the associated variables to compute the optimal 
solutions and enable the solution output from Algorithm 2 to be equivalent. That 
is, the solution output from Algorithm 2 under the DataSHIELD constraint in a 
multi-site setting is exactly the same as the one outputted from the whole dataset 
when the datasets from different sites are pooled together at a single site.

3 � Theoretical Properties

In this section, we will provide the assumptions and, hence, develop theorems to 
justify the validity of our proposed method.

Assumption 1  The random errors �i for i ∈ [n] follow an i.i.d. sub-Gauss-
ian distribution with mean zero. Mathematically, there exists 𝜎 > 0 such that 
P
(||𝜀i|| > x

)
⩽ 2 exp

(
−x2∕𝜎2

)
 , for all x ⩾ 0.

Assumption 2  Let 0 < ĉ∗(T) ⩽ ĉ∗(T) < ∞,

Assumption 3 

Assumption 4 

ĉ∗(T)‖u‖22 ⩽
��X̂Au��22

n
⩽ ĉ∗(T)‖u‖2

2
,∀u ≠ 0, u ∈ ℝ

M⋅�A� with �A� ⩽ T .

𝜔̂T‖u‖2 ⩾
��X̂⊤

A
X̂Bu��2
n

,∀u ≠ 0, u ∈ ℝ
M⋅�B� with �A� ⩽ T , �B� ⩽ T , and A ∩ B = �.

𝜇̂T =
8ĉ∗(T)

(
(1+𝜂̂)𝜔̂T

ĉ∗(T)

)2

(1 − 𝜂̂)
(
ĉ∗(T) −

𝜔̂2
T

ĉ∗(T)

)
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0 ⩽ 𝜇̂T < 1 and the constant 𝜇̂T depends on T for some constant 0 < 𝜂̂ < 1.

Assumption 5  The minimum group signal is denoted as � = minj∈A∗
‖‖‖�Gj

‖‖‖
2

2
 and it 

satisfies TM log(M(p+1)) log(log n)

n�
= o(1) , where T is the support size and M, p, n is the 

total number of sites, nuisance parameters considered, and observations across sites, 
respectively.

Assumption 6  M|A∗| log(p+1) log(log n)
n

= o(1) and MTmax log(M(p+1))

n
= o(1) , where Tmax is 

the maximum support size.

Assumption 7  The total number of sites M = o
(
(p + 1)log(log n)

)

The assumptions listed above are either well presented and argued in the work 
of [21] or are modest extensions of the former; we consider the transformed 
matrix X̂ , given in Eq. (10), instead of the original design matrix X, to embed the 
effects of site-specific parameters. Additionally, we fix the group size to be M, a 
scenario included in the more general setting of [21].

Assumption 1 specifies the distribution for the error but not for the nuisance 
parameter X. A fixed design for the nuisance parameter avoids the distribution 
heterogeneity issue in X, which occurs in federated learning. Assumptions 2 and 
3 control the angle between the column spaces of X’s subpartitions. Specifically, 
under Assumption 3, when 𝜔̂T = 0 , the column space of X̂A is orthogonal to that 
of X̂B , implying independence between these partitioned matrices. Assumption 4 
regulates the correlation between the groups. We provide a stricter and thus better 
upper bound, �T , for �T compared to the one given by [21]. Specifically, we set 
�T = (c(2T) − c(2T))∕2 . One can then verify that �T ⩽ �T by the theorem of [42]. 
Zhang et al. [21] provides one sufficient condition to govern Assumption 4, which 
is �T ⩽ 0.188 . Alternatively, that is c(2T) ⩾ 0.812 and c(2T) ⩽ 1.188 . However, 
note that this condition is sufficient but not necessary. Therefore, it may be pos-
sible for one to relax this correlation condition further.

Under these assumptions, Theorem  3.1 proves that, with high probability, 
Algorithm 2 will not incorrectly filter out truly relevant variables. Theorem 3.2 
verifies that cooperated with the GIC criterion, the algorithm can identify the 
subset of truly relevant groups even when the model size is unknown. Its estima-
tor is the same as the oracle least-squares estimator [21]. Theorem  3.2 implies 
that, with high probability, the GIC-tuned Algorithm 2 has polynomial complex-
ity. The proof of the theoretical results can be found in the appendix.

Theorem 3.1  (Support Recovery) Let (Â, Î, 𝛽, 𝛼̂, d̂) represent the solutions of Algo-
rithm 2. Under Assumptions (1) to (5). if T ⩾ s∗ , we obtain

Particularly, when T = s∗,

P
(
Â ⊇ A

∗
)
⩾ 1 − 𝛿1 − 𝛿2.
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Theorem  3.2  (Selection Consistency) Let (Â, Î, 𝛽, 𝛼̂, d̂) represent the solutions of 
Algorithm 2. Suppose Assumptions (2) to (5) hold with Tmax , and Assumptions (1), 
(6), and (7) also hold. When n is sufficiently large, we obtain

for some constant 0 < 𝛾 < 1 , where

and L(𝛽) is the loss output for a fixed support size T from Algorithm 2.

Theorem  3.3  (Convergence) In the kth iteration, Algorithm  2 outputs solutions 
denoted as 

(
A

k, Ik, �k, �k, dk
)
 . Under Assumptions (1) to (4), when T ⩾ s∗ , we 

obtain:

(i)

(ii)

with probability at least 1 − �1 − �2.

4 � Simulation

Next, we conduct simulations to verify the merits of Algorithm 2. The results dem-
onstrate that Algorithm 2 achieves nearly zero false positive rates (FPR), improved 
estimation accuracy, and polynomial computational time, as evidenced by our 
experiments.

We construct each site matrix X(m) ∈ R
nm×p , where m = 1 to M by drawing its 

rows independently from a multivariate Gaussian distribution MVN(0nm×1,Σp×p) . 
We let p columns of X(m) exponentially correlate. That is, we set the covariance 
matrix, Σij = �|i−j| , and it will reflect the interactions between different groups. To 
depict the relationship between X(m) and D(m) on the same site, we begin by generat-
ing D̀(m) according to the rule that if 

∑
j∈A∗ X

(m)

i,j
> 1 , then D̀(m)

i
= 1 . Otherwise, 

P
(
Â = A

∗
)
⩾ 1 − 𝛿1 − 𝛿2.

P

(
min

Â≠A
∗,Â⊆S

GIC(Â) > GIC
(
A

∗
))

⩾ 1 − O(p−𝛾 ),

GIC(Â) = n log L(𝛽) +M(T + 1) log(p + 1) log(log n),

���2nL
�
𝛽k
�
− 2nL(𝛽∗)

��� ⩽ 𝜇̂k
T
‖y‖2

2
.

A
k ⊇ A

∗ if k > log 1

𝜇̂T

⎛⎜⎜⎜⎝

‖y‖2
2�

1 −
𝜂̂

2

�
n
�
ĉ∗(T) −

𝜔̂2
T

ĉ∗(T)

�
𝜗

⎞⎟⎟⎟⎠
,
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D̀
(m)

i
= 0 . When we set D(m) = D̀(m) , there is a strong correlation between D(m) and 

X(m) . Allowing more flexibility in adjusting the correlation between D(m) and X(m) , 
we introduce the probability p̀ . Formally, we will generate D(m) as follows,

When p̀ = 0 , D(m) , and X(m) are independent and have zero correlation.
We then generate the underlying regression coefficients �∗ . Since �∗ can be 

obtained by re-allocating entries from �∗
Gj

 , we will define �∗
Gj

 instead. Different from 
bringing in � , which portrays the interaction across groups, we construct �∗

Gj
 , where 

j ∈ A
∗ and �∗ with the intention to reflect the correlation inside the group. That is, 

we assume the same predictor has a correlated coefficient across different sites. For 
each important group’s coefficient entries, i = 1 to M, we let

where bj
1
,… , b

j

M
 is obtained by independent draws from N(0.5, 0.2) . Meanwhile, we 

set �∗
Gj

= 0M×1 for j ∈ I
∗ trivially from the definition of I∗ . Eventually, we obtain y 

from

where �i ∼ N
(
0, �2

)
, i = 1 to n.

Nuisance parameters are fixed to be p = 100 , nm = 50 , M = 4 , � = 0.9 , and 
� = 4 . We will adapt the same metrics used in [21] except for one w.r.t. to the site-
specific parameter � to evaluate the selection of group, and parameter estimation. 
They are:

•	 True Positive Rate (TPR): TP∕(TP + FN) , where TP ∶= |Â ∩A
∗| and 

FN ∶= |Î ∩A
∗|

•	 False Positive Rate (FPR): FP∕(FP + TN) , where TN ∶= |Î ∩ I
∗| and 

FP ∶= |Â ∩ I
∗|.

D
(m)

i
=

{
D̀

(m)

i
(strongly correlated with X

(m)

i,j
, j ∈ A

∗) with probability p̀

0 or 1 (random assignment) each with probability
1−p̀

2

(
�∗
Gj

)
i
= b

j

i
−

1

M

M∑
i=1

b
j

i
,

y = diag
(
X(1),⋯X(M)

)
�∗ + diag

(
D(1),⋯D(M)

)
�∗ + �,

Table 1   Summary of simulation settings

Test Fixed parameters Varied parameters Figures

Density of � p̀ = 0 , �∗ = (0.9, 1, 1.1, 1.2) s = 5, 10, 15 1
Correlation s = 10 , �∗ = (0.9, 1, 1.1, 1.2) p̀ = 0, 0.5, 1 2
Parameter properties s = 10 , p̀ = 0.5 �∗ = (1, 1, 1, 1) , 

(−1.1, 1.2,−1.3, 1.4) , 
(0, 0, 0, 0)

3

Support of �∗
s = 10 , p̀ = 0.5 �∗ = (1.1,−1.2, 1.3,−1.4) , 

(1.1,−1.2, 0, 0)
4
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Table 2   Comparison of 
computational times for 
MSplicing and abess

Scene s = 5 s = 10 s = 15

MSplicing 0.87 (0.15) 0.86 (0.14) 0.87 (0.14)
Abess 0.47 (0.08) 0.47 (0.08) 0.48 (0.08)

p̀ = 0 p̀ = 0.5 p̀ = 1

MSplicing 0.87 (0.14) 0.86 (0.13) 0.88 (0.14)
Abess 0.48 (0.08) 0.47 (0.08) 0.48 (0.08)

Homogeneity Heterogeneity Nullity
MSplicing 0.89 (0.14) 0.87 (0.15) 0.87 (0.14)
Abess 0.49 (0.09) 0.47 (0.08) 0.48 (0.08)

Same Similar
MSplicing 0.87 (0.15) 0.86 (0.14)
Abess 0.48 (0.09) 0.48 (0.08)
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Fig. 1   Test various densities of the nuisance parameters with methods Abess, GLasso-BIC, GLasso-CV, 
GMCP-BIC, GMCP-CV, GOMP, L0, L1, LSplicing, and MSplicing plotted from left to right in each set-
ting
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Fig. 2   Test various correlations between X and D with methods Abess, GLasso-BIC, GLasso-CV, 
GMCP-BIC, GMCP-CV, GOMP, L0, L1, LSplicing, and MSplicing plotted from left to right in each 
setting
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•	 Estimation Error of the site-specific parameter � (SReEE): SReEE 
= ��𝛼̂ − 𝛼∗��2∕‖𝛼∗‖2 or if the testing setting contains ‖�∗‖2 = 0 , we use

•	 Estimation Error of the site-specific parameter � (SEE): SEE = ||𝛼̂ − 𝛼∗||2
The closer the TPR to 1 and FPR to 0, the better the method has performed in the 
feature selection. The lower the SReEE or SEE to 0, the more accurate the site-spe-
cific parameter estimation is. Based on the discussion in [21], the methods SGSplic-
ing (Abess), GLasso-BIC (group Lasso using the Bayesian information criterion), 
GLasso-CV (group Lasso using 5-fold cross-validation), GMCP-BIC (group MCP 
using the Bayesian information criterion), GMCP-CV (group MCP using 5-fold 
cross-validation), and GOMP (group orthogonal matching pursuit) will be used as 
baseline methods. Additionally, we include methods where L1 or L0 penalization on 
both the site-specific parameter and the nuisance parameter is applied at each site, 
and the parameters are estimated separately based on the local data. Finally, both 
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Fig. 3   Test heterogeneity, homogeneity, and nullity of the site-specific parameter with methods Abess, 
GLasso-BIC, GLasso-CV, GMCP-BIC, GMCP-CV, GOMP, L0, L1, LSplicing, and MSplicing plotted 
from left to right in each setting
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Fig. 4   Test the exact and similar support of the site-specific parameter  with methods Abess, GLasso-
BIC, GLasso-CV, GMCP-BIC, GMCP-CV, GOMP, L0, L1, LSplicing, and MSplicing plotted from left 
to right in each setting
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the local version of Algorithm 2, i.e., the method applied to the local data, LSplic-
ing, and the proposed method, i.e., the original multi-site version of Algorithm 2, 
MSplicing, are included.

The sequence of these methods being plotted on the figures follows the order of 
being presented here. We set the repetition to be 500 times. If a “proper" box plot 
fails to be seen in the figures, it is because it shrinks into a bold line, indicating a 
small range of value fluctuations. We will have four settings in total. Each will test 
the methods’ performance under different conditions: varying densities of � , differ-
ent correlations between D(m) and X(m) , diverse properties of � (heterogeneity, homo-
geneity, and nullity), and various supports for � (exact and similar). Table 1 provides 
the summary of different simulation settings.

Figures (1, 2, 3 and 4) show in all settings, our method remains superior in 
FPR and SReEE. A nearly 0 FPR indicates our approach will not select the wrong 
features at almost all times, a property inherited from Abess. Abess also stays at 
almost 0 FPR. In contrast, other methods, such as GOMP, tend to over-choose 
the predictors and climb to a high FPR, which is undesirable in the feature selec-
tion as it leads to the model misspecification problem. Another attribute of our 
method and Abess shared is its conservativity. It means our algorithm and Abess 
tend to select fewer predictors to guarantee they will not include the wrong pre-
dictors, especially when the noise-signal ratio is high. That explains why both 
two methods are relatively inactive in the TPR. However, our method performs 
better each time than Abess in TPR due to the correct use of the prior informa-
tion, except when we test for �∗ with zero coefficients (i.e., the given foreknowl-
edge is wrong). In that scenario, our method is on the same TPR level as Abess. 
Apart from the case where the existing knowledge is incorrect, our method keeps 
the lowest � estimation error among all the algorithms. In comparison, other 
approaches either continue to exhibit a high � error rate or exclude the param-
eter of interest, � , from the model; SReEE (not SEE) = 1 indicates that some 
other algorithms have screened out the predictor we wish to retain, which could 
impair the model’s interpretability. We also notice that, given the prior informa-
tion is correct, among all three methods run on each local site separately, our 
local version, LSplicing, outperforms both L0 and L1 in every criterion (i.e., TPR, 
FPR, and SReEE) due to its inclusion of deemed important features. Its supe-
rior performance justifies the need for conditional feature selection. Meanwhile, 
our original multi-site method surpasses its local counterpart, suggesting that 
employing common support assumptions could further enhance performance.

Because Zhang’s Abess significantly outperformed other algorithms in their 
paper, we will focus on comparing the computational times of Abess and our 
method. The result in Table 2 suggests the computational cost of the proposed 
method is slightly higher than but comparable to the one of Abess. Such an 
observation aligns with our expectations, as our algorithm is developed from 
Abess and inherits its polynomial computational complexity, while the assem-
bling of the summary statistics will take some additional time - but it is an inevi-
table trade-off for privacy protection. Note that here, we report time in R and 
with parallel computing removed because the time difference will be more obvi-
ous in case they are not of the same order compared with that in C.



1 3

Statistics in Biosciences	

5 � Real Data Applications

The motivation for the proposed method lies in multi-center studies. Here, we 
consider a single-center real data application in order to better demonstrate our 
method. In particular, collecting the whole dataset allows us to compare the pro-
posed method with the method without DataSHIELD constraints, such as group 
lasso. This is a commonly adopted illustration strategy in integrative analysis 
literature [5]. In the appendix, we include an additional real data analysis on a 
multi-center energy dataset.

We testify to the aforementioned selected approaches in AIDS Clinical Tri-
als Group Study 175 (ACTG175). We will designate CD8 T cell count at 20±5 
weeks (cd820) as the dependent variable and, accordingly, eliminate other out-
come variables, including CD4 T cell count at baseline (cd40), at 20±5 weeks 
(cd420), and 96±5 weeks (cd496), missing CD4 T cell count at 96±5 weeks (r), 
CD8 T cell count at baseline (cd80), and (days); the number of days until the first 
instance of (i) a decline in CD4 T cell count of at least 50, (ii) an event indicating 
progression to AIDS, or (iii) death.

We investigated the treatment effect of zidovudine-incorporated therapy. This 
means that instead of utilizing the treatment arm (arms) variable with values 
0=zidovudine, 1=zidovudine and didanosine, 2=zidovudine and zalcitabine, and 
3=didanosine, we employ the treatment indicator (treat). This variable assigns 0 
to zidovudine only and 1 to other therapies.

When selecting appropriate covariates, we have excluded the patient ID num-
ber (pidnum) due to its lack of predictive power. Additionally, we have removed 
the dummy variable zidovudine used before treatment initiation (zprior) since it 
has a constant value 1 across all observations. As our analysis does not involve 
survival analysis, the indicator variable for observing the event in days (cens) has 
been deleted. We have retained the remaining 14 predictors, except for the varia-
ble race (race). That is because we intend to separate the data into two sites based 
on ethical value, with 0 representing white and 1 denoting non-white. In such a 
way, we created a multi-site dataset that mimics data collected from hospitals in 
different geographical areas. The predictors selected by methods in comparison 
are as follows.

•	 Our method: wtkg, karnof, treat
•	 GLasso-BIC: wtkg, homo, gender
•	 GLasso-CV: wtkg, hemo, homo, drugs, oprior, preanti, gender, strat, symptom
•	 GMCP-BIC: No variables are selected
•	 GMCP-CV: wtkg, hemo, drugs, oprior, preanti, gender, symptom
•	 GOMP: age, wtkg, hemo, homo, drugs, karnof, oprior, preanti, gender, str2, 

strat, symptom, offtrt, treat
•	 SGSplicing: wtkg, gender

Notably, except for GOMP, which selected almost all the predictors, our method 
stands out by specifically identifying “treat” as a significant predictor when we 
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intend to perform conditional screening. Furthermore, our method identifies the 
baseline weight in kilograms (wtkg) as a key predictor. (Wtkg) is selected by all 
the listed methods except for GMCO-BIC, the latter of which did not select any 
variables at all. Another significant predictor chosen by our method is the Kar-
nofsky score on a scale of 0-100 (karnof). It is a performance scale index, cat-
egorizing the patients according to their functional impairment and disability- 
the lower the score, the smaller the chance for the patients to survive the most 
severe disease [43]. Our method suggests that the coefficient of treatment for 
the white group is 18.5 but 40.4 for the non-white group. This discrepancy may 
indicate a heterogeneous treatment effect for different ethnic groups. Meanwhile, 
the positive signs and large magnitude may imply that zidovudine-incorporated 
therapy can universally and significantly improve the CD8 T cell count at 20±5 
weeks, regardless of patients’ ethnic information. The computational time for 
our method and Abess is 1.43 s and 0.83 s, respectively.

6 � Summary

In this paper, we consider the problem of selecting a common set of active fea-
tures (support) given data from multiple sites. Among learning tasks across mul-
tiple data centers, there is a tendency to use the same features for data analysis 
for the convenience of merging analysis results or conducting meta-analysis, 
which motivates our study. To address this issue, we reformulate the common 
support selection problem as a L2,0 penalization problem. To solve the well-
known computational challenge in zero-norm penalization, we adopt a splicing-
based algorithm with polynomial time complexity. Two improvements are made 
compared with the existing set selection method: (i) our selection procedure is 
conditional on the site-specific parameters, which sufficiently takes prior infor-
mation into account; (ii) our algorithm satisfies the data-sharing constraint, 
which avoids the privacy leakage when transferring data across different sites. 
The simulation results also support the superiority of our proposed method in 
terms of the error rate of variable selection and estimation accuracy of site-
specific parameters. We also apply our proposed method to analyze real data, 
including ACTG 175 and the electricity consumption of multi-site server rooms 
(see appendix), to show its practicality.

We focus on the common support assumption, and a natural question to ask is 
whether we can combine the common support assumption with a similar param-
eter assumption in integrative analysis. To do that, we need to add an appropri-
ate fusion penalization into our objective function and investigate the theoretical 
properties of the newly defined objective function. In addition, we mainly inves-
tigate and split a single-site study to better illustrate the proposed method. It 
would be definitely of interest to apply the proposed method to establish robust 
statistical evidence in a real multi-center study in bioscience, which we leave to 
future work.
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Appendices

Theoretical Justification

In this section, we will firstly show the equivalence between problem (8) and 
problem (10), and then combine the theoretical results in [21] to justify the prop-
erties of our proposed method.

Equivalence Between Problem (8) and (10)

Proof  The Lagrangian form of Eq. (8) can be expressed as the following uncon-
strained optimization problem:

where � is related with T. Observe that

Since 1

2n
‖y − X� − D�‖2

2
+ �‖�‖2,0 is convex and twice differentiable w.r.t. � for 

given � , it is obvious that

Plug-in this minimizer of � in (15), it yields

which corresponds to the Lagrangian form of problem (10). Hence, we have shown 
the equivalence. 	�  ◻

min
�,�

1

2n
‖y − X� − D�‖2

2
+ �‖�‖2,0,

(15)

min
�,�

1
2n

‖y − X� − D�‖22 + �‖�‖2,0 = min
�

min
�

1
2n

‖y − X� − D�‖22 + �‖�‖2,0.

argmin
�

1
2n

‖y − X� − D�‖22 + �‖�‖2,0 = argmin
�

1
2n

‖y − X� − D�‖22
= (D⊺D)−1D⊺(y − X�).

(15) =min
𝛽

1

2n
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2
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=min
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2
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=min
𝛽
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���ŷ − X̂𝛽
���
2

2
+ 𝜆‖𝛽‖2,0

Table 3   Coefficients generated by algorithms

Room Index 11 12 13 14 17 18

MSpling Temperature � 6294.26 6671.46 7287.76 7014.95 7311.88 7070.06
Humidity � 5546.28 5201.39 1734.55 3453.53 4551.42 3935.90

GOMP Humidity � 2084.77 1895.93 1306.63 1542.17 2166.05 1910.18
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Justification for Theorems 3.1 to 3.3

Proof  Since the problem we study can be reformulated to the problem considered 
in [21] via a projection matrix H, and the Assumption (1) to (7) in Sect. 3 also cor-
respond to what was required to justify the results in [21], our proposed estimator 
would spontaneously enjoy the same theoretical properties as that in [21]. In other 
words, Theorem 3.1 to 3.3 would hold. 	�  ◻

Additional Numerical Results

Similarly, the merit of our proposed method can be shown by comparing it with 
existing methods in analyzing a real multi-center data set provided by the data 
center company, which includes records of temperature, humidity, and daily elec-
tricity consumption from eight of their server centers, and the transmission of 
such data might not be easy due to legal barriers. For each server center m, we 
have data X(m) , which contains observations of temperature, humidity, and the 
second through fifth powers of the humidity values. We then scaled the columns 
related to each power of humidity to make them orthogonal to one another. Based 
on industry experience, temperature is known to be related to electricity con-
sumption. We deemed it important and decided to retain it for further analysis. 
We set y(m) as the daily electricity consumption at each site m, and added inde-
pendent noise following N(0, 0.5) to each site’s value.

The result is that our method selects both temperature and the first power of 
humidity as significant features. However, GOMP only selects the first power of 
humidity as a significant feature, which prevents us from analyzing our variable 
of interest: temperature. Meanwhile, Abess and other approaches (GLasso-BIC/
CV, GMCP-BIC/CV) remained conservative and did not select any predictors. 
Table 3 presents the coefficients generated by our method and GOMP. The posi-
tive sign in the coefficients outputted by our method also aligns with the physics 
principle that lower temperature and humidity can accelerate heat exchange in the 
air, cool the system faster, and thus reduce electricity consumption. The computa-
tional time for our method and Abess is 0.39 s and 0.18 s, respectively.
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