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Abstract
Biomarkers are critically important tools in modern clinical diagnosis, prognosis, 
and classification/prediction. However, there are fiscal and analytical barriers to bio-
marker research. Selective Genotyping is an approach to increasing study power and 
efficiency where individuals with the most extreme phenotype (response) are cho-
sen for genotyping (exposure) in order to maximize the information in the sample. 
In this article, we describe an analogous procedure in the biomarker testing land-
scape where both response and biomarker (exposure) are continuous. We propose an 
intuitive reverse-regression least squares estimator for the parameters relating bio-
marker value to response. An expression for robust standard error and corresponding 
confidence interval are derived. A simulation study is used to demonstrate that this 
method is unbiased and efficient relative to estimates from random sampling when 
the joint normal distribution assumption is met, and to compare the estimator to an 
alternative under a related sampling design. We illustrate application of proposed 
methods on data from a chronic pain clinical trial.
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1  Background

A biological marker, or biomarker, is an objective measurement which indicates 
a biologic process or response [1]. This umbrella definition captures a range of 
measurements that may be representative of a disease course, from simple indica-
tors like blood pressure to complex laboratory tests [2]. In this paper, we focus 
specifically on physical markers which are detectable via serum assays. In the 
past 20 years, the explosive use of biomarkers in medical research has coined 
the “biomarker revolution” [3]. Clinically relevant biomarkers can provide infor-
mation on both disease mechanisms and subsequent outcomes [4]. In practice, a 
biomarker can serve as both a risk indicator and a surrogate for disease status. As 
such, the biomarker is a critically important tool in modern clinical diagnosis, 
prognosis, and classification/prediction.

Despite the clinical utility and popularity of biomarkers and continual 
advancements in collection technology, there remain fiscal and analytical barriers 
to biomarker research. The cost of conducting biomarker assays for a sufficiently 
powered study is a major limitation. For example, a luminex assay with 39 sam-
ple slots and the capacity to detect up to 20 biomarkers can cost between $300 
and $600 before fees for consultation, lab materials, and labor [5]. This means 
that collecting biomarker samples for each person in a study of 800 participants 
could cost more than $12,600 when serum samples for each individual are col-
lected at a single time point. Resource limitations have thus inspired the develop-
ment of cost-effective experimental designs and corresponding statistical method-
ology [3, 6].

In genetics literature, one such approach concentrates sampling to the most 
informative observation units [7]. Selective genotyping [8] traditionally entails 
sampling individuals for genotyping based on extreme phenotypic values where 
genotype (exposure) is discrete (presence/absence; aa/Aa/AA) and phenotype 
(response) is continuous, most often assuming an ANOVA-style model [9]. From 
a statistical perspective, this is distinct from, but perhaps inspired by, the infor-
mation perspective [10] for which the optimal design in regression analysis (i.e. 
sample) is the one that minimizes the variance of coefficient estimates [11].

Under selective genotyping, the response no longer follows a normal distri-
bution and missing data in the middle of the phenotypic distribution must be 
accounted for [12]. Appropriate maximum likelihood methods have been devel-
oped for inference under such designs for QTL studies [7, 9], which have been 
shown to increase statistical power relative to random sampling using a fraction 
of the original sample [7, 13, 14]. However, the developed methods are highly 
specific to the field of genetics, modeling the exposure as discrete and accounting 
for elements such as backcross in models. Additionally, in genotyping studies it 
is advantageous to take a multistage approach wherein promising genetic markers 
are identified early out of a pool of candidates to meet study constraints [15, 16].

In this paper we study a selective biomarker-testing scheme, where similar to 
selective genotyping, individuals with extreme response values are selected for 
biomarker-testing. In contrast to typing the discrete genotypes in the selective 
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genotyping, here the individuals’ continuous biomarker is measured. Selective 
genotyping and our selective biomarker-testing are both special cases of Out-
come-Dependent Sampling (ODS) [10]. ODS (also known as response-dependent 
sampling) is a form of biased sampling, which has been studied in the context of 
likelihood-based estimation [17]. Zhou et al. [18] formally defined an ODS design 
for a linearly related continuous exposure and outcome where all response val-
ues are observed and covariate values are observed, as (1) a simple random sam-
ple (SRS) from the full available cohort and (2) additional SRS’s from regions 
of the response that are of particular interest. They proposed a semiparametric 
empirical likelihood estimation method for this ODS design which was shown 
to increase efficiency relative to simple random sampling [18]. Weaver and Zhou 
[19] extended this design to incorporate all available information from the full 
sample including those with unknown exposure values taking an estimated likeli-
hood approach. Zhou’s original estimator has been expanded to accommodate dif-
ferent functional forms [20], auxiliary covariate information [21–23], multi-stage 
designs [23–25], mixed effects models [25], and more recently survival [26] and 
longitudinal endpoints [6, 27, 28].

Here we propose statistical analysis methods to analyze selective biomarker-test-
ing data utilizing regression estimations available from standard statistical software. 
Notice that our selective biomarker-testing scheme can be considered as Extreme 
Outcome-Dependent Sampling (EODS) since we only sample individuals with 
extreme response values without the SRS from the full cohort (thus no biomarker-
testing is conducted for any individual in the mid range of response values). The 
benefit, relative to the cost, of the incorporation of the primary SRS in traditional 
ODS designs is unknown. Selective genotyping literature suggests that there is no 
information to be gained by genotyping individuals outside the tails of the response 
variable distribution [7]. Also, while the ODS estimators in above literature are effi-
cient, unbiased, and flexible under their statistical assumptions, the complexity of 
the semiparametric likelihood-based approach is a key barrier to their widespread 
use in practice. The least squares approach to estimation in regression analysis is 
standard, and therefore most accessible to researchers conducting biomarker-testing 
studies. However, least squares has been shown to be most susceptible to the bias 
induced by extreme sampling based designs [11]. To solve this issue, we propose a 
reverse-regression least squares estimation method for EODS designs with jointly 
normal distributed biomarker and response.

The organization of this article is as follows: In Sect.  2 we describe a general 
methodology for biomarker studies, including effect estimation, power/sample size 
considerations, and model checking methods as well as the BISP2 clinical trial data-
set which motivated this research. In Sect.  3 we present numerical results of our 
estimator. We first study the finite sample properties of our estimator via simulation, 
then apply our estimator to the BISP2 Biomarker Study. We conclude with a discus-
sion of strengths and limitations in Sect. 4 and a brief conclusion in Sect. 5.
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2  Methods

In a clinical study, we are interested in the relationship between a response variable Y 
and a biomarker variable X. If both variables are measured on all subjects enrolled in 
the trial, we have a full data set consisting of (X1, Y1),..., (XnF

, YnF ) . Here nF denotes the 
size of the full data set. For the EODS biomarker analysis, we observe the response 
variable for the full data set, Y1,..., YnF , but only observe the biomarker variable X on a 
subset corresponding to extreme values of Y. Say, we select � proportion of the full data 
set and measure the biomarker X on the selected subset of size nS = [�nF] , where [d] 
denotes the closest integer to d. Without loss of generality, we can denote the first nS 
subjects as the selected ones. That is, in the selective biomarker analysis, we observe 
(X1, Y1),..., (XnS

, YnS ) and YnS+1, ..., YnF , while Y1,..., YnS corresponds to the top �∕2 pro-
portion and the bottom �∕2 proportion of Y1,..., YnF.

The aim of the statistical regression analysis is to study the dependence of response 
variable Y on the biomarker X:

where E(Y|X) denotes the conditional expectation of Y given X. When X and Y 
jointly follow a bivariate normal distribution, the full data set satisfies the standard 
regression model assumption:

for i = 1, ..., nF.
However, for the EODS biomarker analysis, naively conducting linear regression 

analysis directly on the subset (X1, Y1),..., (XnS
, YnS ) does not work. The reason is that, 

the regression model assumption (2) does not hold on the selectively sampled subset 
because the response follows a truncated distribution due to the selection of extreme 
values for Y as shown by the red part of the curves in Fig. 1a. The ordinary least squares 
(OLS) fit on the selectively sampled subset will lead to highly biased slope estima-
tion as shown by the dotted red line. Therefore, specific analysis methods are needed 
for the selective biomarker analysis. In this paper, we propose a parametric analysis 
method which utilizes standard regression formulas on reverse-regression: regressing X 
on Y for the selectively sampled subset. The main insight for the proposal is that, when 
X and Y jointly follow a bivariate normal distribution, the standard regression model 
assumption holds for the reverse-regression on both full data set and the selectively 
sampled subset:

To see why the reverse-regression model (3) holds also on selectively sampled sub-
set, we notice that, for jointly normally distributed X and Y, the distribution of X 
conditional on any Y = y value is normal with

(1)E(Y|X) = �Y + �YX,

(2)Yi = �Y + �YXi + �Y ,i, �Y ,i ∼ N(0, �2

�Y
),

(3)Xi = �X + �XYi + �X,i, �X,i ∼ N(0, �2

�X
).

E(X|Y = y) = �X + �Xy, Var(X|Y = y) = �2

�X
,
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Fig. 1  Illustration of challenge posed to linear regression under extreme sampling
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where ��X is a constant not affected by the y values. The relationship between the 
reverse-regression parameters (�X , �X , ��X ) and the bivariate normal distribution 
parameters (�X ,�Y , �X , �Y , �) can be found in derivations in Appendix A. Therefore, 
for any sampling scheme that only uses the value of random variable Y, conditional 
on selected ( Y1 = y1,..., YnS = ynS ), the corresponding Xi follows the normal distribu-
tion satisfying equation (3). That is, the reverse-regression model (3) holds for any 
selective sampling scheme based only on response values, of which the EODS is a 
special case. Figure 1b illustrates this phenomenon for bivariate normal distribution: 
conditional on selected Y values, X is still normally distributed with common vari-
ance and a linearly changing mean.

Armed with this insight, we can conduct the reverse-regression 
E(X|Y) = �X + �XY  using standard statistical software on the selectively sampled 
subset. Then we convert the reverse-regression fit results into regression inferences, 
with a little help of the additional response variable observations YnS+1, ..., YnF . In 
Appendix  A, we provide detailed mathematical derivation of formulas converting 
the reverse-regression coefficients to regression coefficients. We describe the appli-
cation of these conversion formulas for analyzing the EODS biomarker data in the 
rest of this section.

2.1  Hypothesis Test

One main focus of the biomarker analysis is to test whether a biomarker X affects 
the response variable Y. Statistically, this is usually done by the linear regression 
hypothesis testing

Mathematically, the null hypothesis H0 ∶ �Y = 0 is equivalent to the reverse-regres-
sion null hypothesis H0 ∶ �X = 0 . Thus we can simply carry out the reverse-regres-
sion hypothesis test on the selectively sampled subset for

The p-value for the test of (5) is also valid for testing (4).

2.2  Effect Estimation

The effect of the biomarker X on response variable Y is measured by the slope �Y in 
the regression function. Naively fitting the regression equation (1) on the selectively 
sampled subset would result in an overestimation of the biomarker effect. As illus-
trated in Fig. 1a, the conditional (truncated) distribution of Y changes with the given 
X values, leading to OLS estimate (shown as the dotted red line) with much bigger 
slope magnitude than the true �Y value when 𝛽Y > 0 . For consistent estimation of �Y , 
we use instead the parameter estimates 𝛽X and �̂�2

𝜀X
 from fitting the reverse-regression 

(3) on the selectively sampled subset. These estimates can be obtained from con-
ducting the reverse-regression using any standard software. Furthermore, from the 

(4)H0 ∶ �Y = 0 versus HA ∶ �Y ≠ 0.

(5)H0 ∶ �X = 0 versus HA ∶ �X ≠ 0.
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full response variable observations of Y1,..., YnF , we have the sample mean 
�̃�Y =

1

nF

∑nF
i=1

Yi and the sample variance �̃�2

Y
=

1

nF−1

∑nF
i=1

(Yi − �̃�Y )
2.

Using equation (18) in the Appendix, we have a point estimator for �Y as

Then the standard error for 𝛽Y can be calculated as in equation (23),

whose detailed derivation is provided in the Appendix. Therefore, the (1 − �) confi-
dence interval for �X can be calculated as

Here z�∕2 is the �∕2-upper quantile for the standard normal distribution.

2.3  Power/Sample Size Calculation

As derived in the Appendix, equation (27) gives the power formula of the hypoth-
esis test in section :

where W denotes a random variable following a non-central F-distribution with 
degrees of freedoms of df1 = 1 and df2 = �nF − 2 and noncentral parameter 
nFf

22 ∫ ∞

z�∕2
x2�(x)dx , and FQ�,df1,df2

 denotes the �-upper quantile of a central F-distri-
bution with degrees of freedoms of df1 and df2 . Here z� denotes the �-upper quantile 
of a standard normal distribution N(0, 1) whose density is denoted as �(x) . And f is 
the Cohen’s effect size defined as

where R2 is the proportion of variation in the data explained by the regression 
equation.

Based on this, we can choose the proportion � . We illustrate the sample size cal-
culation with a simple example here. Assume that we have a full data set of sam-
ple size nF = 200 , and we wish to detect a Cohen’s effect size f = 0.3 with 90% 
power at the significance level � = 0.05 . When we select 10% individuals in EODS 

(6)
𝛽Y =

1

�̂�2
𝜀X

�̃�2

Y

+ 𝛽2
X

𝛽X .

s.e.{𝛽Y} =

√√√√√√√√√

(
�̂�2
𝜀X

�̃�2

Y

− 𝛽2
X

)2

(s.e.{𝛽X})
2 +

(
2𝛽2

X
�̂�4
𝜀X

�̃�4

Y

)(
1

ns−2
+

1

nF−1

)

(
�̂�2
𝜀X

�̃�2

Y

+ 𝛽2
X

)4
,

𝛽Y ± z𝛼∕2s.e.{𝛽Y}.

(7)power = P(W > FQ𝛼,df1,df2
),

(8)f 2 =
R2

1 − R2
=

�2

1 − �2
,
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for biomarker-testing (i.e., nS = 200 ∗ 0.1 = 20 , selecting 10 persons with largest Y 
values and 10 persons with smallest Y values), (7) gives power = 0.9150 . When we 
select 9% individuals in EODS for biomarker-testing (i.e., selecting 9 persons with 
largest Y values and 9 persons with smallest Y values), (7) gives power = 0.8985 . 
Thus 20 individuals will be biomarker-tested to achieve the design goal of 90% 
power.

In contrast, the standard t-test in simple linear regression for testing (4) has 
power = 0.8983 when n = 118 and power = 0.9007 when n = 119 as given by 
equation (24). Thus a clinical trial without the EODS will require 119 individuals 
with both X and Y measurements, needing an almost sixfold increase in cost of bio-
marker-testing for X than the EODS method.

2.4  Model Checking

Our methodology is based on the assumption that X and Y are jointly normally dis-
tributed. Mathematically, that is equivalent to the following two assumptions hold-
ing simultaneously: (A) the response variable Y is normally distributed and (B) con-
ditional on Y, the biomarker variable X is normally distributed. We now consider 
how to check these two assumptions on observed data.

Assumption (A) can be checked with standard methods such as the normal prob-
ability plot on the fully observed Y1,..., YnF . For assumption (B), we do not observe X 
for the whole range of Y. But we can still check whether (B) holds for the selected Y 
values by applying standard model checking methods on the reverse-regression, e.g., 
the normal probability plot of the reverse-regression residuals.

2.5  Motivating Data Study Design

Biopsychosocial Influence on Shoulder Pain Phase I (BISP) was a single-center, pre-
clinical “proof of concept” study of 190 adults to identify genetic and psychological 
characteristics related to chronic musculoskeletal pain [29]. Musculoskeletal pain is 
the general pain affecting the muscles, ligaments, tendons, or bones with chronic 
indicating that the pain is long-lasting or consistently recurring. In general, mus-
culoskeletal pain is a large contributor to the $635 billion yearly healthcare cost of 
chronic pain in the United States [29]. Though this makes chronic pain a high prior-
ity research area, there are limited accepted treatment models due to the complex-
ity of disease etiology. Treatment components must be personalized on the basis of 
genetic, psychological, environmental, and social risk factors, which all contribute 
to the individual variation in how people experience chronic pain.

Specifically, BISP targeted chronic musculoskeletal pain affecting the shoulder 
region by comparing predictors of pain level among healthy individuals pre- and 
post-induced shoulder pain. The target population was healthy adults. Participants 
were followed over the course of five days. Baseline covariates and DNA samples 
were collected on the first day of the study, before inducing shoulder pain. An exer-
cise-based protocol was then used to create controlled shoulder pain through inflam-
mation and muscular fatigue [29]. Four follow-up visits were conducted every 24 h 
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post-injury induction. Shoulder impairment, genetic testing, and other covariates 
related to pain level defined a priori based on clinical expertise were measured at 
baseline and each follow-up visit. BISP identified multiple prognostic factors which 
were associated with increased shoulder pain, including promising genes which 
showed evidence of predicting shoulder impairment.

BISP Phase II (BISP2) was a single-center, randomized follow-up trial to BISP 
which aimed to test whether interventions personalized on the basis of genetic and 
psychological characteristics are effective for induced shoulder pain (ClinicalTrials.
gov Identifier: NCT02620579) [30]. The two-factor factorial design randomized 261 
individuals to either propranolol or placebo and psychological education or general 
education. Propranolol is a drug chosen to target Catechol-O-methyl-transferace 
(COMT), which metabolizes adrenal hormones and is associated with pain sensitiv-
ity. The psychological education was designed to target pain rumination, which is 
magnification of pain by focusing on the pain with a pessimistic attitude. Pre-rand-
omization, shoulder injury was induced using the same protocol.

BISP2 participants provided daily report on pain intensity and disability over the 
5-day onsite observation period. Pain level was measured using the Brief Pain Inven-
tory (BPI) [31], which is an 11-point scale ranging from 0 (no pain) to 10 (worst 
pain intensity imaginable). Participants rated the intensity of current pain and pain 
intensity at its worst, best, and average over the past 24 h. Clinically relevant covari-
ates and saliva samples for genetic testing were again taken at each follow up visit.

The BISP2 investigators targeted 14 genetic markers associated with pain in 
the study’s exploratory biomarker analysis. These biomarkers were chosen a priori 
based on clinical knowledge of propensity to release pro-inflammatory cytokines. 
All genetic samples were saliva-based. The primary question of interest for the 
exploratory analysis was: which biomarkers are associated with recorded level of 
shoulder pain at 48-hours post-randomization? As the response, pain, is measured 
via the BPI to represent a continuum pain, linear regression with pain level as the 
response is a typical analysis approach. However, the investigators were limited 
by the budget and time constraints of the BISP2 clinical trial. It was infeasible to 
biomarker-test every individual in the study. Therefore, the investigators began by 
biomarker-testing 31 individuals in the high and low tails of worst pain experienced 
at 48-hours post shoulder pain induction.

3  Results

3.1  Simulation Studies

In this section, we use simulations to check the finite sample performance of our 
proposed Outcome-Dependent Extreme biomarker-testing (ODEB) estimator. All 
simulations were conducted using R Statistical Software Version 3.6.0 [32].
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3.1.1  Simulation Comparison with Ordinary Least Squares

We compare our ODEB estimation with the ordinary least squares (OLS) estimation 
in various parameter settings here. Data were simulated according to the probability 
model described in Equation (2). Specifically, Yi is generated such that

Individual data sets consisting of (X1, Y1),..., (XnF
, YnF ) were randomly gen-

erated for each of B = 20, 000 Monte Carlo simulations. We studied combi-
nations of the following sets of parameter values: n ∈ {100, 200, 400, 800} , 
�Y ∈ {0, 0.2, 0.26, 0.4, 0.8, 1} , � ∈ {0.1, 0.2, 0.4} . For each iteration, both the 
extreme-outcome-dependent sampling and random sampling were conducted. �Y 
was then estimated for each sampling method using both OLS ( 𝛽Y ,OLS ) and ODEB 
( 𝛽Y ,ODEB ) estimation.

To illustrates the impact of the proportion of selected extreme subsample, Fig. 2 
plots the ODEB estimation for various proportion selected from a fixed dataset 
where n = 800 and �Y = 0.4 . As the proportion sampled increases, 𝛽Y ,ODEB trends 
closer to the true parameter value, and the 95% confidence interval contains �Y for 
all proportions sampled.

Theoretically, both OLS and our ODEB provide valid inferences under random 
sampling, but only ODEB estimation is consistent under extreme sampling. The 
simulation results confirmed this.

(9)Yi = 5 + �YXi + �Y ,i, X ∼ N(20, 5), �Y ,i ∼ N(0, 5).

0.3

0.4

0.5

0.6

0.7

5.04.03.02.01.0

Proportion of Total Sample

β̂ Y
,O

D
EB

Fig. 2  ODEB point and interval estimation for 𝛽Y under various proportions of the total study extreme 
sampled when n = 800 and �Y = 0.4
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Figure 3 displays the bias of 𝛽Y when an extreme sample of 10% is taken from 
each tail of the response distribution (thus resulting in a total of 20% extreme sam-
pling). When there is truly no effect of the biomarker X, both OLS and ODEB esti-
mation are unbiased regardless of whether the sample is extreme or random. When 
there is a biomarker effect present, 𝛽Y ,ODEB under extreme or random sampling and 
𝛽Y ,OLS under random sampling remain mostly unbiased, with only a small appreci-
able bias when n = 100 which dissipates as the sample size reaches n = 400 . How-
ever, 𝛽Y ,OLS under extreme sampling is severely biased in the positive direction. The 
bias initially increases, then tapers, with the size of �Y . For saving space, we omit 
the detailed numbers for simulations from other sampling proportions (10% and 
40%) but summarize their bias patterns. The bias of 𝛽Y ,OLS under extreme sampling 
is exacerbated when � = 0.1 (i.e., 5% per tail), with estimation bias exceeding twice 
the magnitude of �Y . The bias of 𝛽Y ,OLS decreases slightly when � = 0.4 , with more 
moderate observations included, but the overall bias magnitude is still unacceptably 
large.

The root mean square error (RMSE) displays similar trends, as shown in Fig. 4. 
Under extreme sampling, 𝛽Y ,ODEB has the smallest RMSE of the four considered 
combinations across both study sample sizes and true �Y’s. This reflects the efficient 
use of information by 𝛽Y ,ODEB . In contrast, 𝛽Y ,OLS has the largest RMSE across study 
sample sizes and �Y ’s when applied to an extreme sample. Of note, under random 
sampling, 𝛽Y ,OLS and 𝛽Y ,ODEB perform similarly in terms of RMSE, but 𝛽Y ,ODEB still 
beats 𝛽Y ,OLS as �Y becomes bigger.

In addition, 𝛽Y ,ODEB provides a practical increase in power to detect bio-
marker effect when combined with extreme sampling. First, for ODEB test under 
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200 400 600 800 200 400 600 800 200 400 600 800
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Fig. 3  Bias of 𝛽Y under 20% of the total study sampled for various �Y’s
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all sampling methods, the type I error rate for the test of the null hypothesis 
H0 ∶ �Y = 0 is controlled at the nominal level of 5% as illustrated in the upper-
left panel of Fig. 5. When �Y ≠ 0 , random sampling generally has less power to 
detect a biomarker effect than extreme sampling, with the dashed lines (random 
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R
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Fig. 4  Root mean square error (RMSE) of 𝛽Y under 20% of the total study sampled for various �Y’s
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Fig. 5  Power to detect a nonzero effect of biomarker level on pain for various �Y’s
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sampling) falling below the solid lines (extreme sampling) in each panel. This 
highlights the utility of focusing on those observations with extreme response 
values. Taking �Y = 0.2 as an illustrative example of this notion, the stars placed 
on the upper-right panel emphasize the increase in power afforded by succes-
sively more extreme samples. For the three starred cases, each sample contains 
80 biomarker-tested observations but a more extreme sample from a larger popu-
lation has the advantage in terms of power to detect the effect. A 96.2% power 
is achieved by the 10% extreme sample from 800 observations. In contrast, 20% 
and 40% extreme samples respectively from 400 and 200 observations results in 
88.9% and 73.8% power only.

Figure  6 studies the performance of the 95% confidence interval for �Y for 
OLS and ODEB. Only the OLS-based confidence interval under extreme sam-
pling does not achieve correct nominal 95% coverage. Its poor coverage displayed 
is worsened both with larger total study sample size and larger size of �Y . This is 
particularly severe when �Y = 1 , with coverage probabilities of effectively 0% for 
n = 200, 400, and 800 . The OLS-based confidence interval under extreme sam-
pling also displays the longest confidence interval length (Fig. 7). ODEB estimation 
affords the most precise confidence interval compared to OLS, particularly when 
applied to an extreme sample.

The conclusions of comparison between OLS and our ODEB estimation under 
example sampling are also summarized in Fig.  8 by fixing �Y and examining the 
resulting RMSE, bias, average confidence interval coverage, and average confidence 
interval length for various sampling proportions. RMSE, bias, and confidence inter-
val length are all higher for OLS estimation. Also, only ODEB-based confidence 
intervals maintain nominal coverage.
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Fig. 6  95% �Y confidence interval coverage under 20% of the total study sampled for various �Y’s
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3.1.2  Simulations with Non‑normal Residuals and Non‑normal Inputs

To explore the degree to which the ODEB estimation method is affected by viola-
tions to the assumption of joint normality, the simulation above was repeated for �Y ,i 
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Fig. 7  95% �Y confidence interval length under 20% of the total study sampled for various �Y’s
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following a scaled t distribution (scale 
√
5 ) with DF ∈ {10, 20} and a shifted log-

Normal distribution with a mode of zero and variance of 5.
From the upper-left panel (the case of no biomarker effect with �Y = 0 ) of Fig. 9, 

the hypothesis test to detect the effect always has the correct level of � = 0.05 even if 
the normality assumption is violated. This is expected because, whatever the resid-
ual distribution is, there is no effect in the reverse-regression when the regression 
effect �Y = 0 . The power of the test improves when the residuals are skewed (shifted 
log-normal) and deteriorates when the residual distribution becomes more heavily 
tailed (smaller degrees of freedom for t-distribution). In all simulated settings, the 
power of detection exceeds 80% (shown as the horizontal dotted red line) when the 
full sample size is nF = 800 (with nS = 160 selected for biomarker-testing).

The bias of 𝛽Y ,ODEB is affected by the residual distributions as seen in Fig.  10. 
Correspondingly, the coverage probability of the 95% confidence interval is no 
longer valid for non-normal residuals in Fig. 11. The coverage deteriorates when the 
effect sizes increases, when the sample size increases, and when the tails of residual 
distribution become heavier.

We also conduct similar simulations to check the effect of non-normal inputs 
X. Instead of non-normal residuals, we repeat the simulation above for covariate X 
following a scaled t distribution (scale 

√
5 , mean of 20) with DF ∈ {10, 20} . The 

effect patterns are the same as those observed above when the residual distribution 
is heavy-tailed. That is, ODEB estimation with an extreme sampling scheme still 
provides good power to detect an effect, but the estimation and confidence interval 
coverage deteriorate as �Y increases.
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Fig. 9  Power of 𝛽Y ,ODEB under skewed (log-normal) or heavy-tailed (t) residual distributions and an 
extreme sample of 20% (Normal residual distribution also plotted for reference)
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Overall, when the normality assumption is violated, the effect detection test is 
still valid and powerful but the effect estimation is no longer reliable.

3.1.3  Comparison with MSELE Estimator

Additionally, we compared the ODEB estimator to the MSELE estimator [18]. 
Notice that the MSELE estimator cannot be applied directly for data from extreme 
outcome-dependent sampling. It requires an additional simple random sample 
(SRS) so that some of the individuals with medial Y values are biomarker-tested 
also. Thus the comparison is conducted on extreme outcome-dependent sampling 
data plus some SRS data, mostly as a sanity check for the new ODED estima-
tor against a well-established estimator in a setting close to extreme outcome-
dependent sampling. We generate data following the ODS experimental design 
outlined by Zhou et al [18].

Again, for each of B = 20, 000 iterations, individual data sets consisting of 
(X1, Y1),..., (XnF

, YnF ) were randomly generated. This data was eligible for extreme 
outcome-dependent sampling. An additional SRS of size nSRS = 80 was gener-
ated. For each combination of parameter values described above, an extreme sam-
ple of size �nF was selected. Both 𝛽Y ,ODEB and 𝛽Y ,MSELE were calculated on the 
merged sample consisting of the extreme sample and the additional SRS for a 
total sample size of n = �nF + nSRS . The ODS package [33] in R was used to cal-
culate 𝛽Y ,MSELE and its corresponding standard error.
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Figure  12 compares the RMSE of 𝛽Y ,MSELE
 and 𝛽Y ,ODEB . The 𝛽Y ,MSELE

 is 
obtained from an iterative numerical optimization algorithm, and it does depend 
on the starting values which poses a challenge in convergence. We also plotted 
proportion of convergence of 𝛽Y ,MSELE out of B = 20, 000 simulation runs on the 
figure. The convergence rate of 𝛽Y ,MSELE is around 50% or lower when the effect 
size is small. As the effect size increases, the divergence issue alleviates but is 
still significant even when �Y = 1 . The RMSE of 𝛽Y ,MSELE from the convergent 
runs are plotted, and are much higher than RMSE of 𝛽Y ,ODEB.

The RMSE is heavily affected by outliers. Sometimes, 𝛽Y ,MSELE converges to a 
value that is far from the true value, indicating failure of the iterative algorithm to 
find the true root. These wrong convergent cases inflate the RMSE of 𝛽Y ,MSELE a lot. 
To be fairer for 𝛽Y ,MSELE , Fig. 13 presents the median absolute error (MAE) com-
parison instead. The MAE of 𝛽Y ,MSELE is now closer to, but still clearly exceeds, the 
MAE of 𝛽Y ,ODEB . This accuracy improvement by 𝛽Y ,ODEB is expected here as it uti-
lizes the correct parametric assumption which 𝛽Y ,MSELE does not make. As � grows 
larger, this gap in performance between 𝛽Y ,MSELE and 𝛽Y ,ODEB shrinks.

These results confirm that, in a setting close to extreme outcome-dependent sam-
pling, the proposed ODEB estimator provides correct answer. When the parametric 
assumptions hold, the ODEB estimator has smaller estimation error than MSELE as 
expected. For extreme outcome-dependent sampling, MSELE cannot be used, and 
ODEB should work well.
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3.2  Data Analysis/Application to BISP2 Trial

The dependent variable of interest in the BISP2 Trial, pain intensity, is measured via 
the BPI to represent an underlying pain continuum for all participants. A pilot sam-
ple of 31 participants in the high and low tails of worst pain experienced at 48-hours 
post shoulder pain induction was selected for initial biomarker-testing. As the BPI 
is a discrete index represented on a continuous scale, there were ties for the highest 
and lowest pain scores. To determine which of the equal scores were included in the 
pilot sample, those who responded vs. did not respond to the treatment were selected 
in a balanced manner. Based on promising results from the initial pilot sample, a fol-
low-up sample of 57 participants was selected in the same manner. All biomarkers 
were logarithm (base 10, for interpretability) transformed based on prior knowledge 
of the typical biomarker distribution. We model the relationship between pain and 
log-transformed biomarker linearly as:

Two pain-related outcomes of interest were explored using the above methodology: 
worst pain experienced at 48-hours post shoulder pain induction and change in worst 
pain from 48- to 96-hours post induction. Additionally, a self-reported disability 
score (Quick-DASH) at 48-hours post induction and change in Quick-DASH score 
from 48- to 96-hours post induction was investigated as outcomes to assess endpoint 
specificity. The results of modeling the association between pain-related outcomes 
and log-transformed biomarkers are discussed below. The distribution of worst 
pain at 48-hours in each stage of sampling is given in Fig. 14. For each pain-related 

yPain = � + �log(xBiomarker) + �
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Fig. 14  Worst pain experienced at 48-hours shoulder pain induction for each sampling stage, combined 
stages, and the full BISP2 study population
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outcome, reverse-regression based estimates of the effect of each log-transformed 
biomarker on pain ( � ) are reported with standard errors, 95% confidence intervals, 
and p-values. The the reverse-regression model assumption was assessed using diag-
nostic plots of residuals.

The results of the analysis of the combined stages 1 and 2 data for worst pain 
and change in pain are shown in Tables 1 and 2. Table 1 shows evidence of associa-
tion between CCL2 and worst pain at 48 h, with an effect estimate of 1.92 (95% CI: 
0.24, 3.61). This indicates that for a tenfold increase in CCL2, we expect the worst 

Table 1  Summaries from univariable reverse-regression based extreme sampling estimation and infer-
ence: worst pain at 48 h regressed on log-scale biomarkers

Estimate Std. Error LCL UCL P-Value

log(CCL2) 1.923 0.847 0.238 3.607 0.026
log(CRP) 0.369 0.296 −0.220 0.958 0.216
log(CXCL6) −0.775 0.973 −2.710 1.161 0.428
log(IL17/IL17A) 0.682 1.059 −1.423 2.787 0.521
log(IL10) 0.742 1.290 −1.823 3.306 0.567
log(TNF Alpha) 0.690 1.403 −2.099 3.479 0.624
log(BDNF) −0.139 0.313 −0.760 0.483 0.658
log(IL6) 0.376 1.475 −2.556 3.307 0.799
log(Beta NGF) 0.323 1.823 −3.301 3.947 0.860
log(TNF R1) 0.269 1.641 −2.993 3.531 0.870
log(Oncostatin M OSM) 0.176 1.737 −3.278 3.629 0.920
log(Substance P) 0.107 1.085 −2.05 2.265 0.921
log(Cortisol) 0.020 0.491 −0.955 0.995 0.968

Table 2  Summaries from univariable reverse-regression based extreme sampling estimation and infer-
ence: change in worst pain from 48 h to 96 h regressed on log-scale biomarkers

Estimate Std. Error LCL UCL P-Value

log(CRP) 0.710 0.332 0.050 1.370 0.039
log(IL10) 2.752 1.452 −0.135 5.639 0.065
log(IL6) 3.078 1.661 −0.225 6.380 0.071
log(TNF Alpha) 2.269 1.599 −0.910 5.448 0.163
log(Oncostatin M OSM) 2.262 1.991 −1.697 6.22 0.262
log(TNFR1) 2.018 1.883 −1.726 5.761 0.289
log(Beta NGF) 1.456 2.104 −2.727 5.639 0.492
log(CCL2) 0.659 0.988 −1.305 2.623 0.507
log(Cortisol) −0.376 0.566 −1.502 0.750 0.509
log(Substance P) 0.411 1.256 −2.086 2.909 0.744
log(BDNF) −0.083 0.362 −0.803 0.637 0.819
log(IL17/IL17A) 0.174 1.228 −2.267 2.615 0.888
log(CXCL6) −0.062 1.130 −2.308 2.183 0.956
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pain at 48 h to increase by 1.92 points on the BPI scale. For change in pain, there 
is evidence of association from CRP ( 𝛽 = 0.71 (95% CI 0.05, 1.37)). We also see 
potential from IL10 and IL6, however the evidence in this sample is insufficient to 
conclude such. In additional analyses for self-reported disability outcomes (whose 
full result tables are omitted for succinctness), CRP shows evidence of association 
with Quick-DASH score. For a tenfold increase in CRP, we expect an increase of 
3.92 points in the Quick-DASH score.

Figure  15 provides the model checking diagnostic plots for the change in pain 
outcome and the residuals of the reverse-regression of log-transformed CRP on 
change in pain. Our joint normality assumption appears to be reasonable for this 
example.

4  Discussion

We proposed a new least squares approach to analysis for data generated by extreme 
outcome-dependent sampling based on the joint normality assumption. Prior meth-
ods developed for outcome-dependent sampling data are analyzed through likeli-
hood-based methods [18] with an additional SRS to provide some observations in 
the middle range of response values. The ODS sampling schemes described in such 
works are the closest to EODS in the statistical literature. However, due to the pres-
ence of the supplemental SRS across the entire range of the response in the tradi-
tional ODS designs, the prior analysis approaches proposed are not applicable to 
data generated from an EODS design. Despite the differences in analysis needs, it is 

Fig. 15  Model checking: normal QQ plot example for the change in pain outcome and the reverse-regres-
sion of YPainChange on log(XCRP)
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helpful in defining the future development of this novel method to contrast ODEB 
with the existing MSELE methodology.

The MSELE estimator is a semi-parametric empirical likelihood-based analy-
sis method. The main advantage of this likelihood approach is that no parametric 
distributional assumption is needed, as the supplemental SRS provides knowledge 
of the range of the response outside of the typically extreme regions of interest. In 
contrast, through the joint normality assumption, our method provides two signifi-
cant practical advantages. First, our method allows concentration of all sampling to 
the more informative individuals with the most extreme response values, resulting 
in great cost reduction for the expensive biomarker-testing. Taking on a parametric 
model allows us to assume the shape of the relationship in the medial region of the 
response range where no data were collected.

However, a primary limitation of this estimation is that in practice the joint nor-
mality assumption cannot be taken for granted. As in many model-based analyses, 
thorough knowledge of the relationship between the response and biomarkers to be 
studied is recommended to plan whether a reasonable transformation can be applied 
before the sampling design is enacted. Additionally, the diagnostic plots for model 
checking described in Sect.  2 must be thoroughly inspected to ensure validity of 
estimation. When the normality assumption is violated, the confidence interval cov-
erage deteriorates only for very heavy-tailed residuals, but the hypothesis testing for 
effect detection always remains valid.

The second practical advantage is that our method is simple and can be con-
ducted with existing standard statistical software. As seen in the simulation, often 
the likelihood method diverges or it converges to wrong parameter values, thus its 
data analysis often requires much care from an expert statistician. On the other hand, 
our method only requires applications of simple formulas on standard least-square 
estimates from the reverse-regression, and can be handled by any practitioner with a 
minimum statistical training. Furthermore, the model checking techniques used for 
the joint normality assumption are standard, with familiarity among any who have 
had fundamental training in linear regression.

This approach to analysis of EODS data is promising, but future development of 
the estimation method is key. In particular, extension to multiple regression analy-
sis, which accounts for the correlation between biomarkers, is needed. In principle, 
derivation of formulas assuming joint normal distribution of a response variable and 
multiple biomarker variables may follow the same approach, but is non-trivial and 
hence the topic of future study. If the biomarkers and response variable Y jointly 
follow the multivariate normal distribution, then each biomarker and Y follows the 
bivariate normal distribution, thus the proposed inference methods are valid to apply 
separately on each biomarker even when multiple biomarkers are correlated amongst 
themselves. However, the test statistics of (5) for multiple biomarkers are correlated, 
thus an appropriate multiple testing adjustment (beyond the conservative Bonfer-
roni correction or the step-down testing procedure) for variable selection needs to 
be carefully developed in the future. Additionally, exploration of whether the joint 
normality assumption can be relaxed is another future step.
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5  Conclusion

We proposed an intuitive least squares-based estimator appropriate for EODS bio-
marker-testing studies with response and biomarker following a bivariate normal 
distribution, and showed via simulation that the estimation method is efficient and 
unbiased when compared to OLS estimation. To our knowledge, this is the first 
approach proposed for EODS which was not specifically developed for the genetics 
literature, where the variable X is discrete.

Our new ODEB estimator is easy to understand and implement, and so may be 
a bridge between practitioners who may benefit from ODS designs but do not have 
the background to immediately understand the likelihood-based methods by serving 
as an accessible introduction to ODS analysis. In the future, multivariate extension 
to our ODEB estimator will be particularly suited for exploratory biomarker studies 
due to its cost savings and ease of usage.

Appendix A Mathematical Derivation of Formulas Relating 
Parameters of Regression and Reverse‑regression

We assume that (X, Y) follows the bivariate normal distribution

Under this assumption, we consider how to get regression parameters �Y , �Y and ��Y 
from the reverse-regression parameters �X , �X and ��X.

Conditional on X, we have the regression equation

where �Y ∼ N(0, �2
�Y
) with �2

�Y
= (1 − �2)�2

Y
 . Similarly, conditional on Y, we have the 

reverse-regression equation

where �X ∼ N(0, �2
�X
) with �2

�X
= (1 − �2)�2

X
.

Firstly we derive how the regression parameters of equation  (11) relate to the 
bivariate normal distribution parameters. To do this, we consider the standardized 
versions of X and Y as X∗ =

X−�X

�X
 and Y∗ =

Y−�Y

�Y
 . Then clearly, (X∗, Y∗) follows the 

bivariate normal distribution

Hence we have

N

((
�X

�Y

)
,

(
�2

X
��X�Y

��X�Y �2

Y

))
.

(10)Y = �Y + �YX + �Y ,

(11)X = �X + �XY + �X ,

N

((
0

0

)
,

(
1 �

� 1

))
.

(12)X∗ = 0 + �Y∗ +
√
1 − �2Z,
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where Z ∼ N(0, 1) is independent of Y. Plug X∗ =
X−�X

�X
 and Y∗ =

Y−�Y

�Y
 into equa-

tion  (12) and compare with equation  (11), we can express the reverse-regression 
parameters in terms of the bivariate normal distribution parameters as

Secondly, by symmetry, similar derivations give the regression parameters’ formulas 
in terms of the bivariate normal distribution parameters as

We now find formulas to express regression parameters �Y , �Y and ��Y in terms of 
�X , �X , ��X , �Y and �Y.

We start from the parameter of most interest �Y . Combine the middle equations in 
(13) and (14), we get

Now, to get the desired expression of �Y , we only need to express �2

X
 in terms of �X , 

�X , ��X , �Y and �Y.
From the middle equation in (13),

Square both sides of equation (16) and divides the last equation in (13), we get

Therefore, we solve �2 in this expression to get

Plug this back into the last equation in (13) to solve for �2

X
 , we get

(13)

�X = �X − �X�Y = �X − �
�X

�Y
�Y ,

�X = �
�X

�Y
,

�2
�X

= (1 − �2)�2

X
.

(14)

�Y = �Y − �Y�X = �Y − �
�Y

�X
�X ,

�Y = �
�Y

�X
,

�2
�Y

= (1 − �2)�2

Y
.

(15)�Y = �
�Y

�X
=

(
�
�X

�Y

)
�2

Y

�2

X

= �X

�2

Y

�2

X

.

(16)�X = �
�X

�Y
⇒ �X�Y = ��X .

�2
X
�2

Y

�2
�X

=
�2

1 − �2
.

(17)

�2 =
1

1 +
�2
�X

�2
X
�2

Y

, and 1 − �2 = 1 −
1

1 +
�2
�X

�2
X
�2

Y

=

�2
�X

�2
X
�2

Y

1 +
�2
�X

�2
X
�2

Y

=
1

1 +
�2
X
�2

Y

�2
�X

.
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Put this into equation (15), we have the desired expression for �Y as

Next, we express �Y in terms of �X , �X , ��X , �Y and �Y . From the first equation 
in (13), �X = �X + �X�Y . Plug this and (18) both into the first equation of (14), we 
get

Finally, for the expression of �2
�Y

 , we plug (17) into the last equation of (14) to get

Equations (18), (19) and (20) give the relationship between the theoretical parame-
ters, where the quantities �Y , �Y and �2

�Y
 on the left-hand side are the desired param-

eters for regression analysis but cannot be directly estimated from data (their OLS 
estimates are inconsistent). Since the quantities on the right-hand side can be con-
sistently estimated directly on the extremely sampled data through reverse-regres-
sion, as explained in the main text, plugging-in those estimators to equations (18), 
(19) and (20) result in consistent estimators 𝛽Y , �̂�Y and �̂�2

𝜀Y
 for the desired 

parameters.
Furthermore, we can use the Delta Method [34, p. 61] to derive the standard errors 

of estimators for the plug-in estimators since the standard errors for the right-hand side 
quantities estimators are available directly from the reverse-regression. Particularly, for 
𝛽Y , we first find the following partial derivatives from the equation (18):

�2

X
=

�2
�X

1 − �2
= �2

�X

[
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X
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Y
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= �2

�X
+ �2

X
�2

Y
.
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2

Y

�2
�X
+ �2

X
�2

Y

.

(19)
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Since 𝛽X , �̂�2
𝜀X

 and �̃�2

Y
 are uncorrelated with each other, using the Delta Method, 𝛽X is 

asymptotically normally distributed whose variance estimation is

For the quantities in the formula (22), s.e.{𝛽X} can be gotten from outputs of stand-
ard linear regression fit packages, and

from the variance formula of the Chi-square distribution.
Plug-in the point estimators for each quantity into equation (22), we estimate 

the standard error for 𝛽Y as

Appendix B Mathematical derivation of power formulas

For the standard simple linear regression on a data set of size n, the power of an � 
level t-test (testing the zero slope null hypothesis) is given

where NFncp=nf 2,df1=1,df2=n−2
 denotes a random variable following a non-central 

F-distribution with noncentral parameter nf 2 , degrees of freedoms of 1 and n − 2 , 
and FQ�,df1=1,df2=n−2

 denotes the � upper quantile of a central F-distribution with 
degrees of freedoms of 1 and n − 2 . Here f is the Cohen’s effect size defined as

where R2 is the proportion of variation in the data explained by the regression 
equation.

We are doing the reverse-regression hypothesis test for

(22)
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(24)power = P(NFncp=nf 2,df1=1,df2=n−2
> FQ𝛼,df1=1,df2=n−2

),

(25)f 2 =
R2

1 − R2
=

�2

1 − �2
,
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If we have observations of both X and Y on the full data set, then the power is given 
by formula (26) with n = nF . Now we derive the power formula when the test is con-
ducted on the selectively sampled subset. Besides the changes in sample size from 
nF to nS , the effect size also changes from the full data set to the selectively sampled 
subset. The R2 in (25) would be larger in the subset due to selectively sampling the 
extreme values. To derive the change in effect size, we reexpress (25) as

where the last equality comes from equation (17). Notice that both quantities �2
X
 and 

�2
�X

 remain invariant on the full data set and the subset since the reverse-regression 
model (11) holds on both data sets. �2

Y
 differs in the two data sets. Since only the 

extreme � proportion of Y is selected, the variance of selected YS is bigger on the 
selectively sampled subset than the variance of Y on the full data set. To calculate 
�2

YS
 , we note that the selected YS do not follow the N(�Y , �

2

Y
) distribution anymore. 

Rather it follows the normal distribution truncated at the upper and lower (�∕2)-tails. 
Let z�∕2 denotes the upper (�∕2)-quantile of the standard normal distribution N(0, 1). 
Let �(x) = 1√

2�
ex

2∕2 denotes the density function of the standard normal distribution 
N(0, 1). Then the variance of selected YS is

Therefore, compared to the effect size on the full data set, the effect size f 2 on the 
subset increases by a factor of 2 ∫ ∞

z�∕2
x2

1

�
�(x)dx . Since the sample size nS of the sub-

set is � proportion of the full data set size nF so that nS∕� = nF , the power of t-test 
on the subset becomes
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