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Abstract
Properly assessing the effects of environmental chemical exposures on disease risk 
remains a challenging problem in environmental epidemiology. Various analytic 
approaches have been proposed, but there are few papers that have compared the 
performance of different statistical methods on a single dataset. In this paper, we 
compare different regression-based approaches for estimating interactions between 
chemical mixture components using data from a case–control study on non-Hodg-
kin’s lymphoma. An analytic challenge is the high percentage of exposures that are 
below the limit of detection (LOD). Using imputation for LOD, we compare dif-
ferent Bayesian shrinkage prior approaches including an approach that incorporates 
the hierarchical principle where interactions are only included when main effects 
exist. Further, we develop an approach where main and interactive effects are rep-
resented by a series of distinct latent functions. We also fit the Bayesian kernel 
machine regression to these data. All of these approaches show little evidence of an 
interaction among the chemical mixtures when measurements below the LOD were 
imputed. The imputation approach makes very strong assumptions about the rela-
tionship between exposure and disease risk for measurements below the LOD. As 
an alternative, we show the results of an analysis where we model the exposure rela-
tionship with two parameters per mixture component; one characterizing the effect 
of being below the LOD and the other being a linear effect above the LOD. In this 
later analysis, we identify numerous strong interactions that were not identified in 
the analyses with imputation. This case study demonstrated the importance of devel-
oping new approaches for mixtures when the proportions of exposure measurements 
below the LOD are high.
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1 Introduction

In environmental epidemiology, interest often focuses on estimating the com-
plex associations between environmental chemical mixtures and disease risk. 
Recently, various approaches have focused on characterizing higher-order inter-
actions between mixture components and outcomes including regression-based 
[1, 2], machine kernel regression [3], and latent class modeling approaches [4–6]. 
Although these methods have been illustrated with actual chemical mixture data, 
there have been few papers that have compared the various approaches on an 
actual dataset. This article investigates the different modeling strategies using 
case–control study data examining the effects of chemical exposures on non-
Hodgkin’s Lymphoma (NHL).

There are analytic issues that make comparisons interesting. First, exposures 
can be non-linear making inferences about interactions more complex. Second, 
many of the chemical exposure measurements were below the lower limit of 
detection (LOD). Third, some of the chemicals were highly correlated. A number 
of articles have focused on developing summary score measures that relate mix-
tures to disease outcomes. These methods focus on estimating a linear combina-
tion of the numerous mixture components and relating this combination to either 
a continuous or binary outcome [7, 8]. The focus of this article is on understand-
ing the complex interactions between the mixture components, and we therefore 
compare methodologies where this is the goal.

We present the NHL case–control study in Sect. 2. In all subsequent sections, 
we describe the various methods followed by an analysis of these data using each 
of the approaches. In Sect.  3, we review the Bayesian kernel machine regres-
sion (BKMR). Section 4 presents the broad class of shrinkage prior regression-
based approaches including the recent methodology that incorporates a hierar-
chical constraint for interaction estimation. We also examine a novel approach 
to account for LOD using a multi-parameter per exposure formulation. Section 5 
extends a recently developed latent class formulation [5] to the interaction set-
ting. Finally, in Sect. 6 we present a discussion of the results along with future 
next steps for methodological development.

2  NCI‑SEER NHL Study

Studying the relationships between environmental and occupational exposure 
to chemicals and cancer risk remains an important area in cancer research (see 
IARC website). The NCI-SEER NHL study [9] is a population-based case–con-
trol study that was designed to determine the associations between chemical 
exposures (including pesticides and insecticides) found in used vacuum cleaner 
bags and the risk of NHL. Often chemicals enter the household from indoor use 
or drift in from outdoor and may persist for months and years in carpet and cush-
ion furniture without being degraded by sunlight, rain, and extreme temperature. 
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Hence, carpet dust sampling provides a more objective basis for exposure assess-
ment as it contains integrated chemical exposure over a long period which is 
potentially more relevant to disease risk than recent or current exposure. In this 
study, the samples were collected from used vacuum cleaner bags of 672 cases 
and 508 control subjects in Detroit, Iowa, Los Angles, and Seattle and were ana-
lyzed for chemicals [9]. Primarily the laboratory measurements contain missing 
data due to concentrations being below the LOD. The median percent of observa-
tions below the detection limit was 61% (across chemicals) with a range of (3% to 
93%). In study analyses, multiple imputation was performed to “fill-in” exposure 
measurements that were below the LOD. This imputation was done by assum-
ing that chemicals were log-normally distributed and that values below the LOD 
were in the tails of the distribution. Particularly for chemicals with a high per-
centage of values below their detection limits, results may not be robust to mis-
specification of the parametric assumptions. Thus, we consider alternative less 
model-based approaches to account for LOD.

There were a few groups of chemicals where members within a group were highly 
correlated with each other (Correlation > 0.9). In this case, we randomly chose one 
member for each highly correlated pair in the analysis. Exposure data were log-
transformed since measurements on the original scale were highly skewed. There 
were 26 chemicals exposures measured which are listed in the Appendix. After fil-
tering out highly correlated chemicals, there was a total of 14 chemicals. Thus, the 
final dataset contained 14 chemical exposures on 1180 individuals (508 controls and 

Fig. 1  Correlation plot for chemical exposures
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672 cases). Figure 1 shows the correlation between the 14 chemicals. We considered 
site, sex, education, and age as covariates [9] in all models for our data application.

3  Bayesian Kernel Machine Regression (BKMR)

A popular statistical method for analyzing chemical mixture data is the Bayesian 
kernel machine regression approach. In this approach, Bobb et  al. [3] modeled 
non-linear and non-additive relationships between exposure variables and out-
come through a non-parametric kernel function. For a binary outcome Yi , the kernel 
machine regression is implemented through a probit link

where Φ denotes the cumulative distribution function (CDF) of the standard normal 
distribution, h(⋅) is the flexible function of p exposure variables Xi1,Xi2,… ,Xip , and 
� defines the vector of regression coefficients for covariates Ui . The function h(⋅) is 
characterized as a Gaussian kernel function, where h = (h1, h2, .., hN)

� is multivariate 
normal with mean 0 and correlation given by cor(hi, hi� ) = exp(�

∑P

p=1
(Xip − Xi�p)

2) 
for all pairs of individuals i and i′ . Further, they model the latent variable Y∗

i
 (in Eq. 

(1)) as

where �i ∼ N(0, 1) . The formulation results in a probit link function when we dichot-
omize the latent variable at zero such that Yi = 1 when Y∗

i
> 0 and 0 otherwise. We 

used the kmbayes function from the BKMR package to fit the model on the NHL 
data. Figure 2 shows the univariate exposure–response relationships for NHL with 
each chemical when the remaining chemicals are fixed at their median values. The 
plot suggests none of the chemicals have a sizeable effect on cancer risk.

Two-way interactions among all pairs of exposures can be characterized by 
estimating the conditional distribution of the effect of one exposure given quan-
tiles of the second exposure with the remaining chemicals fixed at their median 
value. Figure 3 shows the bi-variate exposure–response relationship derived from 
the BKMR analysis for a subset of pairwise comparisons. The fact that for each 
chemical, the conditional distributions are parallel for different quantiles of other 
chemicals suggests no evidence of interaction effects. We saw similar parallelism 
for all 91 interaction terms suggesting no interactions among the 14 chemicals 
(data not shown).

(1)Φ−1(P(Yi = 1)) = h(Xi1,Xi2,… ,Xip) + U′

i
�,

(2)Y∗
i
= h(Xi1,Xi2,… ,Xip) + U′

i
� + �i, i = 1, 2,… ,N,
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4  Bayesian Shrinkage Methods

Shrinkage priors in Bayesian estimation provide a useful way to estimate the higher-
order interactions among mixture components. These approaches are analogs to penal-
ized likelihood approaches that have been proposed in the frequentist context, and have 
the advantage in that they incorporate the penalization/shrinkage into the inference of 
the model parameters [10].

In this section, we compare various Bayesian shrinkage methods for estimating the 
interactions among components of chemical mixtures. We consider the following logis-
tic regression model with linear effects consisting of p chemical exposures or main 
effects and p(p − 1)∕2 two-way interactions effects:

(3)

logitP
(
Yi = 1|Xi,Ui

)
= Ui

��∗ +

p∑

j=1

Xij�
∗
j
+

p∑

j=1

p−1∑

k=j+1

XijXik�
∗
jk
, i = 1, 2,… ,N,

Fig. 2  Univariate exposure–response estimation
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where Y =
(
Y1, Y2,⋯ , YN

)� denotes the binary health response for N individuals, 
Xi =

(
Xi1,Xi2.… ,Xip

)� denotes p-dimensional continuous vector of main effects. 
We also denote logit a = log

a

1−a
 , Ui =

(
Ui1,Ui2.… ,Uiq

)� as q-dimensional covari-
ate vector including the intercept term, �∗ =

(
�1, �2,… , �q

)� as the corresponding 
q-dimensional regression coefficient vector, �∗

j
 as the main effect regression coeffi-

cient of the jth chemical, and �∗
jk

 as the interaction effect regression coefficient of the 
jth and kth chemicals.

Following a latent variable approach [11], we approximate Eq. (3) using a robit 
link [12]. Let � =

(
�1, �2,… , �N

)� be a N-dimensional latent vector such that Yi = 1, 
if 𝜉i > 0 and 0 otherwise, where �i = Ui

��∗ +
∑p

j=1
Xij�

∗
j
+
∑p

j=1

∑p−1

k=j+1
XijXik�

∗
jk
+ �i . 

The robit link function, indexed by v, results if �i follows a student  
t-distribution with v degrees of freedom [13], i.e., 

Fig. 3  Bivariate exposure–response estimation
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P
�
Yi = 1��∗, �∗, �∗

�
= Ftv

�
Ui

��∗ +
∑p

j=1
Xij�

∗
j
+
∑p

j=1

∑p−1

k=j+1
XijXik�

∗
jk

�
 , where 

�∗ =
(
�∗
1
, �∗

2
,… , �∗

p

)�

 and �∗ =
(
�∗
11
, �∗

12
,… , �∗

p(p−1)∕2

)�

. As v → ∞ , the robit(v) 
model becomes the probit regression model. Liu [12] suggested that the robit link 
with v = 7 degrees of freedom closely approximates the logit link with 
�l = �∗

j
∕1.5484 , �j = �∗

j
∕1.5484 , and �jk = �∗

jk
∕1.5484 . Moreover, we use the fact 

that the t-distribution can be represented as a scale mixture of normal distribution by 
introducing a mixing variable �i , such that �i|�i ∼ N

(
0,

1

�i

)
 and �i ∼ G

(
v

2
,
v

2

)
 , 

where N(�, �2) denotes a normal distribution with mean � and variance �2 and 
G(c1, c2) denotes the gamma distribution with mean c1∕c2 and variance c1∕c22 to for-
mulate the likelihood. We define the interactions of two exposure variables Xij and 

Xik for the ith individual as Zijk = XijXik and Zi =
(
Zi11 , Zi12 ,⋯ , Zip(p−1)∕2

)�

 . Hence, 

�i|�i ∼ N
(
Ui

�� + X′

i
� + Z′

i
�,

1

�i

)
 and �i ∼ G

(
v

2
,
v

2

)
 , where � =

(
�1, �2,… , �p

)
 and 

� =
(
�11, �12,… , �p(p−1)∕2

)
 . Hence, the complete data likelihood is as follows:

The main and interaction effects can be estimated by choosing a vague prior such 
that �j, �jk ∼ N

(
0, 102

)
 ; this is approximately a maximum likelihood approach. 

Incorporating a global–local shrinkage parameter might be a good option as it gath-
ers information from the data to determine the amount of shrinkage that needs to be 
incorporated. To that end,

The shrinkage priors mentioned in Eq. (5) do not imply the hierarchical principle 
[14, 15], where interactions are only considered when corresponding main effects 
are present. Recent work [1] considered including this hierarchical condition by 
incorporating the following prior distribution:

(4)

𝜋(Y|X) =
N∏

i=1

[
Yi1

{
𝜉i > 0

}
+ (1 − Yi)1

{
𝜉i <= 0

}]

× (2𝜋)−
1

2 𝜆
1

2

i
exp

(
−
𝜆i

2

(
𝜉i − U′

i
� − X′

i
� − Z′

i
�
)2

)

×

(
𝜈

2

)𝜈
2

Γ
(
𝜈

2

) 𝜆
v

2
−1

i
exp

(
−
𝜆iv

2

)
.

(5)�j ∼ N

(
0,

1

a�j

)
, �jk ∼ N

(
0,

1

b�jk

)
.

(6)
�j ∼ N

(
0,

1

a�j

)
, �jk ∼ N

(
0,

1

b�j�k�jk

)
,

�j ∼ G(1, 1) , �jk ∼ G(1, 1).
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The prior distribution in Eq. (6) follows the global–local prior specification of [16]. 
In this formulation, the local shrinkage parameter controls the degree of shrinkage 
for each individual and the global shrinkage parameter controls the overall shrink-
age. Here for the main effect regression coefficient �j , we consider a predictor-spe-
cific local shrinkage parameter �j that controls the deviation in the degree of shrink-
age for each exposure variable and a global parameter a that controls the overall 
shrinkage of the main effects towards the origin. Similarly, for the interaction effect 
regression coefficient �jk , the predictor-specific local shrinkage parameter for each 
interaction term �jk controls the degree of shrinkage for each interaction term, 
while the global shrinkage parameter b controls the overall shrinkage. We define, 
� =

(
�1, �2,… , �p

)� , i.e., p-dimensional vector of local shrinkageparameters of main 
effect and � =

(
�1, �2,… , �p(p−1)∕2

)� the local shrinkage parameters for interaction 
effects. As a prior choice for both �j ’s and �jk’s, we consider a heavy tail distribu-
tion G(1, 1) distribution with mean and variance 1 to avoid overshrinking issues 
and incorporate variability. The larger values of �j ’s and �jk ’s will induce more 
shrinkage towards zero for the corresponding main effects and interaction effects, 
respectively, while smaller values indicate less shrinkage to zero. For the global 
shrinkage parameters a and b, we consider G(1, 1) distribution as a prior choice to 
incorporate substantial mass near the origin. Finally, we considered a vague prior for 
� ∼ MVN(0, 102Iq), where Iq defines qth-order identity matrix.

The main objective of the shared shrinkage model is to incorporate a link between 
the main effects and the interaction effects. To that end, Kundu et al. [1] share the infor-
mation between the jth main effect and the (j, k)th interaction effects through the local 
parameters �j and �k . We control the prior variance of �jk by the term �j�k , such that �jk 
will shrink to zero if at least one of the corresponding main effects �j or �k is small, i.e., 
their corresponding local shrinkage parameters �j or �k is large or the local shrinkage 
parameter of the interaction term �jk is large itself. Similarly, if the main effects are 
sizeable, i.e., their corresponding �j ’s and �k ’s are small, that will induce less shrinkage 
for the corresponding interaction term �jk.

Figure 4 shows a comparison of estimated interactions for the NHL study. For all 
interaction terms on the three models, the 95% HPD interval for �jk contains zero, 
suggesting that there is no evidence for any two-way interaction among the compo-
nents of the mixture. The order of the magnitude of the interval lengths from larg-
est to smallest is the vague, independent shrinkage, and the shared shrinkage prior, 
respectively, demonstrating the efficiency advantages of incorporating a shrinkage 
prior along with exploiting the hierarchical assumption into parameter estimation.

As an additional sensitivity analysis, we also examined other shrinkage priors 
including a ridge [17], Lasso [18], and horseshoe [19] prior. Under a linear exposure 
(each exposure contributes a single linear term) model, estimation with these shrink-
age priors can be done directly with the R package bayesreg. However, we empha-
size that these methods do not incorporate any hierarchical structure. Figure 5 shows 
the comparison of interaction estimation using different shrinkage priors. As we 
have 91 interaction terms and are comparing six different methods, we illustrate the 
results with the estimation of two interaction terms. Although all intervals obtained 
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with all six methods contain zero, the shared shrinkage prior approach has the nar-
rowest interval, and is therefore most efficient.

So far, we described the modeling of a linear exposure and outcome relationship. 
In practice, exposure may be non-linear requiring more than one regression param-
eter for each exposure. Kundu et al. [1] extended their methodology to capture those 
non-linear exposure-outcome relationships using the following logistic regression 
model:

We use a polynomial representation to model the non-linear exposure effect of each 
chemical. These polynomial effects are incorporated in the main and interaction 
effects by using Eq. (7) with functions gj

(
Xij

)
=X′

ij
�j and fjk

(
Xij,Xik

)
= Z′

jk
�jk and the 

following logistic regression:

(7)logitP
(
Yi = 1|Xij,Ui

)
= U′

i
� +

p∑

j=1

gj
(
Xij

)
+

p∑

j=1

p−1∑

k=j+1

fjk
(
Xij,Xik

)
.

Fig. 4  Comparison of Interaction effects with Diazinon with different model
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where Xij =
(
Xij,X

2
ij

)�

 and Zjk =
(
XijXik,X

2
ij
Xik,XijX

2
ik
,X2

ij
X2
ik

)�

 and the regression 

coefficients �j =
(
�j1, �j2

)� and �jk =
(
�jk1, �jk2, �jk3, �jk4

)�.
Most interesting for our application is to incorporate exposures that are subject to 

LOD in a robust manner. We incorporate a two-parameter per exposure model that was 
recently discussed for univariate exposure relationships Chiou et al. [20] and Ortega-
Villa et al. [21]. In this formulation, (i) the first component indicates whether the expo-
sure for a single chemical is above the detection limit and ii) the second part shows 
the value of the exposure effect if it is above the detection limit. This parameterization 
allows a flexible modeling approach in spite of treating lower LOD as left censored. 
Hence, Kundu et al. [1] represent the extension of their work using Eq. (7) as follows:

(8)

logitP
(
Yi = 1|Xi,Zi,Ui

)
= U′

i
� +

p∑

j=1

X′

ij
�j +

p∑

j=1

p−1∑

k=j+1

Z′

jk
�jk, i = 1, 2,… ,N,

Fig. 5  Comparison of Interaction effects with Diazinon from with different prior choices
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where �j1 defines the log odds of disease at the value of the detection limit relative 
to the log odds of disease below the detection limit, �j2 defines the log odds ratio of 
disease for a one-unit change in exposure above the detection limit. The interactive 
effects are measured using the parameter vector �jk. . Here, �jk1 represents the inter-
active effect when both the jth and kth chemicals are above the detection limit, �jk4 
represents the interactive effect of increasing Xij and/or Xik when both markers are 
above the detection limit, and �jk2 , �jk3 are cross-product interaction effects.

Using two parameters per exposure model, Fig. 6 shows that we found multiple 
interaction effects, some of which demonstrated positive synergy between chemicals 
and others showing a negative interaction. The fact that the results are different as 

(9)

gj
(
Xij

)
= �j1I

(
Xij ≥ Cj

)
+ �j2I

(
Xij ≥ Cj

)(
Xij − Cj

)

fjk
(
Xij,Xik

)
= �jk1I

(
Xij ≥ Cj

)
I
(
Xik ≥ Ck

)
+ �jk2

(
Xij − Cj

)
I
(
Xij ≥ Cj

)
I
(
Xik ≥ Ck

)

+ �jk3
(
Xik − Ck

)
I
(
Xij ≥ Cj

)
I
(
Xik ≥ Ck

)

+ �jk4
(
Xij − Cj

)(
Xij − Ck

)
I
(
Xij ≥ Cj

)
I
(
Xik ≥ Ck

)
,

Fig. 6  Comparisons between randomly chosen slope vs slope ( �jk4 ) interaction effects
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compared with the imputation approach suggests that imputing based on a paramet-
ric normal model may be problematic.

5  A Latent Functional Approach

To incorporate non-linear exposure risk relationships in a binary regression setting, 
Kim et al. [5] proposed the latent functions approach, where the individual effects 
for each exposure in a risk model can be written as the sum of unobserved functions. 
They showed that the relationship between chemical exposures and risk becomes 
more flexible as the number of latent functions increases, and complex exposure 
relationships can represented with only a few such functions. In this article, we 
extend the methodology to allow for a separate set of latent classes for the main and 
interaction effects, respectively.

As in Sect.  4, let Yi be a binary outcome for the ith individual. Also, let 
Ui =

(
Ui1,… ,Uiq

)� denote a q-dimensional vector of covariates for the ith individual 
and � =

(
�1,… , �q

)� denote the vector of regression coefficients corresponding to 
the q covariates. Furthermore, let Xij for main effects denote the chemical exposure 
for the jth chemical on the ith individual, j = 1,… , p , and Zik = Xij1

Xij2
 for two-way 

interactions, j2 = j1 + 1,… , p , j1 = 1,… , p , k = 1,… ,K with K = p(p − 1)∕2 , 
and i = 1,… ,N . Similar to Kim et al. [5] , we use a binary regression model with 
interactions based on a finite number of non-linear functions using latent variable 
approach of Albert and Chib [11] as follows:

where fl(Xij) is a functional form of Xij for the lth latent class, gj is a latent  
membership indicator with P(gj = l) = �l , L is a fixed number of latent classes 
(1 ≤ L ≤ p) , sm(Zik) is a functional form of Zik for the mth latent class, hk is a  
latent membership indicator with P(hk = m) = �m , M is a fixed number of latent 
classes (m ≤ M ≤ K) , and �i follows a t-distribution with indexed by the degrees of 
freedom � = 7 . Note that the indicator function 1{A} is defined as 1{A} = 1 if A is 
true and 0 otherwise. In this paper, we assume a polynomial regression function  
of order c to capture the non-linear structure for fl(Xij) and sm(Zik) in Eq. (10) as 
fl(Xij) = �l1Xij +⋯ + �lcX

c
ij
≡ X∗

ij

�
� l and sm(Zik) = �m1Zik +⋯ + �mcZ

c
ik
≡ Z∗

ik

�
�m , 

where X∗
ij
= (Xij,… ,Xc

ij
)� , � l = (�l1,… , �lc)

� , Z∗
ik
= (Zik,… , Zc

ik
)� , and 

�m = (�m1,… , �mc)
� . The latent variable �i in Eq. (10) can be rewritten as

(10)

Yi =

{
1 if 𝜉i ≥ 0

0 if 𝜉i < 0
and

𝜉i = U�
i
� +

p∑

j=1

L∑

l=1

1(gj = l)fl(Xij) +

K∑

k=1

M∑

m=1

1(hk = m)sm(Zik) + 𝜖i,
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where �x
j
=
∑L

l=1
1(gj = l)� l and �z

k
=
∑M

m=1
1(hk = m)�m , corresponding to regres-

sion coefficients for the jth main effect and the kth interaction term, respectively. The 
similar prior distributions and MCMC algorithm in Kim et al. (2023) are used in the 
analysis. To help obtain numerical stability in the implementation of the MCMC 
sampling algorithm, we standardized all of covariates by subtracting their sample 
means and then dividing by their sample SDs. All variables for main effects and 
interactions are standardized by dividing by its maximum value.

We assumed a cubic polynomial regression function for fl(xij) and sm(Zik) in Eq. 
(10) to incorporate a flexible functional form ( c = 3 ) in this paper. We considered 
models with various L and M to choose the number of latent classes to characterize 
the simultaneous effects of all chemicals on cancer risk. Table 1 shows the estimated 

(11)

�i = U�
i
� +

p∑

j=1

L∑

l=1

1(gj = l)X∗
ij

�
� l +

K∑

k=1

M∑

m=1

1(hk = m)Z∗
ik

�
�m + �i

= U�
i
� +

p∑

j=1

X∗
ij

�
�x
j
+

K∑

k=1

Z∗
ij

�
�z
k
+ �i,

Table 1  Posterior probability of 
�
l
 and �

m
 for model with L = 5 

and M = 5

L and M �
l

�
m

1 0.8988 0.8805
2 0.0954 0.1112
3 0.0055 0.0080
4 0.0002 0.0004
5 < 0.0001 < 0.0001

Fig. 7  Plots of the estimated log relative risks (relative to no exposure) as a function of chemical expo-
sure with the posterior mean and 95% HPD intervals under the model with L = 5 and M = 5 : a main 
effects; b interaction effects
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posterior probabilities for �l and �m for the model with L = 5 and M = 5 , dem-
onstrating that the posterior probabilities of �l and �m for L > 3 and M > 3 were 
almost zero, suggesting many latent profiles are not needed.

Figure 7 shows the estimated log relative risks for the individual functional rela-
tionships and the corresponding 95% HPD intervals for 14 main effects and 91 inter-
action terms under the model with L = 5 and M = 5 , respectively, showing that 95% 
HPD intervals include zero line and none of the main effects and interaction terms 
have relationship with NHL.

6  Discussion

Recently, there have numerous statistical approaches proposed in the statistics lit-
erature for studying the interactions among chemical mixture components. These 
approaches perform well under a correct model specification. However, there have 
been few comparisons of these methodologies on actual study data. This paper com-
pares numerous recently developed approaches to a case–control study of NHL that 
examined the effects of multiple pollutants on cancer risk.

A challenging analytic issue in the analysis was the high proportion of LOD 
among chemicals. The original analyses of the study [9] used a simple imputation 
method for imputing values below the LOD. Using these imputations, we found 
that all the methods showed similar interaction effect estimates that were consistent 
with zero. Although we only used one realization from the imputation model for all 
analyses, we obtained nearly identical estimations using other realizations (data not 
shown).

Recognizing that the imputation approaches make strong assumptions on the dis-
tributions below the LOD, we conducted an additional analysis where each chem-
ical exposure was represented by two parameters; one parameter for being above 
the LOD and the second for the slope when above this limit. Our two-parameter 
per exposure model does not require those strong assumptions. These analyses 
focused on the shrinkage estimation since this class of models can more easily be 
extended in a flexible way. Many interactions were identified with this formulation. 
In part, this can be explained if the imputation methods, which are difficult to vali-
date, are inadequate (see Ortega-Villa et  al. [21] for a simulation study with one 
exposure measurement). These results motivate the future methodological extend-
ing approaches such as BKMR and the latent functional approach to more flexibly 
incorporate LOD.

The different methods had different assumptions about the linearity of the expo-
sure effects. BKMR introduces flexible relationships by the specification of the ker-
nel function. However, it is not totally transparent what explicit assumptions are 
made on the linearity by specifying a particular kernel function. The latent functions 
approach explicitly assumes a polynomial assumption on the exposure relationships.

Each of the proposed methods used the scaled absolute exposure values in the 
analyses. We also applied all the methods to percentiles of the exposure values rather 
than the absolute measurements. We were able to fit all methods with the exception 
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of BKMR for these transformed exposure values. We were unable to come up with 
a reason for the computational failure of BKMR in this situation. However, for all 
other methods, we obtained similar inferences to those obtained with the absolute 
values (data not shown).

The methodology comparison focused on analyses from a case–control study. All 
the methods except BKMR have a direct relative-risk interpretation since we incor-
porated a logit link function and the NHL is a rare disease. The interpretation for 
BKMR is less clear since this approach uses a probit link function to relate the mix-
ture components to cancer risk. The methodology and comparisons naturally apply 
to cohort studies with binary outcomes. Extensions to survival and longitudinal out-
comes are areas for future research.

Appendix

The name of all chemicals in the dataset are listed below: 

 1. Pentachlorophenol
 2. Propoxur
 3. O-phenylphenol
 4. Transpermethrin
 5. Cispermethrin
 6. Methoxychlorene
 7. Diazinon
 8. DDT
 9. DDE
 10. Chlorpyrifos
 11. G-chlordane
 12. A-chlordane
 13. Carbaryl
 14. PCB 180
 15. PCB 170
 16. PCB 153
 17. PCB 138
 18. PCB 105
 19. Indeno-Pyr
 20. Dibenz-Anthracene
 21. Chrysene
 22. Benzo-A-Pyrene
 23. Benz-k-Fluoranthene
 24. Benz-A-Anthracene
 25. Dicamba
 26. 2,4-D; D24 chemical in the figure indicates the chemical 2,4-D.
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Data Availability Data are available upon request with the required data agreement policy. All codes for 
the different models are available in the GitHub account.Open Access This article is licensed under a 
Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distri-
bution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were 
made. The images or other third party material in this article are included in the article’s Creative Com-
mons licence, unless indicated otherwise in a credit line to the material. If material is not included in the 
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view 
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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