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Abstract
We analyze perinatal data including biometric and obstetric information as well as 
data on maternal smoking, among others. Birth weight is the primarily interesting 
response variable. Gestational age is usually an important covariate and included 
in polynomial form. However, in opposition to this univariate regression, bivariate 
modeling of birth weight and gestational age is recommended to distinguish effects 
on each, on both, and between them. Rather than a parametric bivariate distribution, 
we apply conditional copula regression, where the marginal distributions of birth 
weight and gestational age (not necessarily of the same form) and the dependence 
structure are modeled conditionally on covariates. In the resulting distributional 
regression model, all parameters of the two marginals and the copula parameter are 
observation specific. While the Gaussian distribution is suitable for birth weight, 
the skewed gestational age data are better modeled by the three-parameter Dagum 
distribution. The Clayton copula performs better than the Gumbel and the symmet-
ric Gaussian copula, indicating lower tail dependence (stronger dependence when 
both variables are low), although this non-linear dependence between birth weight 
and gestational age is surprisingly weak and only influenced by Cesarean section. A 
non-linear trend of birth weight on gestational age is detected by a univariate model 
that is polynomial with respect to the effect of gestational age. Covariate effects on 
the expected birth weight are similar in our copula regression model and a univari-
ate regression model, while distributional copula regression reveals further insights, 
such as effects of covariates on the association between birth weight and gestational 
age.
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1 Introduction

We analyze perinatal (newborn infants’) registry data from North Rhine-West-
phalia, Germany, which contain many biometric and medical variables on mother, 
child, and birth. This is a part of the larger “PerSpat” (Perfluoroalkyl Spatial) pro-
ject [1], concerned with the general population of North Rhine-Westphalia, which 
has partly been affected by environmental pollution with perfluorinated com-
pounds [2]. There is evidence for developmental toxicity of these compounds, 
resulting in reduced birth weight, among other medical parameters (e.g., [3, 4]).

When analyzing perinatal data with birth weight as the response variable of 
primary interest, it is essential to adjust for gestational age (duration of preg-
nancy), which is often reported as the quantitatively most important covariate 
(e.g., [5–7]). Augmenting linear models, it may be included as a polynomial or 
in other parametric functional forms (e.g., [8, 9]). However, the importance of 
other covariates for modeling birth weight may become undetectable when gesta-
tional age predominates or mediates other influences. A widespread alternative is 
a binary response with a class such as “small for gestational age” (e.g., [10–12]), 
but this would mean information loss in our case.

In contrast to univariate approaches, consideration of bivariate (or multivari-
ate) outcomes is frequent in biometric research such as meta-analysis [13], clini-
cal trials [14], dose–response modeling [15], or with measurements from the 
environment [16]. Such models enable a deeper understanding of effects, when 
covariates’ influences on both outcomes are separately considered, together with 
the relationship of both.

In gynecological and obstetric research, modeling of a bivariate response com-
prising of both birth weight and gestational age is recommended. For instance, 
[10] summarizes findings “that the combination of both variables provides addi-
tional information” compared to separate considerations, with regard to mor-
tality. [17] review the research tradition, emphasize the “intimate relation” of 
birth weight and gestational age such that they could well be regarded as a joint 
response, and distinguish “prognostic” approaches, where gestational age is used 
as a covariate, from a “causal” interpretation with an accent on the “temporal 
nature of gestational age.” The latter seems conclusive, as time is not under con-
trol and thus gestational age is indeed not an adjustable influencing factor as it is 
usually employed in regression, but rather a result of circumstances. [18] state 
that “low birth weight is a construct of two intricately intertwined components: 
pre-term delivery and reduced fetal growth, or both” and proceed to analyze them 
both depending on influencing factors, but with the aim of modeling mortality as 
a univariate outcome. However, practical research usually aims at a descriptive 
analysis of birth weight, depending on gestational age and perhaps other factors 
(e.g., [5, 6]), and so considers a functional relationship and univariate regression 
(e.g., [8, 9]).

In any such analysis, other parameters than the means are of interest and poten-
tially depend on covariates; e.g., the standard deviation of birth weight may vary 
between sex. Additionally, the relationship between two outcomes, specifically 
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the strength of dependence between birth weight and gestational age, can itself 
depend on covariates and this dependence may be non-linear; this is illustrated for 
our case in Fig. 1, where a measure of dependence varies along covariate levels.

Therefore, we apply Bayesian distributional copula regression models [19]. 
Copulas [20] allow the recommended bivariate analysis of birth weight and ges-
tational age, where the two univariate marginal distributions (Gaussian or non-
Gaussian) and their dependence structure are estimated simultaneously. All dis-
tribution parameters (of the marginals as well as of the copula) are estimated 
depending on covariates. This approach is more flexible than a classical bivariate 
regression model with one correlation parameter and the same parametric dis-
tribution for both marginals. There is a vast literature on copula modeling in the 
regression context, see, e.g., references in [19]. Penalized maximum likelihood 
estimation of copula regression models have been proposed by, e.g., [21, 22]. 
Another approach for regression problems is to represent the multivariate density 
by a (D-)vine copula [23, 24].

Especially useful in our situation are non-Gaussian copula families, which 
assume less symmetries for the data and model upper or lower tail dependence. 
Likewise, non-Gaussian marginal distributions are useful to model asymmetric data. 
A great advantage of the Bayesian treatment based on Markov chain Monte Carlo 
simulations is the direct availability of uncertainty estimates via Bayesian credible 
intervals. Altogether, such copula models are recommendable for many data situa-
tions with unknown or non-linear dependence structures and are widely applicable 
to bivariate or multivariate biometric analyses in medicine and life sciences, such 

Fig. 1  Rank correlation (Spearman’s rho, x axis) between birth weight and gestational age, depending 
on certain covariate levels (y axis): The data are split into subsets according to the values of one covari-
ate and the correlation is computed by subset, depicted are the correlations’ confidence intervals with 
levels 80% (broad line) and 95% (thin line). Left: Cesarian section, two groups; right: maternal gain of 
weight, four equal subsets bounded by the quartiles. Other covariates do not feature such visible differ-
ences between subsets
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as those named above. Combined with appropriate marginal distributions and data 
standardization, they form a natural approach to analyze a bivariate response with 
an asymmetric joint distribution and skewed marginals as found in our data (Fig. 2).

We adapt this model class to a new situation, perinatal data with two con-
tinuous outcome variables, birth weight and gestational age. In the same field, a 
bivariate copula regression model is developed by [25], conditional on various 
biometric and clinical variables in a spatial context, but with low birth weight 
measured as a binary variable. We now investigate, which family of one-para-
metric copulas, which families of marginal distributions, and which linear pre-
dictors are most suitable for the given perinatal registry data. The model choice 
procedure is outlined in Fig. 3. Using the selected copula model, we estimate the 
effects of biometric, perinatal, environmental, and socio-economic covariates on 
birth weight, gestational age, and on their dependence. We compare the copula 
model to a standard univariate approach, a regression of birth weight depend-
ing on gestational age modeled as a polynomial. To this end, the distribution of 
birth weight conditional on gestational age obtained from the bivariate copula 
is numerically evaluated using random numbers drawn from it; thus, we pre-
serve more information from the joint analysis than just the marginal. The copula 
model is further compared to a model that assumes independence between the 
response components in a simulation study.

This article is structured as follows: In Sect. 2, we present the data in more detail, 
and the applied bivariate copula families, marginal distributions, and the Bayesian 

Fig. 2  Observations of birth weight and gestational age (summarized due to their large number, using 
the default density estimation of smoothScatter in R; darker shade is for higher density of the point 
cloud; + stands for a single isolated point)
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distributional regression are outlined. Identification of the best model within this 
class is reported in Sect. 3. This section also contains our substantive analyses, inter-
pretation of the bivariate copula regression results, identification and evaluation 
of the univariate polynomial model, and a comparison of both models. Finally, we 
evaluate the performance of our proposed bivariate model in a simulation study with 
synthetic data that resemble the observed data. Section 4 discusses some modeling 
aspects, substantive conclusions from both models, and perspectives. Section 5 sum-
marizes the findings from this article.

Fig. 3  Outline of general procedure to choose optimal marginal and copula families in bivariate Bayesian 
distributional regression
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2  Methods

2.1  Data Description

The perinatal registry data are collected by all hospitals and are combined and pro-
cessed by the quality assurance office residing with the state medical association, 
for the purpose of quality assurance in obstetrical health care. Within our larger 
“PerSpat” project, we use these secondary data from 2003 until 2014, comprising 
about 1.7 million records and more than 200 biometric, medical, and social vari-
ables on mother and child, pregnancy, birth, and treatment. They are anonymized by 
removing all personal information apart from the mother’s postal code. Further data 
cleansing steps are performed, in particular regarding the plausibility of gestational 
age. Analyses are restricted to singleton births and to children born alive without 
malformations.

To create an analyzable data subset, we focus on data from a region along the 
upper course of the river Ruhr in North Rhine-Westphalia, precisely the town of 
Arnsberg, being of particular interest within the “PerSpat” project. A constrained 
data analysis also eases computability, as the runtime would have been extremely 
high otherwise. When restricted to this town, we observe 6442 birth cases within 
the study period. We remove those where values of relevant variables are not given, 
leaving a total of 4451 observations.

The response variables are birth weight (measured in g with varying accuracy, 
mean: 3390, standard deviation: 517) and gestational age (clinically estimated, 
in days, mean:  277, standard deviation:  12), the former being of primary interest 
(Fig.  2). Individual relevant covariates are pre-selected from the perinatal regis-
try data. This is done in accordance with the literature (e.g., [7, 8, 12, 17]), and 
with previous findings within the “PerSpat” project [26]. The specific variables are 
child’s sex, number of previous pregnancies of the mother, whether the child has 
been delivered by Cesarean section, whether the birth has been induced, mother’s 
age, mother’s height, mother’s body mass index (BMI) at the beginning of preg-
nancy, gain of weight of the mother during pregnancy, number of cigarettes the 
mother reports to smoke per day, whether the mother is single, and whether the 
mother is employed. Some descriptive characteristics can be found in Table 1.

2.2  Suitable Distribution Families for Copula Regression of Perinatal Data

In this section, we outline the employed statistical method of Bayesian conditional 
copula models within a distributional regression framework [19]. All models are 
estimated using a developer version of the BayesX software [27], which imple-
ments fully Bayesian inference based on Markov chain Monte Carlo simulation 
techniques, see [19] for details. We focus on the relevant components for our analy-
sis. For a more general perspective, we refer to [19] and references therein.
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To represent our data, let n be the number of observations with bivariate responses 
(yi1, yi2) , i = 1,… , n , from continuous response variables Y1 (birth weight in our case) 
and Y2 (gestational age). We assume having m covariates Xj , j = 1,… ,m , with obser-
vations xij . We denote probability density functions f1 and f2 and cumulative distribu-
tion functions (CDFs) F1 and F2 of Y1 and Y2 , respectively.

2.2.1  Copula Distributions

A bivariate copula is defined by a CDF C� ∶ [0, 1] × [0, 1] → [0, 1] , such that the 
joint CDF of Y1 and Y2 can be written as

Sklar’s theorem [28] ensures that C� always exists and is unique for continuous Y1 
and Y2 , whereas F1(Y1) and F2(Y2) are uniformly distributed on [0, 1]. With copula 
density c�(⋅, ⋅) , the joint density of Y1 and Y2 can be written as

and a conditional density as

While this representation is unconditional, the results can be extended to the regres-
sion context [29].

There are various families of copulas, characterized by a parameter � representing 
the degree and form of dependence between Y1 and Y2 . In our analysis, we compare 
the Gaussian copula family with density

F(y1, y2) = C�(F1(y1),F2(y2)) =∶ C�(u, v).

f (y1, y2) = c�(F1(y1),F2(y2)) ⋅ f1(y1) ⋅ f2(y2)

(1)f1∣2(y1 ∣ y2) = c�(F1(y1),F2(y2)) ⋅ f1(y1).

Table 1  Descriptive characteristics for covariates from the perinatal data

s.d. Standard deviation

j Covariate Unit Description

1 Sex Female: 47%
2 Previous pregnancies 0: 38%, 1: 32%, 2: 16%
3 Cesarean section 24%
4 Induction 26%
5 Maternal age Years Mean: 29.4, s.d.: 5.5
6 Maternal height cm Mean: 167.0, s.d.: 6.7
7 Maternal BMI kg/m2 Mean: 25.2, s.d.: 5.3
8 Maternal gain of weight kg Mean: 10.4, s.d.: 5.7
9 Maternal smoking cigs./day No: 87%, ≤ 10 cigs.: 8%
10 Mother is single 7%
m = 11 Mother is employed 42%
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�N ∈ (−1, 1) , the Clayton copula family with density

�C ∈ (0,+∞) , and the Gumbel copula family with density

where h ∶= (− log u)�G + (− log v)�G , �G ∈ (1,+∞) . As opposed to the Gaussian 
copula that allows for linear dependence and symmetry only, the Clayton copula 
allows for non-linear dependence between the two variables, in particular within the 
region of their extremely low values (tail dependence), whereas the Gumbel copula 
allows for upper tail dependence [19]. In the Gaussian case, the parameter �N repre-
sents the correlation between the two outcome variables. For the other copula mod-
els, a higher value of �C (or �G , respectively) also signifies a stronger association 
between them. The copula parameter is also monotonically related to Spearman’s 
Rho and Kendall’s Tau [21, 30]. For the latter, it holds explicitly: � = �C∕(�C + 2) 
for the Clayton and � = 1 − 1∕�G for the Gumbel copula [31].

2.2.2  Marginal Distributions

The two marginal distribution families can be chosen independently from each 
other and from the copula. Besides the Gaussian distribution N(�, �2) with mean 
� and variance �2 , a Dagum distribution with density

shape parameters p > 0 and a > 0 and dispersion parameter b > 0 is considered in 
our study.

Within the model choice process, both distribution families (one being sym-
metric, one skewed and more flexible) are candidates for both response vari-
ables, conditional on covariates. But data have to be standardized before, mainly 
for numerical reasons, but also to adapt them to the Dagum family shape. Stand-
ardization does not affect the results, since the original responses can be recov-
ered by linear back-transformation.

Specifically, for i = 1,… , n , to employ a Gaussian for the marginals, we use 
data-independent values for mean and standard deviation in a reasonable scale 
to yield ỹi1 ∶= (yi1 − 3500)∕500 for the birth weight and ỹi2 ∶= (yi2 − 280)∕14 for 
the gestational age. To apply the Dagum marginal (with positive support), birth 
weight is normalized to ỹi1 ∶= yi1∕500 , while gestational age is also inverted to 
a more appropriate shape by ỹi2 ∶= (322 − yi2)∕14 , to have the main part of the 

c�
N
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data closer to zero and the tail on the right (322 days = 46 weeks exceed the 
maximum observable gestational age).

2.2.3  Regression Modeling

All these are considered conditional on covariates following [19]. Let � represent 
any single parameter of the joint distribution of Y1 (birth weight in our case) and 
Y2 (gestational age), i.e., either one of the assumed marginal distributions or of the 
copula (which means � ∈ {�, �2, p, a, b, �N , �C, �G} in our case). A linear predictor

is formed from the covariates numbered j = 1,… ,m , possibly just from a part of 
them or even reduced to the intercept. Link functions h� such that � = h−1

�
(�(�)) are 

specified appropriately for the respective parameter spaces:

The covariates to be included to the linear predictor �(�) can be separately selected 
for all parameters � ∈ {�, �2, p, a, b, �N , �C, �G} . We consider those listed in Table 1, 
without interactions. Many of these covariates are binary. For the others, no obvi-
ous non-linear relationships have been found in residual plots beforehand (Figs. 4 
and 5).

3  Results

3.1  Bivariate Model Fitting to Perinatal Registry Data

We apply distributional copula regression models (Sect. 2.2) to our perinatal registry 
data. We evaluate the models using the excerpt of n = 4451 observations (Sect. 2.1). 
Besides the BayesX software, calculations have been performed using the R envi-
ronment [32], with the Dagum distribution from the VGAM package [33] and copula 
distributions from copula [34].

After preparation steps of data import, cleansing, and standardization, the choice 
of the optimal copula regression model is a stepwise procedure, outlined in Fig. 3. 
The copula property enables separate considerations of the marginal distributions of 
birth weight and gestational age and of their dependence structure. This motivates to 
identify optimal marginal model fits first and to apply them in the search for the best 
fitting copula model afterward. Variable selections within this model choice process 

�(�) = �
(�)

0
+ �

(�)

1
X1 +…+ �(�)

m
Xm

(2)

� = �(�) and

� = exp(�(�)) for � ∈ {�2, p, a, b} as well as

�N = �(�N ) ⋅ (1 + (�(�N ))2)−1∕2 for the Gaussian copula,

�C = exp(�(�C)) for the Clayton copula and

�G = exp(�(�G)) + 1 for the Gumbel copula.
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Fig. 4  Residuals of a linear model with standardized birth weight as univariate response depending on all 
covariates listed in Table 1, plotted against all non-binary covariates

Fig. 5  Residuals of a linear model with standardized gestational age as univariate response depending on 
all covariates listed in Table 1, plotted against all non-binary covariates
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help to ease later evaluation steps and give a first insight in the relevance of covari-
ates; however, the additional uncertainty has to be kept in mind when considering 
final results.

Marginal distribution families are chosen by applying Gaussian and Dagum mod-
els to both univariate responses. Initially, these four models include all available 
covariates with respect to all parameters � ∈ {�, �2} or � ∈ {p, a, b} , respectively; 
covariates, where the pointwise 95% credible intervals of their respective �(�)

j
 ’s 

include zero, are removed from the initial model to arrive at an optimal model. The 
resulting optimal models per family are compared by probability integral transform 
values, quantile residuals, and log scores. Ultimately, the Gaussian distribution fits 
best to the birth weight data, and the Dagum distribution for gestational age. Details 
on these choices can be found in Appendix A.

The optimal marginals are combined with all possible copula families (Gauss-
ian, Clayton, and Gumbel; including rotations); covariates for the copula parame-
ter are selected and these models’ results are compared, whereupon the deviance 
information criterion (DIC, [35]) and the widely applicable information criterion 
(WAIC, [36]) are calculated by the BayesX routine (see [19] for the computation 
from the deviance). Where the evaluation of a model with many covariates is too 
computationally demanding, specifically for the parameter of non-Gaussian copulas, 
we pre-select covariates based on the variability of correlation coefficients (the two 
prominent examples are shown in Fig.  1) and by tentatively adding them one by 
one. Ultimately, the Clayton copula model yields the best DIC (20 981) and WAIC 
(21 245) in the sense that finite values are returned by the BayesX routine, while 
the other copula families lead to no explicit finite results.

In conclusion from the model fitting process, we use a Clayton copula with a 
Dagum marginal for gestational age and a Gaussian marginal for birth weight. The 
predictor specifications for each of the six model parameters �C , p, a, b, � , and �2 
are given in Table 2, the respective link functions specified in Equation system (2) 
are employed. The final model is evaluated in terms of prediction performance and 
substantive results in Sect. 3.2.

3.2  Analysis of Perinatal Registry Data

Based on the results from Sect.  3.1, we apply the bivariate distributional cop-
ula regression model (see specification in Table  2) to the perinatal registry data 
(Sect. 2.1). A standard univariate regression approach for birth weight is set up for 
comparison.

3.2.1  Evaluation of Copula Regression Model

Influences of covariates on birth weight’s mean are quantified in Table 3. Apart from 
this, covariates also influence other model parameters (see overview in Table 2). The 
birth weight’s scale ( �2 ) is higher for male children, in the case of Cesarean section, 
for higher maternal BMI and if the mother smokes.
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For the Dagum distribution of gestational age, the shape parameter p is higher in 
the case of induction and lower in the case of Cesarean section. The shape parameter 
a increases with the maternal gain of weight and is lower in the case of Cesarean 
section, induction, and if the mother smokes. The scale parameter b increases with 
the number of previous pregnancies and in the case of Cesarean section, and is lower 
in the case of induction. If we consider the distribution’s median b ⋅ (−1 + 21∕p)−1∕a , 
the monotonically increasing link functions and the inverting transformation 
ỹi2 = (322 − yi2)∕14 of the data, we can qualitatively interpret these results such that 
gestational age is higher for decreasing p or b or increasing a, e.g., with increasing 
maternal gain of weight. But we also see that this interpretation is generally rather 
difficult. It leads to no consistent results in terms of monotone effects for Cesarean 
section or induction.

For the copula parameter, only the information, whether the child has been 
delivered by Cesarean section, emerges as a stably estimated influence. Taking 
the intercept into account, the dependence between birth weight and gestational 
age measured in this way turns out to be surprisingly weak, in fact not far from 
independence: �C ≈ 0.40 , 95%-CI: [0.21,  0.76] for children delivered by Cesar-
ean section, �C ≈ 0.14 , 95%-CI: [0.09, 0.22] for the others ( �C ↘ 0 would signify 
independence).

Table 2  Final bivariate copula model specification and result overview: composition of the linear predic-
tor �(�) from the covariates, per parameter � ∈ {�, �2, p, a, b, �C} of the chosen marginal and copula fami-
lies, together with the employed link functions

Included covariates are marked by + , − or ◦ , where + and − denote positive and negative effects, respec-
tively, and ◦ marks where the respective pointwise 95% credible interval includes zero in the final evalu-
ation

Response Birth weight Gestational age Copula

Family Gaussian Dagum Clayton

Parameter � �2 p a b �
C

Components of �(�) Sex (female) − −
Previous pregnancies + +

Cesarean section − + − − + +

Induction + + − −
Maternal age
Maternal height +

Maternal BMI + +

Maternal gain of weight + +

Maternal smoking − + −
Mother is single ◦

Mother is employed ◦

Link: �(�) = … � log �2 log p log a log b log �C



302 Statistics in Biosciences (2024) 16:290–317

1 3

3.2.2  Univariate Polynomial Regression

Instead of bivariate regression for birth weight and gestational age, separate univari-
ate analysis is common in gynecological and obstetric research (e.g., [5–7]), perhaps 
adjusted for the other, or with a dichotomous response like “small for gestational 
age” (e.g., [11, 12]).

We confirm a regression model as the most suitable among univariate birth 
weight models, where gestational age is included as a covariate in the form of a 
polynomial p� of degree three: To find this, we apply fractional polynomial [37] 
regression models

with independent �i ∼ N(0, �2) , for birth weight, with observed gestational age yi2 
as covariate and some of the further covariates (see Table 1). Among the usual frac-
tional polynomials of degree one or two, the resulting mean prediction errors are 
very close to each other. With regard to residual sum of squares, Akaike information 
criterion [38], Bayesian information criterion [39], and maximum prediction error 
(i.e., for outlying data), the polynomial p� (yi2) = �1y

2
i2
+ �2y

3
i2

 performs best. How-
ever, a model of higher degree with “full” polynomial

yi1 = �0 + p� (yi2) +

j=1,…,m
∑

(Cov. j incl.)

�jxij + �i, i = 1,… , n,

p� (yi2) = �1yi2 + �2y
2
i2
+ �3y

3
i2

Table 3  Regression coefficients (posterior mean and pointwise 95% credible interval, in bold where the 
latter does not include zero) regarding the parameter � of (standardized) birth weight, estimated in the 
polynomial and the copula distributional regression model

Covariate Coefficients in regression models

Polynomial Copula

Sex (female) − 0.291 (− 0.337, − 0.246) − 0.290 (− 0.333, − 0.237)
Previous pregnancies 0.058 (0.042, 0.076) 0.048 (0.034, 0.064)
Cesarean section Excluded in selection − 0.291 (− 0.412, − 0.243)
Induction Excluded in selection 0.087 (0.041, 0.157)
Maternal age Excluded in selection Excluded in selection
Maternal height 0.028 (0.024, 0.031) 0.029 (0.027, 0.033)
Maternal BMI 0.030 (0.026, 0.035) 0.037 (0.029, 0.039)
Maternal gain of weight 0.014 (0.010, 0.019) 0.025 (0.019, 0.031)
Maternal smoking − 0.031 (− 0.037, − 0.025) − 0.042 (− 0.049, − 0.036)
Mother is single − 0.127 (− 0.220, − 0.029) − 0.078 (− 0.184, 0.014)
Mother is employed Excluded in selection Excluded in selection
Gestational age − 2.614 (− 2.94, −2.27) –
Squared gestational age 0.011 (0.010, 0.012) –
Cubic gestational age − 15 e−6 (− 17, −14)e−6 –
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is even better in this respect, is in accordance with gynecological and obstetric lit-
erature (e.g., [8, 9]) and therefore preferred.

The obtained regression coefficients regarding both gestational age and covari-
ates are shown in Table 3. According to these, all polynomial terms are relevant, 
i.e., their regression coefficients’ pointwise 95% credible intervals do not include 
zero. This is further illustrated by Fig. 6 showing the regression curve of the sim-
plified model yi1 = �0 + �1yi2 + �2y

2
i2
+ �3y

3
i2
+ �i , in which the non-linear trend of 

birth weight on gestational age is detected, but it becomes also evident that valid 
predictions are not possible outside the essential range of data.

3.2.3  Comparison of Standard Univariate and Copula Approach

The comparability of the bivariate copula model and the standard univariate poly-
nomial model is limited. A purely numerical comparison reported here should 
not be interpreted too deeply, as only a one-dimensional extract of the full cop-
ula result is considered, see the respective interpretations and discussions of 
both models’ features in Sect. 4.3. The two-dimensional predictive performance 
of the copula model is illustrated by a simulation study reported in Sect.  3.3. 
Results show the advantage of distributional copula regression, when the depend-
ence structure depends on a covariate, while there is no loss when it does not, 

Fig. 6  Observations of birth weight and gestational age (summarized due to their large number, using 
the default density estimation of smoothScatter in R; darker shade is for higher density of the point 
cloud) with a polynomial regression curve of degree three
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and a copula model performs only marginally worse when the data are indeed 
independent.

One quantifiable comparable outcome are predictions of birth weight condi-
tional on gestational age. They are obtained from the copula model, after the 
bivariate joint distribution is estimated: To evaluate the conditional distribution 
with density (1), we draw random numbers via rejection sampling with a uniform 
envelope extended to a large enough range. Thereby, we use the observed gesta-
tional age values yi2 , parameter estimates �̂� obtained from samples of the poste-
rior 𝛽(𝜃)

j
’s, and the covariate values of the respective observations.

We compare the obtained prediction samples of birth weight from copula and 
standard model with the observed values using logarithmic scores (log-scores, [40]). 
To obtain out-of-sample prediction errors, we implement a four-fold cross-valida-
tion, for which the observations are randomly assigned to subsamples of equal size. 
Using the estimated model based on three subsamples, individual log scores for the 
respective left-out subsample are computed using the R package scoringRules 
[41], where a lower score represents a better fit.

For the standard model, there results an log-score of 7.41; for the copula model, 
with respect to the birth weight response conditional on gestational age, it is 7.67. 
Thus, the copula model performs only slightly worse than the standard model (cf., 
Sect. 4.3 for an assessment of this result).

The model predictions are also compared directly with the help of graphical eval-
uation. For the vast majority of birth weight predictions, the distributional copula 
regression model is close to univariate polynomial regression. The residual and 
comparison plots in Fig. 7 show how the models agree, especially in mean (bottom 
left). However, extremely low birth weights are correctly predicted by the polyno-
mial alone (top left), while their observations diverge from the copula model predic-
tions (top right, fitted values are in the range of the main part of data, but residuals 
are too far to the negative). A closer range of predictions from the copula model is 
also visible (top right). The residual plot for gestational age from copula regression 
(Fig. 7, bottom right) also reveals rather poor predictions of extremely low values, 
which often coincide with very low birth weights; besides, there emerge two dis-
tinguishable groups of gestational age predictions, presumably in connection with 
the highly influential Cesarean section and induction covariates. Due to independ-
ent and simultaneous estimation of marginals and copula, estimates of the regres-
sion coefficients with regard to birth weight’s mean are very similar in both models, 
but their relevance (i.e., whether a pointwise 95% credible interval does not include 
zero) differs (Table 3).

3.3  Simulation Study on Bivariate Modeling

The considerations on the copula model’s predictive performance are completed by 
a simulation study comparing actual bivariate models, as opposed to the comparison 
with a univariate standard model.

A Gaussian marginal distribution for simulation of standardized birth weight and 
a Dagum marginal distribution for standardized gestational age are applied in any 
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case. The corresponding regression coefficients’ posterior means from the original 
marginal fitting are applied as “true” marginal regression coefficients.

We simulate bivariate response data 

 (i) independently,
 (ii) from a Clayton copula with a parameter �C = 2 for all observations or
 (iii) from a Clayton copula with a parameter depending on the Cesarean section 

covariate: strong dependence ( �C = 5 ) in the case of Cesarean section and 
weak dependence ( �C = 0.5 ) otherwise.
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Fig. 7  Top: residual plots for birth weight from polynomial (left) and copula distributional (right) regres-
sion model, each with smoothed mean and standard deviation lines; bottom right: the same for gesta-
tional age from copula model; bottom left: predictions of birth weight from polynomial and copula dis-
tributional regression model, plotted against each other per observation, with bisecting line (dotted) and 
robustly estimated principal axis of the plotted data (“direction of main point cloud”, solid); predictions 
for all figures obtained from cross-validation study
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(An example of the resulting response data is shown in Fig. 8.)
For each case (i)–(iii) we fit three models, with one matching the simulated case 

each: 

 (i) independence, i.e., separate fitting of the two response variables,
 (ii) a Clayton copula model with only an intercept, and
 (iii) a Clayton copula model including Cesarean section

using BayesX. The following steps are conducted for each case (i)–(iii) and each 
fitted model (I)–(III) using 100 training data sets with 500 observations each. 

 (I) Derivation of model marginal distributional parameters ( � , �2 , p, a, b) and 
if present also the copula parameter using respective MCMC samples.

 (II) Derivation of predictive performance on a test data set of the same size using 
energy scores [41] using the function es_sample from the R package 
scoringRules.

Results for the predictive scores are visualized in Fig. 9.
We are mainly interested in the distributional copula regression model (III), 

where the dependence parameter is assumed to depend on a covariate. It performs 
clearly better than the others, when the data actually exhibit such a dependence 
structure (Fig.  9, right). If they are simulated from a copula model, but with a 

Fig. 8  One simulation of bivariate response data distinguished by Cesarean section covariate: left: inde-
pendently sampled; center: from a Clayton copula with a parameter �

C
= 2 for all observations; right: 

from a Clayton copula with a parameter depending on the Cesarean section covariate: strong dependence 
( �

C
= 5 ) in the case of Cesarean section (below) and weak dependence ( �

C
= 0.5 ) otherwise
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constant copula parameter (center), then the application of model (III) leads to 
no relevant loss compared to the correct model (II). The only weakness of model 
(III) is found, when the two response variables are actually independent (left): 
Both marginals are influenced by Cesarean section, which leads to two groups of 
data in the two-dimensional space with respect to this covariate; further covari-
ates may influence the shape of the groups. In this case, model (III) presumes 
a dependence structure with some difference between these groups, which may 
then be estimated by chance. Another aspect is that models (II) and (III) always 
estimate finite regression coefficients, so that the exponential link function leads 
to a small but positive dependence parameter, even if it should actually be zero.

4  Discussion

4.1  Data Quality

The secondary data from the perinatal registry have not originally been collected 
to be scientific material, but for quality assurance. As such, they are nonetheless 
very informative with regard to procedures in obstetric health care, like the birth 

Fig. 9  Loss in prediction performance of incorrect bivariate copula regression models (I: independence, 
II: Clayton with intercept only, III: Clayton with parameter depending on a covariate) from one-hundred 
simulations. The energy scores of the six fits with incorrect models (i.e., i/II, i/III, ii/I, ii/III, iii/I, iii/II) 
are transformed to relative changes compared to the scores of the correct model for the respective data 
set. (Scores of i/I, ii/II, and iii/III are then expressed as zero)
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mode (Caesarian section, induction), which turns out as an important covariate. 
On the other hand, measurement accuracy varies (e.g., one hospital measures 
birth weight accurate to 1 g, another to 10 g). For gestational age, data are subject 
to uncertainty of reporting, measurement, clinical estimation, and documentation 
(e.g., [11]), although we have carefully checked ours for plausibility. Maternal 
smoking is self-reported and perhaps biased toward a socially desirable answer; 
nonetheless, these data are accurate enough such that an effect of smoking in 
line with other studies from the literature (see Sect. 4.3) is detected despite the 
remaining noise.

4.2  Gestational Age and Dependence Structure

There are strong effects of all three polynomial terms of gestational age in the uni-
variate model and the increasing trend of the mean birth weight along gestational 
age decreases again toward the end (cf., Fig. 6). This phenomenon is also reported in 
other studies (e.g., [5]) and could be an effect of medical decisions to deliver fetuses 
with high weights rather early by induction or Cesarean section and to avoid such 
treatments for a longer time when fetal weight is low.

Tail dependence is likely to be found in the data, specifically in the region of pre-
term births and low birth weight, but it can be comparatively weak, and the data are 
also affected by other complex structures, especially in the region of high gestational 
age. It is possible that the slight decrease of the mean birth weight (as shown by the 
polynomial model) prevents the copula model from being fitted in a way that the 
lower tail is well represented. The available copula models assume only one tail and 
a certain symmetry with respect to its axis, while the data exhibit something like a 
second tail toward a different direction.

Against this background, our estimation of tail dependence is very sensitive to 
gestational age observation. Any data inaccuracies, which are generally possible for 
gestational age (e.g., [11]), have an impact on regression models.

4.3  Model Comparison and Evaluation

The reported numerical comparison of the copula model and the standard poly-
nomial model is limited. The copula model is more general in the sense that it is 
intended for jointly modeling a bivariate response. A univariate model is a simpler 
approach than a joint analysis of a bivariate outcome. Nevertheless, the polynomial 
model can produce useful results and realistic predictions, but only regarding birth 
weight alone. It is more specialized but unsuitable for statements on birth weight 
and gestational age as a joint quantity.

Concerning the copula model’s prediction accuracy in tails, there are not so 
many observations compared to the very large number of births in the center of 
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the distribution. By regression, predictions of gestational age tend naturally toward 
the center, such that, if the copula results are reduced to the conditional form, birth 
weight predictions follow them accordingly.

An important benefit of the distributional copula regression model are visible 
differences between groups, with respect to both scale and dependence: Fig.  10 
shows examples of predictions, distinguished by sex and Cesarean section. It 
becomes apparent, that the variability and structure of the response data is deeper 
explained, when influences of covariates on more parameters than only the means 
are allowed—unlike in a standard regression model.
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Fig. 10  Bivariate density of birth weight and gestational age, as predicted from copula model with pos-
terior means of all parameters plugged in, conditional on certain selected exemplary covariate levels (the 
others are fixed to: maternal height: 170 cm , maternal BMI: 20 kgm2 , maternal gain of weight: 10 kg ; and 
all others set to “no” or 0, respectively)
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Considering both models together, we obtain conclusions that go beyond effects 
of covariates on birth weight. A striking example are the relationships between birth 
weight, gestational age, and the Cesarean section covariate (cf., Tables 2 and 3): The 
latter has an influence on birth weight according to the copula model, where gesta-
tional age is separately estimated, while this does not hold for the standard model, 
where gestational age is present as an influential covariate. The Cesarean section 
covariate also influences the parameters of the Dagum distribution of gestational age 
in the copula model as well as the copula parameter. According to these results, 
the influence of the Cesarean section covariate is in fact manifold (cf., e.g., [42]), 
but this can only be discovered using the bivariate model, which provides more 
extensive conclusions in this respect. In the standard model, the importance of the 
Cesarean section covariate disappears; it is presumably predominated and in parts 
mediated by gestational age, with which Cesarean section is correlated. Conversely, 
Cesarean section can have a relevant effect when gestational age is not included in 
the birth weight marginal regression of the copula model. Similar considerations 
hold for the induction covariate.

As a different example, both models agree with respect to the effect of smoking 
on birth weight (Table  3). There is also an effect on gestational age found in the 
bivariate model (Table 2), but only with respect to one Dagum parameter and, thus, 
presumably less important. So, there seems to be no mediation by gestational age in 
the standard model. The influence of smoking on both birth weight and gestational 
age as well as on the risk of pre-term birth or “small for gestational age” has also 
been found in many studies with univariate responses (e.g., [11, 43, 44]).

4.4  Modeling Perspectives

The employed Dagum distribution fits fairly well to our strongly asymmetric gesta-
tional age data, when compared to the Gaussian distribution. With its three param-
eters, it is flexible enough to be fitted to positive data with inconvenient shapes and, 
thus, it is a good choice among the options implemented in the BayesX routine. 
Other families could be possible too, but should be just as flexible and, therefore, 
have several parameters including shape, even when the parametrization is unfavora-
ble for substantial interpretation.

Also, other copula families as well as specific data transformations might be use-
ful for complicated bivariate response data shapes as ours, e.g., the skewed t-copula 
allows for strong asymmetry and non-linearity [45], but estimation and interpreta-
tion of the multiple parameters are inconvenient compared to our one-parametric 
representation of dependence structure.

As there remains much noise after either model fit, more complex generalized 
additive models, especially using splines, could be considered where non-linear 
relationships are possible [46]. This holds also for the spatial dimension in future 
studies when larger regions are considered. There, further information such as 
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neighborhood could be used. Since lower birth weights are observed in some urban 
regions, an according spatial dependence structure can also be included. This and 
other model enhancements may ease the detectability of very weak effects, which is 
an important aspect within our larger “PerSpat” project.

Extremely low values, i.e., very early pre-term births and cases of very low birth 
weight, are not so well reflected in the applied models’ results, as the main part of 
the data seems to predominate the fitting. The focus of the present study is to model 
the complete distribution of typical birth data, without special weight of extreme 
categories, although the latter are of clinical concern. The prediction results for 
extremely low values lead to the conclusion that another study design where such 
cases are up-weighted should be chosen in future research.

5  Conclusions

For regression analyses regarding birth weight, the bivariate modeling jointly with 
the gestational age emerges as very productive. The results allow insights into the 
relationships between these two variables and others, e.g., Cesarean section, avoid-
ing mediation.

Distributional regression, where any parameter of the bivariate distribution is 
estimated conditional on covariates, is an appropriate instrument to explain the vari-
ability and structure of the perinatal registry data in more depth. While a Gauss-
ian distribution is well fitted to the marginal birth weight data, the heavily skewed 
gestational age data are better modeled by the more flexible Dagum distribution. 
Effects of many explanatory variables on both birth weight and gestational age can 
be distinguished. A copula model is useful to simultaneously estimate the depend-
ence structure and the marginals. The perinatal data are fitted better by the lower 
tail Clayton copula than by the Gaussian and the Gumbel. However, the estimated 
dependence is weak.

Appendix A: Details on Marginal Specifications

The determination of optimal marginal distributions among the options available 
in the BayesX software (cf., [47]) is based on an overall consideration of several 
aspects including interpretability and simplicity. Our decisions are initially based on 
log-scores representing statistics on predictive performance, and are supported by 
visual evaluations of goodness of fit.

The univariate distributional models are fitted and compared using log scores 
(cf., Sect. 3.2.3). The log scores for Dagum and Gaussian distribution are very close 
to each other in the case of birth weight (Dagum: 7.63, Gaussian: 7.66); however, 
for gestational age, the Dagum distribution has a notably better fit (3.74 vs. 4.07).

These findings are confirmed by graphical evaluation of the probability integral 
transform values F(y;�̂) (Fig.  11) and the corresponding normalized quantile 
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residuals Φ−1(F(y;�̂)) (Fig. 12, cf., [48]), where posterior means of the respective 
�
(�)

j
 ’s are employed and y (birth weight or gestational age) is on the standardized 

scale. The theoretically expected uniform distribution of the F(y;�̂) ’s is well recog-
nizable for the Dagum fits, while it is strongly violated for the Gaussian fit of gesta-
tional age data; a similar non-uniform structure as for the latter remains also for the 
Gaussian fit of birth weight data, but considerably weaker. The quantile–quantile 
plot of the Φ−1(F(y;�̂)) ’s shows a slightly better fit of the Dagum model in either 
case, especially in the lower range, but more striking for gestational age, where a 
distinguishable structure remains for the Gaussian. These results are convincing to 
use the Dagum distribution for the gestational age marginal in the analyses.

For birth weight, however, the results are less clear and there are reasons to 
stick with the Gaussian, in doubt: In this application, we are primarily interested 
in influences of covariates on mean and variability of birth weight, and these 

Fig. 11  Histograms of probability integral transform values F(y;𝛽) (with posterior means of the � ’s 
plugged in) for the two models and the two marginal response variables
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characteristics are directly represented by the N(�, �2) parametrization, such that 
effects of covariates are easily and directly interpretable. By contrast, the inter-
pretation of effects on the three Dagum parameters is quite complicated and 
sometimes ambiguous in terms of substantive results (cf., Sect.  3.2.1). Results 
from the Gaussian fit are furthermore directly comparable to other studies, espe-
cially with standard regression models. So, as there is at least some evidence 
above that the Gaussian family does not fit essentially worse than the other, we 
use it for the birth weight marginal in the analyses.
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