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Abstract
We propose a functional linear model to predict a functional response using multiple 
functional and longitudinal predictors and to estimate the effect lags of predictors. 
The coefficient functions are written as the expansion of a basis system (e.g. func-
tional principal components, splines), and the coefficients of the basis functions are 
estimated via optimizing a penalization criterion. Then effect lags are determined by 
simultaneously searching on a prior designed grid mesh based on minimization of a 
proposed prediction error criterion. Mathematical properties of the estimated regres-
sion functions and predicted responses are studied. The performance of the method 
is evaluated by extensive simulations and a real data analysis application on chronic 
obstructive pulmonary disease (COPD).

Keywords Functional data analysis · Effect lag functional linear model · Functional 
principal component analysis · COPD

1 Introduction

Due to advancements in science and technology, the amount of available, often 
open-source, data is growing exponentially. New opportunities for statistical research 
arise by formulating relevant and interesting questions which can be answered with 
these data. This work is motivated by questions in urban analytics and three tem-
poral datasets, namely COPD hospital admissions, NO2 measurements and visits 
to gyms in Leeds from 2013 to 2018. The NO2 data are measured at ten locations 
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and extrapolated to postcode level. The visits to gyms and the COPD admissions are 
aggregated to postcode level. The health and pollution data are sampled densely and 
regularly in time (we call this dense functional data) and the physical exercise data 
are obtained at irregular time intervals with few measurements (we call this sparse 
longitudinal data). The questions we aim to answer with these data are: Do life style 
and pollution affect COPD hospital admissions at postcode level? Does a rise in pol-
lution have a direct effect on COPD hospital admissions or is there a delay? A first 
step to answer these questions is to model health outcomes over time as function of 
pollution and physical exercise over time.

Relationships between temporal data are often not synchronous and involve a 
delay in the effects. Exposure of a person to high pollution might show to affect 
this person’s health with some delay and the effect might fade away after some 
time. Other examples are, a treatment with a medicine might take some time to start 
affecting the patient and after the end of the treatment it might still be having an 
effect for limited amount of time. Historical exposure to high temperatures might 
not have an effect on the growth of trees anymore after a certain period and it may 
also take some time before high temperatures result in lower growth rates.

Motivated by the problem of dense temporal and sparse longitudinal predic-
tors, we consider estimation and prediction for a functional regression model [7]. 
We estimate the intervals through the corresponding lags of the effect of predictors 
on response. Specifically for our motivating example, we estimate the influence of 
dense functional pollutants (nitrogen dioxide (NO2) concentrations) and sparse lon-
gitudinal predictor (physical activities) on dense COPD hospital admissions. Moreo-
ver, we want to estimate the effect lags of pollutants on COPD hospital admission, 
i.e. from when the predictors have an influence on the response and until when this 
influence disappears.

The classical function-on-function linear model, which was first formulated by 
Ramsay and Dalzell [17], reads as follows:

where Y(t) is the response trajectory, X(s) is the predictor trajectory, �(t) is the error 
process, �0(t) is the intercept process, �1(s, t) is the two-dimensional regression coef-
ficient function which shows the influence of X on Y. A drawback of this model is 
that the entire predictor trajectory X(s) including the future values, i.e. when s > t , 
is assumed to influence the current value of response trajectory Y at time t. Clearly 
this is not appropriate in many applications. Malfait and Ramsay [5, 8, 12] proposed 
historical functional linear models, where only the past of the predictor trajectory 
influences the response at the current time:

where �1 and �2 ( 0 < 𝛿1 < 𝛿2 < T  ) are the lags for the influence of predictor trajec-
tory on response trajectory. For one dense functional predictor, Malfait and Ramsay 

Y(t) = �0(t) + ∫
T

0

�1(s, t)X(s)ds + �(t), t ∈ [0, T]

Y(t) = �0(t) + ∫
t−�1

t−�2

�1(s, t)X(s)ds + �(s), t ∈ [0, T]
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[12] consider the triangular basis expansion of the coefficient function which is esti-
mated at each observation point. A penalized approach which allows varying lags for 
the historical functional linear model has been developed by [5]. Kim et al. [8] con-
siders the situation that both predictor process and response process are sparsely and 
irregularly observed. Pomann et al. [16] has extended the historical functional linear 
model to multiple homogeneous predictors, and the response is influenced by the 
predictors from a fixed starting effect time to current time. In this paper we extend 
this work to a model with both dense functional and sparse longitudinal predictors.

Our contribution of this paper is threefold: firstly, a model with multiple het-
erogeneous (sparse longitudinal and dense functional) predictors subject to time 
lags (both starting and ending points) that are fixed but unknown is proposed. We 
propose estimators for the coefficient regression functions. The effect lags (i.e. the 
fixed starting and ending effect times) are determined by minimizing the prediction 
error. Secondly, the asymptotic behavior of the estimated coefficient functions, and 
the predicted response curve is investigated. Thirdly, the three temporal datasets are 
integrated and the relationships between COPD hospital admissions and lifestyle 
and pollution are modelled.

The paper is organized as follows: In Section 2, the historical function-on-func-
tion linear model for multiple heterogeneous predictors is introduced. In Section 3, 
we consider the estimation of the coefficient functions and the uniform consistency 
of the estimators is established. In Section 4, the prediction of the response trajec-
tories is proposed and the asymptotic property of the predicted trajectories is estab-
lished. The determination of the lags is proposed in Section 5. Extensive numerical 
simulations are considered in Section  6 to show the asymptotic properties of our 
proposed estimators. In Section 7, the COPD and NO2 datasets are analysed and the 
lags of the influence of NO2 on COPD are determined. We finish by drawing some 
conclusions and further discussion.

2  Model

Suppose the observations are {Yij, tij ∶ i = 1, ..., n, j = 1, ...,mYi} , {W1ij, s1ij:i = 1, ...,
n, j = 1, ...,m1i} and {W2ij, s2ij ∶ i = 1, ..., n, j = 1, ...,m2i} , where Yij is the j-th 
observation of response for the i-th subject (at time tij ∈ [0, 1] ) and mYi is the num-
ber of observations of response for the i-th subject, similarly, W1ij, W2ij are the j-
th observation of subject i for two predictors respectively and m1i and m2i are the 
numbers of observations of the two predictors (at time s1ij, s2ij ∈ [0, 1] ) respectively. 
For example, the response Yij corresponds to the standardised COPD hospital admis-
sions in the i-th postcode district at time tij . The predictor W1ij corresponds to the 
NO2 concentrations in the i-th postcode district at time s1ij . The predictor W2ij corre-
sponds to the standardised number of physical activities in the i-th postcode district 
at time s2ij.

Let W1ij = X1i(s1ij) + �1ij , W2ij = X2i(s2ij) + �2ij and X1i(t) , X2i(t) be independ-
ent copies of underlying square-integrable random functions X1(t) and X2(t) over 
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[0,  1] respectively. Without loss of generality, we assume �X1
(t) = E[X1(t)] = 0 

and �X2
(t) = E[X2(t)] = 0 . See Remark 2 for guidance on how to estimate the 

means in real data applications. We denote by CX1
(s, t) = cov(X1(s),X1(t)) the 

covariance of X1(t) and CX2
(s, t) = cov(X2(s),X2(t)) the covariance of X2(t) . We 

assume that the first predictor curves X1i(t) are observed on a dense and regular 
grid of points, i.e. m11 = ... = m1n ∶= m1 , while the second predictor curves X2i(t) 
are observed on a sparse and irregular grid of points s2ij . The observations W1ij 
and W2ij are the discrete versions of X1i(t) and X2i(t) with iid mean-zero and vari-
ance-finite noise �1ij and �2ij respectively. The noise �1ij and �2ij are independent of 
X1i(t) and X2i(t) respectively. For the responses Yij , they are observed either on a 
sparse and irregular grid or dense grid of tij.

We define the lag historical functional linear model with two heterogeneous 
predictors X1(t) and X2(t) and the response Y(t) as

where i ∈ {1, ..., n}, j ∈ {1, ...,mYi}, �0 ∶ [0, 1] → ℝ , Δ1 = [�11, �12] , Δ2 = [�21, �22] , 
�1 ∶ Δ1 × [0, 1] → ℝ and �2 ∶ Δ2 × [0, 1] → ℝ are continuous two-dimensional 
coefficient functions, and eij are independent measurement errors with mean zero 
and finite variance �2

e
 . Errors eij are assumed to be independent of X1i(t) and X2i(t).

In Equation (1), we assume that the � ’s are fixed, similar to [8]. Given the �
’s, the observations Yij are modelled at times tij ≥ max{�12, �22} . Considering a 
subset only of the observations based on the lags is not unusual and is similar to 
the approach for AR(p) models, where model selection (determine p) comes first 
and then parameter estimation where observations at time t < p are not available.

Notice that (1) is equivalent to

then the model (1) means that given the entire predictor curves X1i and X2i , the 
response for the i-th subject at time tij ≥ max{�12, �22} is only affected by the values 
of X1i over time-window [tij − �12, tij − �11] and by the values of X2i over time-win-
dow [tij − �22, tij − �21].

Whether X1i(s) for s in the time-window [tij − �12, tij − �11] and X2i(s) for s the 
time-window [tij − �22, tij − �21] have an effect on the response Yij also depends on 
the coefficient functions �1(tij − s, tij) and �2(tij − s, tij) respectively. These func-
tions represent the effect of the predictors on the outcome variable and can be 
equal to zero.

(1)

Yij = �0(tij)+�
�12

�11

�1(s, tij)X1i(tij − s)ds

+�
�22

�21

�2(s, tij)X2i(tij − s)ds + eij for tij ≥ max(�12, �22)

(2)

Yij = �0(tij) + ∫
tij−�11

tij−�12

�1(tij − s, tij)X1i(s)ds

+ ∫
tij−�21

tij−�22

�2(tij − s, tij)X2i(s)ds + eij
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3  Estimation of the model parameters

Let {B11(s), ...,B1K1
(s)} and {B21(s), ...,B2K2

(s)} be two pre-specified basis func-
tions on Δ1 and Δ2 . Then the two-dimensional coefficient functions �1(s, t) and 
�2(s, t) are assumed to be represented as

and

respectively, where K1 and K2 capture the resolution of the fit and should be chosen 
accordingly and b1k(t) and b2k(t) are the unknown time-varying coefficient functions 
defined on [0, 1]. Various basis functions such as Fourier, B-spline, wavelet basis 
can be used depending on the specific features of the coefficient functions.

Substituting (3) and (4) into equation (1), we have

where X̃1ik(tij) = ∫ 𝛿12
𝛿11

B1k(s)X1i(tij − s)ds , X̃2ik(tij) = ∫ 𝛿22
𝛿21

B2k(s)X2i(tij − s)ds , 

b1(tij) = (b11(tij), ..., b1K1
(tij))

T , b2(tij) = (b21(tij), ..., b2K2 (tij))
T  , X̃1i(tij) = (X̃1i1(tij), ..., X̃1iK1 (tij))

T  , and 

X̃2i(tij) = (X̃2i1(tij), ..., X̃2iK2
(tij))

T . Note that the observed times tij depend on subject 
i. Model (1) reduces to a varying coefficient model with K1 induced predictors 
X̃1ik(tij) and K2 induced predictors X̃2ik(tij) which can be regarded as realizations of 
X̃1k(t) and X̃1k(t) at tij respectively.

At first, notice that �X1
(t) = �X2

(t) = 0 implies �0(tij) = E[Yij] , so �0(t) can be 
estimated by smoothing Yij via local smoothing method based on the pooled data, 
see for example Yao et  al. [19]. We denote Yij − 𝛽0(tij) by Yij , where 𝛽0(tij) is an 
estimator of �0(t) evaluated at time tij.

In order to derive the estimator of {b11(t), ..., b1K1
(t)} and {b21(t), ..., b2K2

(t)} , we 
assume tij = t0

j
 to simplify the notation in this paragraph, i.e. the observation 

times for different subjects are the same. We then estimate b1k(t0j ) and b2k(t0j ) by 
minimizing the penalized sum of squared errors (PSSE):

(3)�1(s, t) =

K1∑
k=1

B1k(s)b1k(t), s ∈ Δ1, t ∈ [0, 1]

(4)�2(s, t) =

K2∑
k=1

B2k(s)b2k(t), s ∈ Δ2, t ∈ [0, 1]

(5)

Yij =𝛽0(tij) +

K1∑
k=1

b1k(tij)∫
𝛿12

𝛿11

B1k(s)X1i(tij − s)ds

+

K2∑
k=1

b2k(tij)∫
𝛿22

𝛿21

B2k(s)X2i(tij − s)ds + eij

=∶𝛽0(tij) +

K1∑
k=1

b1k(tij)X̃1ik(tij) +

K2∑
k=1

b2k(tij)X̃2ik(tij) + eij

=𝛽0(tij) + b
T
1
(tij)X̃1i(tij) + b

T
2
(tij)X̃2i(tij) + eij,



6 Statistics in Biosciences (2024) 16:1–24

1 3

where ‖ ⋅ ‖ is the Euclidean norm of a vector, Yj = (Y1j, ..., Ynj)
T , 

X̃1(t
0
j
) =

(
X̃11(t

0
j
), ..., X̃1n(t

0
j
)
)T

n×K1

 , X̃2(t
0
j
) =

(
X̃21(t

0
j
), ..., X̃2n(t

0
j
)
)T

n×K2

 , 𝜌1 > 0 and 

𝜌2 > 0 are the regularization parameters which are assumed to be time independent 
in order to reduce the high variability. The penalization does not only prevent over-
fitting but also guarantees the invertibility of matrix while solving the minimization 
problem. Then the minimizer of (6) is

where IK is the K × K identity matrix and

Notice that when tij ≠ t0
j
 , b̂1(t0j ) needs to be replaced by b̂1(tij) and Zj can be adapted 

correspondingly by replacing t0
j
 by tij and the formulas in this paragraph hold.

Therefore, for arbitrary t ∈ [0, 1] , we have

where Ĉ11(t) =
[
ĈX̃1k ,X̃1 l

(t)
]
kl

 is a K1 × K1 matrix with ĈX̃1k ,X̃1l
(t) an estimator of 

CX̃1k ,X̃1 l
(t) = cov

(
X̃1k(t), X̃1 l(t)

)
 , Ĉ12(t) =

[
ĈX̃1k ,X̃2 l

(t)
]
kl

 is a K1 × K2 matrix with 
ĈX̃1k ,X̃2l

(t) an estimator of CX̃1k ,X̃2 l
(t) = cov

(
X̃1k(t), X̃2 l(t)

)
 , Ĉ21(t) =

[
ĈX̃2k ,X̃1 l

(t)
]
kl

 is a 
K2 × K1 matrix with ĈX̃2k ,X̃1l

(t) an estimator of CX̃2k ,X̃1 l
(t) = cov

(
X̃2k(t), X̃1 l(t)

)
 , 

Ĉ22(t) =
[
ĈX̃2k ,X̃2 l

(t)
]
kl

 is a K2 × K2 matrix with ĈX̃2k ,X̃2l
(t) an estimator of 

CX̃2k ,X̃2 l
(t) = cov

(
X̃2k(t), X̃2 l(t)

)
 , Ĉ1Y (t) =

[
ĈX̃11,Y

(t), ..., ĈX̃1K1
,Y (t)

]T
 is a vector and 

ĈX̃1l,Y
(t) is an  estimator of CX̃1 l,Y

(t) = cov
(
X̃1 l(t), Y(t)

)
 , and 

Ĉ2Y (t) =
[
CX̃21,Y

(t), ...,CX̃2K2
,Y (t)

]T
 is a vector and ĈX̃2l,Y

 is an estimator of 
CX̃2 l,Y

(t) = cov
(
X̃2 l(t), Y(t)

)
.

To obtain the necessary quantities in (7), we have to consider the embed-
ding covariance functions and their corresponding estimations. We only give the 

(6)

PSSEb1,b2
=

n�
i=1

e2
ij
+ 𝜌1‖b1(t0j )‖2 + 𝜌2‖b2(t0j )‖2

=‖Yj − X̃1(t
0
j
)b1(t

0
j
) − X̃2(t

0
j
)b2(t

0
j
)‖2

+ 𝜌1‖b1(t0j )‖2 + 𝜌2‖b2(t0j )‖2,

[
b̂1(t

0
j
)

b̂2(t
0
j
)

]
=

(
Z
T

j
Zj +

[
𝜌1IK1

0

0 𝜌2IK2

])−1(
Z
T

j
Yj

)
,

Zj =

⎡⎢⎢⎣

X̃111(t
0
j
) ⋯ X̃11K1

(t0
j
) X̃211(t

0
j
) ⋯ X̃21K2

(t0
j
)

⋮ ⋮ ⋮ ⋮

X̃1n1(t
0
j
) ⋯ X̃1nK1

(t0
j
) X̃2n1(t

0
j
) ⋯ X̃2nK2

(t0
j
)

⎤⎥⎥⎦
.

(7)
[
b̂1(t)

b̂2(t)

]
=

([
Ĉ11(t) Ĉ12(t)

Ĉ21(t) Ĉ22(t)

]
+

[ 𝜌1

n
IK1

0

0
𝜌2

n
IK2

])−1 [
Ĉ1Y (t)

Ĉ2Y (t)

]
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details for CX̃1k ,X̃1l
(t) here and for the other covariance functions see Appendix A. 

For CX̃1k ,X̃1 l
(t) , we have

where CX1
(s, u) is the covariance between X1(s) and X1(u) . Since predictor X1 is 

densely observed, CX1
(s, u) can be estimated by bivariate kernel smoothing, see [2]:

where b is a bandwidth, m1 is the number of observations of the dense and regular 
predictor X1 for each subject, and K is a bivariate kernel function.

Once b̂1(t) and b̂2(t) are obtained (for given lags � ’s and regularization param-
eters �’s), we can estimate coefficient functions by

and

Theorem  1 Under assumptions (A1–A5) and (B1–B3) specified in Appendix B, 
denote It = [max{�12, �22}, 1],

Remark 1 Here the convergence rate depends on the tuning parameters, e.g. the 
bandwidth b, used in estimating the corresponding covariance structures (including 
auto-covariance structure of the predictor processes and cross-covariance structure 
between the predictor processes and response process). Note that the bandwidth b 
should be chosen in such a way that there are a sufficient number of observations in 
the interval to estimate the covariance. For details of the proof, see Appendix C.

Remark 2 If the mean �X1
(t) and �X2

(t) of the predictors X1(t) and X2(t) are not 
equal to 0, they can be estimated nonparametrically. Specifically, for the sparse and 

CX̃1k ,X̃1l
(t) = cov

(
X̃1k(t), X̃1l(t)

)

= ∫
𝛿12

𝛿11
∫

𝛿12

𝛿11

B1k(s)B1l(u)E[X1(t − s)X1(t − u)]duds

= ∫
𝛿12

𝛿11
∫

𝛿12

𝛿11

B1k(s)B1l(u)CX1
(t − s, t − u)duds,

ĈX1
(s, u) =

1

(m1b)
2

m1∑
j,k=1

K

(
s − s1j

b
,
u − s1k

b

)
1

n

n∑
i=1

W1ijW1ik,

𝛽1(s, t) =

K1∑
k=1

B1k(s)b̂1k(t), s ∈ Δ1, t ∈ [0, 1]

𝛽2(s, t) =

K2∑
k=1

B2k(s)b̂2k(t), s ∈ Δ2, t ∈ [0, 1].

lim
n→∞

sup
s,t∈Δ1×It

|𝛽1(s, t) − 𝛽1(s, t)| = 0 in probability.

lim
n→∞

sup
s,t∈Δ2×It

|𝛽2(s, t) − 𝛽2(s, t)| = 0 in probability.
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irregular longitudinal predictor, one can use the method proposed by Yao et al. [19, 
20] or by [9, 14]. For the dense and regular functional predictor, methods such as 
kernel estimation proposed by [2] can be used.

4  Prediction

Suppose we observe a new discrete response curve Y∗
j
= (Y∗(t∗

1
), ...Y∗(t∗

m∗ )) , discrete 
dense predictor trajectory W∗

1
= (W∗

1
(s11), ...,W

∗
1
(s1m1

))T and discrete sparse predictor 
trajectory W∗

2
= (W∗

2
(s∗

21
), ...W∗

2
(s∗

2m2
))T . From the original model (1), the predicted 

response curve is

However, the lags �11, �12, �21, �22 and regularization parameters �1 and �2 have to be 
determined and the functional representation of the predictor trajectories X∗

1
(s) and 

X∗
2
(s) have to be recovered from data.
For X∗

1
(s) , it can be easily recovered by kernel smoothing, since the sampling is 

dense. However for X∗
2
(s) , since the sampling is sparse and irregular, we use func-

tional principal component analysis (FPCA) and approximate the curve by a limited 
number of functional principal components. We assume X∗

2
(s) ∼ X2(s) ∈ L2[0, 1] 

and E[X2(s)] = 0 . Denote the covariance of X2(s) by CX2
(s, u) = cov(X2(s),X2(u)) , 

then the Mercer’s theorem gives the following spectral decomposition of the 
covariance

where �1 ≥ �2 ≥ ... ≥ 0 are eigenvalues and �l are orthonormal eigenfunctions. By 
Karhunen-Loève (KL) expansion, X∗

2
(s) can be represented as

where �∗
l
= ∫ 1

0
X∗
2
(s)�l(s)ds are the functional principal component scores and are 

uncorrelated random variables with mean 0 and variance �l . The truncated formula 
for X∗

2
(s) is:

(8)

E
[
Y∗(t)|X∗

1
,X∗

2

]
= �0(t) + ∫

�12

�11

�1(s, t)X
∗
1
(t − s)ds

+ ∫
�22

�21

�2(s, t)X
∗
2
(t − s)ds.

CX2
(s, t) =

∞∑
l=1

�l�l(s)�l(u)

X∗
2
(s) =

∞∑
l=1

�∗
l
�l(s)

X∗L
2
(s) =

L∑
l=1

�∗
l
�l(s).
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The covariance CX2
(s, t) can be estimated as we discussed in last section and the 

eigenfunctions �l can be estimated following the spectral decomposition of the esti-
mated covariance. However, the scores �∗

l
 cannot be approximated by numerical 

integration which is used for dense functional data. In fact, under the Gaussian 
assumption, denote �l = (�l(s

∗
21
), ...,�l(s

∗
2m∗

X2

))T , the best linear predictor for �∗
l
 is 

(see [11], Yao et al. [19, 20] or see the application in [10])):

where Σ = var(W∗
2
) . Then the estimate of �∗

l
 can be defined as

The number of eigenfunctions L can be selected to be the number of eigenfunctions 
that explain 99% of the variation. Once obtaining the estimation of eigenfunctions 
�l , scores �il and L, X∗

2
(s) can be recovered as

After plugging the functional representation of the predictor curves X̂∗
1
(s) and X̂∗

2
(s) 

into (8), we have

Define

and

Theorem  2 Under assumptions (A1–A5) and (B1–B3) in Appendix B, denote 
It = [max{�12, �22}, 1] , for all t ∈ It , we have

𝜉∗
l
= 𝜆l�

T
l
Σ−1

W
∗
2

𝜉∗
l
= �̂�l�̂l

T
Σ̂−1

W
∗
2
.

X̂∗
2
(s) =

L∑
l=1

𝜉∗
l
�̂�∗
l
(s).

(9)

Ŷ∗
L
(t) = ∫

𝛿12

𝛿11

𝛽1(s, t)X̂
∗
1
(t − s)ds + ∫

𝛿22

𝛿21

𝛽2(s, t)X̂
∗
2
(t − s)ds

= ∫
𝛿12

𝛿11

𝛽1(s, t)X̂
∗
1
(t − s)ds + ∫

𝛿22

𝛿21

𝛽2(s, t)

L∑
l=1

𝜉∗
l
�̂�l(t − s)ds.

Ỹ∗(t) = ∫
𝛿12

𝛿11

𝛽1(s, t)X
∗
1
(t − s)ds + ∫

𝛿22

𝛿21

𝛽2(s, t)

∞∑
l=1

𝜉∗
l
𝜙l(t − s)ds.

Ỹ∗
L
(t) = ∫

𝛿12

𝛿11

𝛽1(s, t)X
∗
1
(t − s)ds + ∫

𝛿22

𝛿21

𝛽2(s, t)

L∑
l=1

𝜉∗
l
𝜙l(t − s)ds.

lim
n→∞

Ŷ∗
L
(t) = Ỹ∗(t) in probability.
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Remark 3 Note that the number of eigenfunctions L used in the KL expansion of 
the sparse and irregular predictor process is a function of sample size n and goes to 
infinity as n goes to infinity. For details of the proof, see Appendix C.

5  Computation of the Lags

The final task is to estimate the time lag �’s. For selecting � ’s and �’s, we consider 
the normalized prediction error (NPE) criterion and the K-fold cross validation cri-
terion. Specifically, for pre-specified � and � , NPE in this situation is defined as

where Ŷij is the predicted value for the jth measurement on the ith response trajec-
tory Y(t) obtained based on the pre-specified � and � , N =

∑n

i=1
mYi

 . Similarly, for 
pre-specified � and � , we define K-fold cross validation criterion as follows. We 
divide the dataset into K equal parts. For each k = 1, ...,K , we fit the model to the 
other K − 1 parts, which gives the estimation of coefficient functions, and further 
gives the prediction Ŷ−k

ij
 in the kth part. Then the K-fold cross validation score is 

defined as,

Similar criteria are considered in [8] and Pomann et al. [16].
Then � ’s and � ’s are chosen in a hierarchical manner. Let D1 and D2 be the sets of 

potential lags for the first and second predictor, i.e. {(�11, �12)} and {(�21, �22)} , 
respectively. Let D� be the set of potential regularization parameters {(�1, �2)} . 
Firstly, for a fixed point of lags �0 =

(
(�0

11
, �0

12
), (�0

21
, �0

22
)
)
∈ D1 × D2 , we calculate 

the NPE values for all � ∈ D� = {(�1, �2)} , i.e. NPE{(�0, �)}�∈D�
 . Then the � that 

achieves the smallest NPE value, i.e. �opt(�0) = min�∈D�
NPE{(�0, �)} , is chosen as 

the optimal � for the given fixed point of lags �0 . Secondly, we calculate the cross 
validation score CV{(�0, �opt(�0))} for the given �0 based on the �opt(�0) . At last, we 
repeat the above steps for all � ∈ D1 × D2 and we obtain the cross validation score 
for all � ∈ D1 × D2 , CV{(�, �)}�∈D1×D2,��∈D�

 . Then, the optimal � is chosen to be the 
one with the smallest cross validation score.

Remark 4 Since for our simulation study and real data analysis, Yij , for j such that 
tj > max{𝛿12, 𝛿22} , is larger than 0.5, we define NPE as in formula (9). If min{|Yij|} 
is very close to zero, one may define NPE as

(10)NPE{(𝛿, 𝜌)} =
1

N

n∑
i=1

mYi∑
j=1

|||Ŷij − Yij
|||

|Yij|

(11)CV{(𝛿, 𝜌)} =
1

K

K∑
k=1

∑
i∈kth part

1

mYi

mYi∑
j=1

(
Ŷ−k
ij

− Yij

)2

.
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In our simulation and real data analysis, the two NPE criteria give the same results.

Remark 5 Here, for pre-specified � , we first chose � from a set of � values using the 
NPE criterion. Then we chose � based on the CV criterion from a set of � values. 
The advantage is that the computationally faster NPE criterion for choosing � and 
the more refined CV criterion for selecting the � are used.

6  Simulations

We study efficiency of the NPE criterion for selecting the time lags � ’s and regulari-
zation parameters �’s.

For n = 50, 100, 150, 200 subjects, we first generate two predictor curves 
X1(t) and X2(t) on dense and equally spaced time points over [0,  1], i.e. 
{j∕99, j = 0, ..., 99} and then accordingly generate the response curve Y(t) at time 
points {j∕99, j = 0, ..., 99} . The number of measurements made on the ith response 
mYi is randomly selected from 20 to 50, the number of measurements made on the 
ith predictor m1i is 100 and the number of measurements made on the ith predictor 
m2i is randomly selected from 30 to 50.

Define X1i(t) = �i1 sin(2�t) + �i2t
2 with �i1

iid
∼ N(0, 1) and �i2

iid
∼ N(0, 1) , 

X2i(t) = �i cos(2�t) with �i
iid
∼ N(0, 1) . We take the same time lags for both 

X1 and X2 , i.e. �11 = �21 = 0.1 , �12 = �22 = 0.4 . For coefficient functions, we 
choose �0(t) = t + t1∕5 , �1(s, t) = sin(2�s) cos(�t), t ∈ [0, 1], s ∈ [0.1, 0.4] , 
�2(s, t) = sin(4�s) cos(2�t), t ∈ [0, 1], s ∈ [0.1, 0.4] . The measurement errors are 
taken to be independent normal with signal to noise ratio 20 for the predictors and 
response. Figure 1 shows the simulated data for the first replicate with n = 100.

NPE{(𝛿, 𝜌)} =
1

N

n�
i=1

∑mYi

j=1

���Ŷij − Yij
���∑mYi

j=1
�Yij�

.

Fig. 1  Simulated data of first replicate: The left plot shows the discrete noisy observations of the first 
predictor which are observed for a dense and regular grid. The middle plot shows the discrete noisy 
observation of the second predictor which are observed for a sparse and irregular grid. The right plot 
shows the discrete noisy observations of the response which are sparsely and irregularly observed
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Since we could not assume any prior on the coefficients and B-spline basis 
are computationally fast and have good properties, we use B-spline functions 
for the estimation and prediction. With respect to K1 and K2 , we use B-spline 
functions of degree 4 with 10 equally spaced interior knots over Δ1 and Δ2 
(number of bases is 14). For details on B-spline basis, see for example [4]. The 
number of functional principal components is chosen such that 99% of varia-
tion is kept. The penalized parameters �1 and �2 are chosen on the dense grid 
of �1, �2 ∈ [10−5, 10−2] with 20 equally-spaced points in both directions. We 
use NPE criterion and 10-fold cross validation criterion to determine the reg-
ularization parameters and the lags. Notice that in order to check the estima-
tion performance, the estimation procedure is done under the correct lags, i.e. 
�11 = �21 = 0.1 , �12 = �22 = 0.4 . Figure  2 shows the result of one simulation, 
where �1 is chosen as 4.28 × 10−4 , �2 is chosen as 8.86 × 10−4 and the corre-
sponding NPE is 1.95 × 10−2 . From Fig. 2, we conclude that our model success-
fully reveals the structure of coefficient functions.

Fig. 2  The estimated functions for the first replicate: The left upper corner plot is the true �1 : abscissa 
is s with the domain [0.1, 0.4], ordinate is the values of �1 , there are 60 curves and they are �1(s, tj) for 
tj = j∕99, j = 40, ..., 99 . The second left upper plot is the estimation of �1 . The third left upper plot is the 
contour line of the true �1 . The fourth left upper plot is the contour line of the estimated 𝛽1 . The bottom 
panel shows the true and estimated �2

Table 1  NPEs based on correct 
lags

n 50 100 150 200

NPE×100 2.08 1.95 1.86 1.79
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Table 1 shows the asymptotic properties of our estimation. For different num-
ber of observations n = 50, 100, 150, 200 , the NPE values are shown and also 
the estimation is based on the correct lags. As we can see, the NPE decreases as 
n increases which is expected based on Theorem 1.

For evaluating the performance of our model on selecting the effect lags, 
the � ’s are determined based on the NPE criterion and the � ’s are determined 
based on 10-fold cross-validation score. Since the true �11 = �21 = 0.1 and 
�12 = �22 = 0.4 , in order to save computational time, we fix the ending point 
i.e. �11 = �21 = 0.1 , use the same starting point, i.e. �12 = �22 and search over 
{0.3, 0.4, 0.5} . That is we have three combinations but there is only one correct 
combination. Our model has 65 correct choices out of 100 simulations.

7  Data Analysis

Chronic Obstructive Pulmonary Disease (COPD) continues to be one of the leading 
causes of morbidity and mortality in the world and a burden on many national health 
systems [13]. Many of the risk factors associated with the disease are controlled by 
each patient’s personal decisions, an example of such a risk factor is how much a 
patient smokes (see [1]). Other risk factors are more complicated and are determined 
by socioeconomic factors such as where a patient lives (for example the presence 
of sport facilities and the amount of air pollution in the neighbourhood) and their 
access to healthcare. These factors are more likely to be effected by government and 
policy. In 2003, the US National Heart, Lung, and Blood Institute estimated that 
the total costs (direct and indirect) of COPD was approximately $32.1 billion for 
the year (see [13]). Modelling COPD in a predictive way could be a useful asset in 
allocating health resources to better deal with predicted spikes in COPD exacerba-
tions and can be used to identify areas in which preventative measures can be taken 
to better COPD health outcomes. Both of these approaches could potentially make 
significant headway in reducing the morbidity related to COPD and the economic 
costs of the disease.

Air quality is a known factor that affects a person’s health and quality of life. 
Previous research suggests a link between air quality and COPD hospitalisation (see 
[21]). More specifically, a study looking at the effect of pollutants on 94 COPD suf-
ferers living in London found that a rise in NO2 concentration accounted for a 6% 
increase in the odds of a symptomatic fall in peak flow rate (see [15]). We aim to 
link heterogeneous data sets regarding NO2 concentration and exercise intensity to 
model COPD hospital admissions for the city of Leeds.

Healthcare, air quality and lifestyle datasets are typically a mixture of static, tem-
poral, dense and sparse data. The pollution data is usually fairly regular over time 
(the data we present is collected every 15 min), but there is only a limited number of 
monitoring sites in a city meaning that the data are spatially sparse. Physical activity 
data can come from a variety of sources stretching from a small group of volunteers 
who allow their daily movements to be tracked, to a large sample based on informa-
tion from logged visits to local gym facilities.
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7.1  Pollution Data

Pollution data was taken from 10 automatic monitoring points from across Leeds 
taking measurements of NO2 concentration every 15 min. The dataset from 2013 
to 2018 can be found Ratifi ed air quali ty -  nitro gen dioxi de. The location of the 10 
monitors is shown in Fig. 6 and a snapshot of the data is shown in Table 7 in Appen-
dix D. A mean value at each collection point was calculated daily for all years. Some 
collection points reported N/As for long periods of time making the data sparse at 
some points in time.

The 10 collection points were mapped onto a 861 point grid of Leeds. The 
location of the grid is shown in Fig. 8 in Appendix D. Using the Krige function 
in R, an interpolation over this grid was carried out using the inverse distance 
weighted interpolation method with a power of 2 (default). N/As were excluded. 
The points of the grid were then allocated to postcode district by matching them 
to the closest postcode (Euclidean distance). This was done using the website 
http:// www. geodo jo. net/ uk/ conve rter/. The data was then aggregated down to dis-
trict level by taking the mean of all data points within a district. From this the 
daily NO2 for each postcode district in Leeds is calculated along with the stand-
ard deviation between all the points that lie within the district boundaries, see 
Table 9 in Appendix D.

The daily mean NO2 concentrations from 2013 to 2018 for the 18 postcode 
districts in Leeds and their kernel smoothing with data-adaptive local plug-in 
bandwidth selection curves are shown in the left and right panel of Fig. 3 respec-
tively. As expected a yearly seasonal effect for daily mean NO2 is observed with 
peaks in the winter.

7.2  Physical Activity Data

Raw physical activity data was obtained from a local authority concerning use 
of their gym and sports facilities for the period 2013 to 2018. These data were 
given per postcode sector level and we further aggregated these to postcode dis-
trict level (e.g. LS1).

Fig. 3  Raw and smoothed daily mean NO2 concentration of 18 postcode districts

https://datamillnorth.org/dataset/ratified-air-quality---nitrogen-dioxide
http://www.geodojo.net/uk/converter/
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To standardise the physical activity data, the population size per district was 
used, i.e. the counts per postcode district were divided by the population size of 
the district. For the population size, we used mid year population estimates per 
lower layer super output area (LSOA) which were obtained from the Office for 
National Statistics (ONS). These were converted to postcode district by using a 
postcode lookup which maps postcodes onto a LSOA. When the LSOA covers 
multiple postcode districts, the LSOA population was split equally between them.

The physical activity curves for the 18 postcode districts in Leeds are given in 
Fig. 4. These curves show little variation in time.

7.3  COPD Data

Temporal data on hospital admissions due to COPD in Leeds was provided by the 
Leeds Teaching Hospitals NHS Trust. Raw data include admission date, age, dis-
ease, unique ID, sex, and area by postcode information. We removed records of sub-
jects with ages that were not numbers. We restricted the dataset to ages above 20 
years and to the time window of 2013 to 2018. The obtained dataset comprised 7944 
COPD hospital admissions.

The data was then grouped by day. To standardise, the expected count of hospital 
admissions Ei was calculated. We divided the total number of counts over the whole 
6 year period by the number of days in this period. Then to take the size of the popu-
lation into account, again, the mid year population estimates obtained from the ONS 
at LSOA level were used (see above). Thus, for each district i, i ∈ {1, 2, ..., 18} , with 

Fig. 4  Raw physical activity data for 18 postcode districts around Leeds. Left panel shows the standard-
ised number of individuals using gym facilities for 18 postcode districts across Leeds from 2013 to 2018. 
Right panel shows the number of visits to gym facilities per person per week for 18 postcode districts 
across Leeds from 2013 to 2018

http://geoportal.statistics.gov.uk/datasets/0a404beab6f544be8fb72d0c2b12d62b
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a population size Pi , and an expected admission count Ei , the standardised count is 
defined as

where Counti is the weekly admission count in the ith district. The weekly admis-
sions after standardisation based on district population (per 10,000) are shown in the 
left panel of Fig. 5 and the corresponding kernel smoothing with data-adaptive local 
plug-in bandwidth selection curves [3, 6] are given in the right figure. It appears 
that there is a yearly seasonality phenomenon with peaks every late winter and early 
spring.

7.4  Data Analysis Results

As a preliminary analysis, we first fitted a standard linear regression model with 
average standardised COPD hospital admissions Y as response variable and average 
standardised weekly number of gym visits and average daily NO2 value as covari-
ates. Both covariates appeared to have a statistically significant effect on the out-
come. The estimate of �1 is −2.86 with p value of 0.003 and the estimates of �2 of 
0.007 with p value of 0.003.

Next we are interested in the time aspect. Figure 3 and Fig. 5 show temporal fluc-
tuations and a potential effect lag (delay) of the influence of NO2 concentrations on 
COPD hospital admissions. On the other hand, Fig. 4 shows that physical activity 
curves for 18 postcode districts across Leeds have little variation in time. Therefore, 
we did not consider physical activity as a covariate in a functional regression model.

In order to obtain a rough idea of the effect lag and duration of influence, we 
compared the position of local maximum of NO2 concentrations and hospi-
tal admissions. Specifically, based on the background, we restrict the start-
ing point and ending point within one period (one year). And then we designed 
quite dense searching grid (with respect to the smoothness of the curves) for 

Standardised Counti =
Counti

PiEi

,

Fig. 5  Raw and smoothed weekly standardised COPD hospital admissions in 10,000. The left panel 
shows the raw weekly standarised COPD hospital admissions in 18 postcode districts in Leeds from 1st 
January 2013 to 31st December 2018. The right panel shows the corresponding smoothing curves that 
are estimated through kernel smoothing with data-adaptive local plug-in bandwidth selection
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ending point as {7, 14, 21, 24.5, 28, 31.5, 35} (days) and that for starting point as 
{84, 98, 112, 126, 140, 154, 168, 182, 196, 199.5, 203, 206.5, 210, 213.5, 217, 220.5,

224, 238, 252, 266, 280} (days). The mean functions of both predictor and outcome 
are estimated using kernel smoothing method as mentioned in Remark 2 on page 9. 
We used the same basis system and number of basis for estimation and prediction as 
in the simulation section, i.e. we use B-spline functions of degree 4 with 10 equally 
spaced interior knots (number of basis is 14). Here, we did 7*21 searches and the 
computation time is 4.6 h (on a standard laptop using Rstudio) which is affordable.

The optimal combination of ending point and starting point appears to be 24.5 
and 203 days, i.e. 3.5 and 29 weeks based on leave-one-curve-out cross validation 
squared prediction error criterion. This means that t − 203 is the starting effective 
time and t − 24.5 is the ending effective time for NO2 concentration to have effect 
on COPD hospital admissions at time t. In other words, it takes around 3.5 weeks for 
NO2 concentration to have effect on COPD hospital admissions and this effect lasts 
around 25.5 weeks.

We did another 7*21 searches on a slightly different grid, i.e. ending 
points are {7, 14, 21, 22.75, 26.25, 29.75, 33.25} (days) and starting points are 
{84, 98, 112, 126, 140, 154, 168, 182, 196, 197.75, 201.25, 204.75, 208.25, 211.75,

215.25, 218.75, 224, 238, 252, 266, 280} (days). The results are only slightly differ-
ent: the optimal combination of ending point and starting point is 26.25 and 210 
days, i.e. 3.75 and 28.25 weeks based on leave-one-curve-out cross validation 
squared prediction error criterion.

8  Discussion

In this paper, we have developed a functional regression model that combines heter-
ogeneous predictors, in particular sparse and dense functional predictors, with their 
effects on the response being restricted by time lags that in effect create an interval 
where the predictors affect the response. We prove the consistency of the coefficient 
functions of both the dense and sparse predictors. For prediction, we recovered new 
dense predictors using kernel smoothing, whereas we used FPCA for the sparse ones 
and proved the asymptotic property of the predictions. Finally, we minimized the 
normalized prediction error in order to find the optimal lags. Simulation studies are 
conducted to evaluate the model, the coefficient functions are estimated and the lags 
are determined with high accuracy.

The lags are estimated by using a grid search. For the simulation study, a grid 
search is adopted over several points that are close to the true effect lags. For real 
applications, we do not know the true effect lags and a larger grid is necessary or 
preliminary information can be used. One can also consider to run a preliminary 
search for each predictor separately in order to get a rough estimate of the lags and 
then design the grid accordingly. In our data application, we did 7*21 searches, and 
the computation time is 4.6 h (on a standard laptop using Rstudio). We did another 
search and obtained almost the same estimates. For these searches, the assumption 
is made that the true lag is included in the grid or close to one if the elements in the 
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grid. Preliminary runs can provide some evidence that the true lags are included in 
the run. Moreover, if the final estimated lags are near the end points of the intervals/
grid it is recommended that the grid is extended and a new fit is implemented.

Our model assumes that the lags do not change over time. Since the coefficient 
functions changes over time, the effective length of the historical interval of covari-
ate values having an effect on the outcome can still be smaller for some periods. 
It might be interesting to investigate whether the length of the historical interval 
changes over time or is periodic. However such a model will be computationally 
intensive. Another extension is to use multivariate dense functional and sparse and 
irregular longitudinal predictors. As the estimator is derived from formula (6), if 
more than two predictors exist, one can estimate their covariance structure based 
on the type of the predictors (dense, sparse and irregular) then the correspond-
ing b̂(t) can be obtained from formula (6). Note that this does not result in an 
over-parameterisation.

Our model is used to analyse the influence of daily mean NO2 concentrations on 
the COPD hospital admissions in 18 postcode districts in Leeds. It appeared that NO2 
concentrations of 25.5 weeks ago still have an effect on COPD hospital admissions and 
that the NO2 concentrations of the last 3.5 weeks have not yet an effect. While it makes 
sense that historical NO2 concentrations have an effect and that recent values have not 
yet an effect on COPD hospital admissions, the estimates of the lags themselves need 
careful interpretation. First we do not provide standard errors. One way to obtain stand-
ard errors might be a bootstrap method, however such a method is very intensive com-
putationally. Also the lags have to be interpreted together with the � functions which 
can vary over a time. Thus for a part of the time interval between lags, the effect of 
the covariate can be zero if the coefficient function is zero in this interval. Further, the 
models are fitted on aggregated data.

COPD hospital admissions are essentially Poisson distributed in each day, however 
in order to validate our methodology we aggregate weekly and standardised based on 
district populations and then consider these weekly aggregated data as continuous. 
Therefore, future research on general response is of great importance both in theory 
development and applications. Another extension is to model the spatial correlation of 
the COPD admissions. More efficient parameter estimates can be obtained by using 
this information.

Our model can be used to manage resources of hospitals, since it predicts the delay 
of hospital admissions after NO2 pollution as well as the duration. Another potential 
application is decision making around policies for improving the health in a city. For 
example should a city invest in more sport facilities or in a greener transport system? 
To answer such questions, the model should probably be extended with more factors. 
Moreover one might want to address possible missingness processes, for example the 
observed use of sport facilities is an underestimation since people might do sports 
using other facilities or in other districts. Recently, we developed methods for appropri-
ate estimation of the mean function for temporal data subject to a detection limit [9].

To conclude we presented methods for functional analysis of temporal data where 
the effect of the temporal covariate might be delayed. We used this method for an inter-
esting problem from urban analytics. We identified a delayed effect of 3.5 weeks for 
NO2 air pollution on COPD hospital admissions.
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Appendix

Appendix A: Covariance Functions and Corresponding Estimation in Section 3

• For CX̃2k ,X̃2l
(t) , we have 

 where CX2
(s, u) is the covariance between X2(s) and X2(u) . Since the predictor X2 

is sparsely observed, CX2
(s, u) can be estimated by local linear surface smoother 

[19] which is defined through minimizing 

 with respect to �0, �1, �2 , where b is a bandwidth, m2i is the number of 
observations of X2 for the subject i and K is a bivariate kernel function. And 
ĈX2

(s, u) = �̂�0.
• For CX̃1k ,X̃2l

(t) , we have 

 where CX1,X2
(s, u) is the covariance between X1(s) and X2(u) . Since the predictor 

X1 is densely observed and X2 is sparsely observed, CX1
(s, u) can be estimated by 

local surface smoothing.
• For CX̃2k ,X̃1l

(t) , it is similar to CX̃1k ,X̃2l
(t).

• For CX̃1l,Y
(t) , we have 

CX̃2k ,X̃2l
(t) = cov

(
X̃2k(t), X̃2l(t)

)

= ∫
𝛿22

𝛿21
∫

𝛿22

𝛿21

B2k(s)B2l(u)E[X2(t − s)X2(t − u)]duds

= ∫
𝛿22

𝛿21
∫

𝛿22

𝛿21

B2k(s)B2l(u)CX2
(t − s, t − u)duds

n∑
i=1

1

(m2ib)
2

m2i∑
j≠k=1

K

(
s − s2ij

b
,
u − s2ik

b

)
×

(W2ijW2ik − �0 − �1(s − s2ij) − �2(u − s2ik))
2

CX̃1k ,X̃2l
(t) = cov

(
X̃1k(t), X̃2l(t)

)

= ∫
𝛿12

𝛿11
∫

𝛿22

𝛿21

B1k(s)B2l(u)E[X1(t − s)X2(t − u)]duds

= ∫
𝛿12

𝛿11
∫

𝛿22

𝛿21

B1k(s)B2l(u)CX1,X2
(t − s, t − u)duds

CX̃1l,Y
(t) = cov

(
X̃1l(t), Y(t)

)

= ∫
𝛿12

𝛿11

B1l(s)E[X1(t − s)Y(t)]ds

= ∫
𝛿12

𝛿11

B1l(s)CX1,Y
(t − s, t)ds
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 where CX1,Y
(s, u) is the covariance between X1(s) and Y(u). Since X1 is densely 

observed and Y is sparsely or densely observed, CX1,Y
(s, u) can be estimated by 

local linear surface smoothing.
• For CX̃2l,Y

(t) , it is similar to CX̃1l,Y
(t).

Appendix B: Assumptions

We first give the assumptions (A) which are needed for both Theorem  1 and 
Theorem 2.

We assume the data of the sparse predictor {W2ij, s2ij ∶ i = 1, ..., n, j = 1, ...,m2i} 
and the sparse response {Yij, tij ∶ i = 1, ..., n, j = 1, ...,mYi

} to be iid samples from 
the joint densities, gX2

(x, s) and gY (y, t) . The observations of dense predictor 
{W1ij, s1ij ∶ i = 1, ..., n, j = 1, ...,m1} are also assumed to be iid for different i. We 
assume tij and s2ij are iid with marginal densities ft(t) and fs(s) , while s1ij − s1i(j−1) 
are small and fixed for any i and j. We assume (X2ij,X2il, s2ij, s2il) and (Yij, Yil, tij, til) 
are identically distributed with joint density functions gX2X2

(x1, x2, s1, s2) and 
gYY (y1, y2, t1, t2) respectively. Let p1, p2 ∈ ℕ such that 0 ≤ p1 + p2 ≤ 4 . 

 (A1) For p1 + p2 = p, 0 ≤ p1, p2 ≤ p . The derivatives d
pft(t)

dpt
 and d

pfs(s)

dps
 exist and are 

continuous on [0, 1] with ft(t) > 0 and fs(s) > 0 on [0, 1]. The derivatives 
dpgX2

(x,s)

dps
 and d

pgY (y,t)

dpt
 exist and are continuous on ℝ × [0, 1] . The derivatives 

dpgX2X2
(x1,x2,s1,s2)

dp1 s1d
p2 s2

 and d
pgYY (y1,y2,t1,t2)

dp1 t1d
p2 t2

 exist and are continuous on ℝ2 × [0, 1]2.
 (A2) The number of observations for sparse and irregular predictor m2i is a random 

variable such that m2i ∼iid M2 , where m2 > 0 is a discrete random variable with 
P(M1 > 1) > 0 . The number of observations sparse and irregular response mYi

 
for the i-th subject is a random variable such that mYi

∼iid MY , where MY > 0 
is a discrete random variable with P(MY > 1) > 0 . We assume M2 and MY 
are independent. The observation times and measurements are assumed to be 
independent of the number of observations for any subjects and for any subset 
of any subjects, which means {W2ij, Yik, s2ij, tik ∶ j ∈ Ji, k ∈ Ki} is independent 
of M2 and MY where Ji ∈ {1, ...,M2} and Ki ∈ {1, ...,MY}.

Let K(⋅) and K(⋅, ⋅) be the nonnegative univariate and bivariate kernel functions 
for smoothing mean functions and auto-covariance and cross-covariance func-
tions (surfaces). 

 (A3) The bivariate kernel function K(⋅, ⋅) is assumed to be a product kernel of uni-
variate kernel K(⋅) , i.e, K(⋅, ⋅) = K(⋅)K(⋅) . The univariate kernel K(⋅) is assumed 
to be a symmetric probability density function with support [−1, 1] such that 
0 < ∫ K(u)u2du < ∞ . The boundary kernels to are used.

Let bs and bd be the bandwidths used for estimating the mean functions of the 
sparse and irregular processes Y and X2 and dense and regular processes X1 respec-
tively. Let bCs

 and bCd
 be the bandwidths used for estimating the auto-covariance 
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and cross-covariance of the process with sparse and irregular processes involved 
in, i.e. Y and X2 and auto-covariance of dense and regular process X1 . 

 (A4) As the sample size n → ∞ and m1 → ∞ , we assume bs → 0 , nb4
s
→ ∞ , 

nb6
s
< ∞ ; bd = bd(n,m1) → 0 , cm−1∕3

1
≤ bd ≪ n−1∕4 ; bCs

→ 0 , nb6
Cs

→ ∞ , 

nb8
Cs

< ∞ ; bCd
= bCd

(n,m1) → 0 , cm−1∕3

1
≤ bCd

≪ n−1∕4 where c is a positive 
number.

 (A5) Assume the fourth moments of X2 and Y are finite. Assume the mean and auto-
covariance functions of X1 are twice differentiable on [0, 1] and [0, 1]2.

We give the assumptions (B) which are only needed for Theorem 2. 

 (B1) The number of eigenfunctions L = L(n) in the KL expansion, which depends 
on the sample size n, satisfies the rate conditions given in assumption (B5) of 
Yao et al. [20].

 (B2) The FPC scores � and measurement errors � in predictors observations are 
independent of each and are Gaussian.

 (B3) The number, location, and values of measurements for a given subject remain 
unaltered as the sample size n → ∞.

Appendix C: Proofs of Theorem 1 and Theorem 2

Proof (of Theorem 1) Uniform consistency of ĈX1
(s, u) is given in Theorem 4 of [2], 

uniform consistency of ĈX1,X2
, ĈX2,X1

, ĈX1,Y
, ĈX2,Y

 is given in Lemma 1 of Yao et al. 
[20], uniform consistency of ĈX2 (s, u) is given in Theorem 1 of Yao et al. [19]. Then 
the uniform consistency of Ĉ11(t), Ĉ12(t), Ĉ21(t), Ĉ22(t), Ĉ1Y (t), Ĉ2Y (t) can be obtained. There-
fore the uniform consistency of b̂1(t) and b̂2(t) follows and thus that of 𝛽1(s, t) and 
𝛽2(s, t) can be obtained.   ◻

Proof (of Theorem 2) For fixed L, we have

|Ŷ∗
L
(t) − Ỹ∗(t)|

≤ |Ŷ∗
L
(t) − Ỹ∗

L
(t)| + |Ỹ∗

L
(t) − Ỹ∗(t)|

≤ |||||�
𝛿12

𝛿11

𝛽1(s, t)X̂
∗
1
(t − s)ds − �

𝛿12

𝛿11

𝛽1(s, t)X
∗
1
(t − s)ds

|||||
+

||||||�
𝛿22

𝛿21

𝛽2(s, t)

L∑
l=1

𝜉∗
l
�̂�l(t − s)ds − �

𝛿22

𝛿21

𝛽2(s, t)

L∑
l=1

𝜉∗
l
𝜙l(t − s)ds

||||||
+

||||||�
𝛿22

𝛿21

𝛽2(s, t)

L∑
l=1

𝜉∗
l
𝜙l(t − s)ds − �

𝛿22

𝛿21

𝛽2(s, t)

∞∑
l=1

𝜉∗
l
𝜙l(t − s)ds

||||||
= I1 + I2 + I3
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For I1 , from the uniform consistency of 𝛽1(s, t) established in Theorem 1 and the uni-
form consistency of kernel smoother, we have I1 → 0 as n → ∞.

For I2 , from the uniform consistency of 𝛽2(s, t) established in Theorem 1, the uni-
form consistency of 𝜉∗

l
 for 𝜉∗

l
 from Theorem 3 in Yao et al. [19], and the uniform 

consistency of �̂�l from Theorem 2 in Yao et al. [19], we have I2 → 0 as n → ∞.
For I3 , following Lemma A.3 in Yao et al. [19], we have I3 → 0 as n → ∞.
Therefore, Theorem 2 follows.

Appendix D: Figures and Tables

See Figs. 6, 7, 8 and 9

Fig. 6  Map of automatic monitoring points across Leeds

Fig. 7  Raw pollution data for different monitoring points around Leeds
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Fig. 8  861 point interpolation grid of Leeds

Fig. 9  Pollution by postcode district with standard deviation
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