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Abstract
Noisy time series data are often collected in biomedical applications, and it remains 
an important task to understand the data heterogeneity. We propose an approach that 
combines the strength of trend filtering and distance-based clustering to simultane-
ously perform temporal mean denoising and subject-level clustering. We discuss an 
iterative algorithm that efficiently computes the cluster structure and clusterwise 
mean trends. Simulation studies confirm the excellent numerical performance of our 
method. We further consider two data application examples including an U.S. lung 
cancer mortality study and a suicide rate study.

Keywords Cancer mortality · Clustering · K-means · Sequential data · Trend 
filtering

1 Introduction

With the advancement of information technology, a significant amount of sequential 
data has become accessible in the field of biomedical research. This includes data 
from microarray and RNA-seq in genetic studies and patient health-tracking infor-
mation in disease studies. These data are often presented as time series, longitudi-
nal, and functional data, with repeated measurements taken over a period of time for 
each study subject. This type of data has been shown to be highly valuable in gain-
ing insights into the underlying mechanisms of diseases, developing new diagnostic 
techniques and treatment plans, and ultimately enhancing patient healthcare [1, 2].
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The main focus of this paper is to develop an approach that simultaneously 
performs denoising and clustering for sequential data. In particular, we focus on 
time series data and hope our method can be generalized to other data types in a 
future work. Data denoising and smoothing are a well-recognized challenge due 
to the existence of complex fluctuations and seasonal variations in time series, 
including short- and long-term changes. Several methods have been proposed in 
the literature to address this problem, including total variation denoising [3, 4], 
Gaussian process filter [5–7], wavelet transform [8, 9], Kalman filter [10, 11], 
and kernel smoothers [12–14]. We focus on trend filtering [15–17], which is a 
nonparametric smoothing method that fits a piecewise polynomial model to the 
data. Compared to other approaches, trend filtering achieves a desirable balance 
between easy model interpretation and theoretically guaranteed estimation accu-
racy [18]. Moreover, trend filtering can be implemented efficiently using alter-
nating direction method of multipliers (ADMM) algorithm [19]. Thanks to these 
properties, trend filtering has been widely used in denoising time series data such 
as annual GDP [20] and global surface temperature deviation [21].

Despite its success in signal denoising and curve estimation, trend filter-
ing does not directly handle heterogeneity, which is a critical issue to address 
in biomedical applications. For example, large heterogeneity is known to exist 
in patients’ health information, genomic profile, and treatment effects. There is 
often a need to identify patient subgroups for improving the accuracy of disease 
diagnosis and personalized treatment [22]. In epidemiology, it is well known that 
heterogeneity exists in many diseases (e.g., malaria) across geographical regions 
and social networks [23, 24]. It is hence our goal in this paper to fill this gap. In 
particular, we propose a clusterwise trend filtering approach that simultaneously 
identifies the clustering structure in study subjects where each cluster has a dif-
ferent mean trend over time fitted by different trend filtering models. The result 
is expected to provide useful insights towards a better understanding of data het-
erogeneity than what a marginal homogeneous model can offer. For example, in 
a lung cancer mortality study (more details in Sect.  4.1), the annual mortality 
rate is monitored over 48 continental states in the US between the year 1969 and 
2009. By studying how the mean trend changes over time for different states, we 
are able to reveal interesting spatial heterogeneity pattern and relate the spatial 
clusters to environmental factors.

Clustering has been extensively researched in the fields of statistics and machine 
learning, as indicated in a recent survey [25]. Our proposed method aims to integrate 
trend filtering with distance-based clustering approaches. We use K-means [26] as 
an example and show that our method offers the best of both worlds, inheriting the 
nice properties of both K-means and trend filtering in terms of easy implementation 
and computational efficiency. Through simulation studies, we also show that our 
method effectively recovers the unknown cluster structure and clusterwise trends. 
We further demonstrate the utility of our method using two real-world examples. 
The rest of this paper is organized as follows. Section 2 offers a brief review of trend 
filtering method and discusses our proposed method. In Sect. 3, we use simulations 
to compare our method with a few existing approaches. We present two data analysis 
examples in Sect. 4 and discuss a few future working directions in Sect. 5.
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2  Methods

In this section, we give a brief review of trend filtering, and then present our method in 
Sect. 2.2.

2.1  Trend Filtering Estimation

Consider a time series with T time points y = (y1,… , yT ) ∈ ℝ
T . Trend filtering 

[15–17] provides a useful way of smoothing the data by considering a piecewise poly-
nomial approximation. In particular, for a given non-negative integer q, the qth order 
trend filtering estimates 𝛽 ∈ ℝ

T by solving the following optimization problem:

where � follows a qth-order piecewise polynomial, � is a non-negative tuning param-
eter to control the trade-off between smoothness of � and approximation error 
‖y − �‖2 , and D(q+1) is the discrete difference operator of order q + 1 . For example, 
when q = 0 , the fitted values � = (�1,… , �T ) form a piecewise constant structure, 
and

which means ‖D(1)�‖1 = ∑T−1

i=1
∣ �i − �i+1 ∣ , i.e., (1) yields one-dimensional fused 

lasso [27].
For q ≥ 1 , the operator D(q+1) ∈ ℝ

(T−q−1) × T is defined recursively by 
D(q+1) = D(1) ⋅ D(q) . For example, when q = 1 , ‖D(2)�‖1 = ∑T−1

i=2
∣ �i−1 − 2�i + �i+1 ∣ , 

which is related to the Hodrick–Prescott filtering [28]. In general, � forms a piecewise 
linear structure when q = 1 and a piecewise quadratic structure when q = 2 , with

As shown in Eq. (1), trend filtering estimation is a generalized lasso problem with 
an identity design matrix X = I and a specific choice of penalty Dq+1 . Thus, it also 
shares properties of the generalized lasso, e.g., the degrees of freedom for trend fil-
tering estimation are df(𝛽) = �(number of knots in 𝛽) + q + 1 [29]. The number of 
knots in 𝛽  can be understood as the change points in the time series, which is also 
the number of non-zero entries in D(q+1)� in the second term of Eq. (1). In addition, 
because (1) is strictly convex, the trend filtering estimate 𝛽  is the unique minimizer 
for every q ≥ 0 . In summary, trend filtering enjoys several nice properties, including 

(1)𝛽 = argmin
𝛽∈ℝT

1

2
‖‖y − 𝛽‖‖22 + 𝜆‖‖D(q+1)𝛽‖‖1,

D(q+1) = D(1) =

⎛
⎜⎜⎜⎝

−1 1 0 … 0

0 − 1 1 … 0

⋮ ⋮ … ⋮ ⋮

0 0 … − 1 1

⎞
⎟⎟⎟⎠
(T−1)×T

,

D(2) =

⎛
⎜⎜⎜⎜⎝

1 − 2 1 0 … 0

0 1 − 2 1 … 0

0 0 1 − 2 … 0

⋮ ⋮ ⋮ … ⋮ ⋮

0 0 0 … − 2 1

⎞
⎟⎟⎟⎟⎠
,D(3) =

⎛
⎜⎜⎜⎜⎝

−1 3 − 3 1 … 0

0 − 1 3 − 3 … 0

0 0 − 1 3 … 0

⋮ ⋮ ⋮ … ⋮ ⋮

0 0 0 … − 3 1

⎞⎟⎟⎟⎟⎠
.
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local adaptivity, computational efficiency, and easy interpretation [18], which makes 
it an ideal tool for our analysis.

2.2  Clusterwise Trend Filtering

Consider a dataset of n time series, Y = {y1, y2, ..., yn} , where each yi = (yi1,… , yiT )
∈ ℝT  is a time series being observed over T time points. Our goal is to simulta-

neously perform smoothing for each yi and also cluster these time series. To 
achieve this goal, we consider a partition of the index set {1,… , n} , denoted by 
C = {C1,C2, ...,CK} such that within each cluster, the time series are assumed to fol-
low the same mean structure, which is modeled by a piecewise polynomial sequence 
obtained from trend filtering. In general, any distance-based clustering methods can 
be used for inferring the clustering structure C . For simplicity, we choose K-means 
to demonstrate our idea. We propose to solve the following two optimizations:

where ȳk =∣ Ck ∣
−1

∑∣Ck ∣

i=1
yi is the average of time series belonging to cluster k, K is 

the pre-specified number of clusters, and ci is the cluster index for yi , i = 1,… , n . It 
can be seen that the first optimization is similar with that of the original K-means, by 
treating yi as the input data point and 𝛽k as the center for cluster k, which is obtained 
by fitting trend filtering to the cluster average to help with interpretation. An alter-
native approach is to borrow the idea of K-medoids algorithm, which is proposed 
as a variant of K-means to address the influence of outliers [30]. Unlike K-means, 
K-medoids does not use the mean value, but instead finds a data point as the center 
of the cluster. Because K-medoids is computationally more expensive than K-means 
as it involves computing the distances between all pairs of data points at each itera-
tion [31], we still choose to use K-means in our numerical implementation.

Optimization in (2) can be conveniently solved by the following procedure: 

(1) Initialization: Set the cluster number K, and generate an initial partition 
C = (C1,… ,CK) by fitting K-means to the dataset treating each data point as a 
T-dimensional vector.

(2) Obtain the trend filtering estimator 𝛽k for each cluster Ck , k = 1,… ,K.
(3) Update partition C by assigning each time series to its closest center, i.e., the 

updated 𝛽k from step (2).
(4) Repeat step (2) and (3) until convergence.

In practice, we stop the algorithm once the partition C does not change after a few 
updates. Our proposed approach inherits the simplicity and computational conveni-
ence of K-means and trend filtering. In particular, both methods can be conveni-
ently implemented in standard software packages such as R, so does our method. 

(2)
C = argmin

C1,...,CK

n∑
i=1

K∑
k=1

1{ci = k}‖‖yi − 𝛽k
‖‖22,

𝛽k = argmin
𝛽k∈ℝ

T

1

2
‖‖ȳk − 𝛽k

‖‖22 + 𝜆‖‖D(q+1)𝛽k
‖‖1, k = 1,… ,K,
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The computational complexity of trend filtering is at most O(n3∕2) [15, 17] and the 
complexity of K-means is O(n2) . Hence our method has an O(n2) computational 
complexity due to the prefixed K.

At the same time, our method also faces the same challenges as trend filtering and 
K-means do. For example, the objective function of K-means is non-convex, which 
means that it may converge to a local minimum instead of the global optimum, and 
the results may be sensitive to the choice of initial values. Therefore, multiple initial 
values will be used to fully explore the parameter space. Another challenge is the 
choice of hyperparameters including the cluster number K and the polynomial order 
q. In practice, we choose q either based on prior knowledge (e.g., shape of the trend) 
or let q take values within a range and pick the optimal value that minimizes the 
total sums of square error between raw clusterwise data average yk and the filtered 
trend 𝛽k . For the choice of cluster number K, several approaches are available in the 
literature to determine K for K-means, such as the elbow method [26], the Silhouette 
score [32], and cross-validation [33]. However, there are no universally agreed cri-
teria to determine the optimal value of K, especially for the large-scale dataset with 
more overlapping or fuzzy clusters. In our data analysis, we consider a reasonably 
wide range of values for K that yields a convenient interpretation depending on the 
nature of scientific applications and the computational complexity.

Our method can be easily generalized to integrate with other distance-based 
clustering methods. For example, one may consider hierarchical clustering: start by 
trend filtering every times series to form separate clusters, then calculate the pair-
wise distance to merge the two closest clusters, and repeat this process till a proper 
number of clusters is obtained. Other distance-based clustering can also be adjusted 
based on the smooth version of individual time series.

3  Simulation

3.1  Setting

We conduct simulation studies to evaluate the empirical performance of our pro-
posed approach. We generate data with a mean structure following a piecewise 
polynomial model under four settings, including a constant scenario, a linear sce-
nario, a quadratic scenario, and a mixed scenario. For example, when the order is 
0, time series from different clusters all present a piecewise constant trend, which 
contains several unknown phases (varying over clusters) and takes a constant value 
under each phase. Under the mixed scenario, time series in different clusters follow 
a piecewise polynomial with different orders. More specifically, under the first three 
scenarios, there are five different types of mean trends which correspond to five 
clusters. Under the mixed scenario, there are a total of 15 types of mean trends. For 
instance, for the constant scenario, the number of phases, the length of each phase, 
and the signal values may vary cluster by cluster. Under all scenarios, each cluster 
includes 10 time series observed over T = 100 time points. We then add Gaussian 
noise to the generated mean trends with a standard deviation taking values from 0.4 
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to 1.8. A demonstration is given in Fig. 1, where the colored solid lines are the gen-
erated mean trends for each cluster. For example, there are 5 clusters and 50 time 
series in each of the first three panels under the piecewise constant, linear, and quad-
ratic scenarios; and 15 clusters and 150 time series under the mixed scenario.

We compare our proposed method with two alternative approaches: K-medoids 
[34] and functional K-means clustering [35, 36]. Functional K-means provides a 
useful way to identify common patterns and trends among different groups of func-
tional data. For implementation, all numerical experiments are conducted in R on 
a compute server (256 GB RAM, with 8 AMD Opteron 6276 processors, operat-
ing at 2.3 GHz, with 60 processing cores). The average running time is 9.3 (SD = 
1.3) minutes for one simulated dataset analysis. Our method can be implemented 
based on genlasso package [37] for trend filtering step. The K-medoids is imple-
mented using clust package. In the simulation, we assume the order of polynomi-
als q is known for the first three scenarios. For the mixed scenario, we assume q is 
unknown. To determine its value, we let q take values between 0 and 3, and pick the 
one that minimizes the fitted square error.

3.2  Results

We conduct the simulation for 1000 replications and summarize the percentage 
of times when the true cluster structures are correctly identified in Table 1. In 
addition, we calculate the Rand index (RI), which is a metric that can be used to 
evaluate the performance of a clustering algorithm taking values between 0 and 
1 (higher is better) [38]. The RIs for our method and two competing approaches 

Fig. 1  Four simulation data generation scenarios (noise SD = 1.2 ) (Color figure online)
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are summarized in Fig. 2, where blue lines are for our method, and green and 
red lines are for functional K-means and K-medoids.

We find that our method achieves the highest accuracy in all scenarios and 
under different noise levels. The advantage over the competing methods becomes 
more significant as the noise level increases (e.g., noise ≥ .8 ), which indicates 
that our method works quite well especially for more fluctuating curves. As the 
order of polynomial becomes larger, the clustering accuracy deteriorates for all 
methods as expected. Also it is worthy mentioning that for the most difficult 
case, mixed scenario, our method manages to achieve a high RI value of above 
90% even when the noise level is fairly large ( ≥ 1.4 ). For the piecewise con-
stant case, our method manages to maintain a RI above 90% over all noise levels 
while the other two methods have an RI dropping down to around 65%. All these 
observations confirm the excellent performance of our method.

Table 1  Simulation results: percentage of correct cluster structure identification (and associated 
maximum standard errors) for our method (Trend Filtering), functional K-means (Functional), and 
K-medoids, based on 1000 replications

Noise (max SE) Constant Linear

Trend filtering Functional K-medoids Trend filtering Functional K-medoids

(0.054) (0.067) (0.087) (0.029) (0.030) (0.031)

0.4 0.9922 0.8410 0.9170 0.9997 0.8850 0.9184
0.6 0.9940 0.7604 0.7553 0.9303 0.8512 0.8635
0.8 0.9953 0.7548 0.7476 0.9184 0.8365 0.8367
1.0 0.9956 0.7201 0.7153 0.9184 0.8356 0.8367
1.2 0.9939 0.6906 0.6913 0.9184 0.8333 0.8367
1.4 0.9839 0.6742 0.6798 0.9184 0.8295 0.8367
1.6 0.9638 0.6678 0.6770 0.9184 0.8247 0.8367
1.8 0.9245 0.6629 0.6761 0.9184 0.8199 0.8367

Noise (max SE) Quadratic Mixed

Trend filtering Functional K-medoids Trend filtering Functional K-medoids

(0.116) (0.048) (0.084) (0.107) (0.147) (0.127)

0.4 1.0000 0.7880 0.9176 0.9843 0.9252 0.9772
0.6 1.0000 0.6682 0.6735 0.9847 0.7081 0.7772
0.8 1.0000 0.6650 0.6733 0.9860 0.5364 0.6470
1.0 0.9983 0.6629 0.6727 0.9848 0.5402 0.6429
1.2 0.9855 0.6607 0.6708 0.9751 0.5447 0.6392
1.4 0.9208 0.6571 0.6684 0.9531 0.5487 0.6354
1.6 0.8174 0.6512 0.6661 0.8751 0.5532 0.6329
1.8 0.7351 0.6406 0.6636 0.7323 0.5565 0.6308



 Statistics in Biosciences

1 3

4  Real‑Data Examples

4.1  Lung Cancer Mortality Rate

Cancer is a leading cause of death in the United States. Among all types of cancer, 
the bronchial and lung cancers are associated with the highest number of deaths. 
In 2019, it is estimated that 0.6 million people died of cancer in the United States, 
with 0.14 million due to lung cancer. Past studies supported by National Institutes of 
Health have suggested the existence of geographical pattern in bronchial and lung 
cancers, e.g., the highest incidence was found in the south (76.0 per 100,000) and 
the lowest incidence was in the west (58.8 per 100,000) [39]. In addition, many stud-
ies have discovered a temporal change pattern in lung cancer mortality [40–44].

We analyze the lung cancer mortality rate data collected by the American Cancer 
Society, which covers the annual age-adjusted death rate due to lung cancer in 48 
states in the US (excluding Alaska and Hawaii) from 1969 to 2009. In other words, 
the data consist of 48 time series being observed over 41 years. As shown in Fig. 4, 
the temporal trend for most states has a parabolic trajectory. The mortality rate con-
tinuously increases for the first two decades until the peak around 1990 followed by 
a decrease over the next two decades, with some states beginning to stabilize at the 
same level and others experiencing significant declines in mortality. Our goal is to 
explore the heterogeneity in the state-level mortality rate curves. This is important 
because the resulting clusters provide insights into which factors may influence the 

Fig. 2  Simulation accuracy: Rand index and associated 95% confidence bands for three methods under 
different data generating scenarios and noise levels (Color figure online)
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mortality rates. For example, a spatial pattern can be seen in the mortality rate map. 
Some neighboring states, such as Washington and Oregon, have similar changes in 
their mortality rates, with a sharp decline after reaching the peak of the parabola. 
In comparison, some neighboring states in the southeast, such as Mississippi and 
Alabama, have mortality rates stabilized after a previous upward trend. In addition, 
Utah’s pattern is distinctly different from its nearby states, as shown in Figs. 3 and 4.

We apply our proposed method and set q = 2 to capture the parabolic trajec-
tory in the curves. To determine the cluster number K, we fit the model by let-
ting K take values from 3 to 8, and consider several criteria, including the elbow 
method, the silhouette coefficient [32], the Calinski–Harabasz index [45], and 
the Gap statistics [46]. We choose K = 4 since it is preferred by most of the 
criteria being considered. The clustering result is shown in Fig.  5, where four 
clusters are marked by four colors. There seems a quite obvious geographic pat-
tern in the result. For example, cluster A consists of spatially contiguous states 

Fig. 3  Age-adjusted mortality rates of lung cancer from 1969 to 2009 for five selected states
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located in the Rocky Mountains and the Mid-Atlantic region, and cluster D is 
mainly located in the middle-east and southern part of US except Nevada an 
Maine. Utah forms its own cluster due to its low mortality rate compared to the 
rest of U.S. Our cluster result is also presented in Fig. 4, where it is obvious that 
cluster A has the lowest mortality rate (excluding Utah), while cluster D has the 
highest mortality rate and the fastest growth during the year 1970–1990. Cluster 
D also has a higher variation compared to the other clusters.

We are also able to relate our cluster result with two main risk factors of lung 
cancer, including smoking, which is the number one risk factor [47–49], and 
air pollution, which also contributes to lung cancer [50–52]. As a reference, we 
present the state-level plots for both risk factors in Fig.  6a and b. It is clear 
that Utah has the lowest adult smoking rate in the country at 9%. While most 
states in cluster D have a higher smoking rate [darker blue color in panel (a)], 
e.g., Arkansas at 22% and Kentucky at 23%. Similar findings can be obtained in 
Fig. 6b. For example, cluster A and C in general have a lower air pollution rate 
compared to the other regions, which matches with the fact that these two clus-
ters have a lower mortality rate. Meanwhile, cluster D has the highest air pollu-
tion index and, hence, the highest mortality rate. These findings highlight the 

Fig. 4  Spaghetti plot of lung cancer mortality rates for 48 continent states in the U.S. (Color figure 
online)
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Fig. 5  U.S. map with four clusters obtained by our proposed method (Color figure online)

(a) Adult smoking rate (b) Air pollution rate

Fig. 6  U.S. map based on two leading risk factors associated with the lung cancer (Color figure online)
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utility of our method in discovering meaningful clustering and temporal patterns 
in mortality rate curves.

4.2  Suicide Rate Study

Next we consider a suicide mortality study. According to World Health Organiza-
tion (WHO), more than 0.7 million people die due to suicide every year. This num-
ber has kept increasing since COVID-19 [53–55]. Many factors contribute to the 
risk of suicide, including mental illness, stigma, financial reasons, alcohol, and drug 
misuse [56]. In recent years, researchers have also discovered temporal and spatial 
patterns in the suicide rates [57–59]. To verify the effectiveness of our method, we 
study a 30-year-long data on suicide mortality in the U.S. The data are available as 
a CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) dataset. 
It provides the annual suicide mortality rates for all 48 contiguous states in the con-
tinental United States (excluding Alaska and Hawaii) from 1990 to 2019. As shown 
in Fig. 7a, the suicide rate exhibits a ‘V’ shape for most states, i.e., there are two 
phases over the observed 30-year period. During the first phase (first 10–15 years), 
the suicide mortality rate keeps going down. This trend is especially obvious for 
states such as California, Nevada, Illinois, and New York. The next 15–20 years is 
the second phase for a strong rebound, where the mortality rate in many states has 
far exceeded the initial 1990 level by the end of 2010.

We apply our method and choose q = 2 , i.e., a piecewise quadratic trend. The 
cluster number K is decided to be 3 according to a combination of elbow method, 
the silhouette coefficient, and Gap statistic. The clustering results are provided in 
Fig. 7a and the clusterwise average curves are given in Fig. 7b. The results exhibit 
a clear geographical pattern despite we did not include any spatial information in 
our analysis. For example, cluster II (green) consists of 11 contiguous states in the 
middle west part of U.S; the cluster III (blue) has 29 states where the majority are 
states in east and middle east except Washington; and cluster I is the smallest clus-
ter that contains California, Illinois, New Jersey, and Massachusetts. As shown in 

(a) Suicide mortality rate clusters map (b) K-means center trends for each
cluster

Fig. 7  Suicide mortality rate clusters (Color figure online)
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Fig. 7b, the suicide mortality rate is the highest in cluster II, followed by cluster III 
and I. One possible explanation is that a high suicide rate is often associated with a 
low economic status. For example, WHO reports that 77% of global suicides occur 
in low- and middle-income countries. This is reflected in our results, e.g., cluster I, 
despite having the least number of states, has the best economic and welfare devel-
opment and hence the lowest suicide rate.

5  Discussion

In this paper, we propose a new time series clustering method that performs smooth-
ing over temporal direction and learns heterogeneity at subject level. Our method 
builds on the idea of K-means clustering and trend filtering, and can be extended 
to integrate with other distance-based clustering methods. Numerical results have 
confirmed the utility of our method in terms of cluster structure recovery and time 
series denoising. Our data analysis results suggest that the cluster results can be use-
ful to provide guidance on the inclusion of covaraites (e.g., spatial, environmental, 
and economic factors) in a future analysis such as regression.

Several future work directions remain open for this topic. First, it will be of inter-
est to generalize our method to analyze longitudinal and functional data where the 
observations are collected at non-equally spaced time points. Classical trend filtering 
cannot perform smoothing over irregular time intervals. Instead, one may consider 
other smoothing methods such as wavelet or kernel approaches. Second, it will be 
of interest to develop Bayesian methods that could take account for the uncertainty 
associated with cluster number and polynomial order estimation by using Gaussian 
process and its generalizations [60, 61]. In addition, studying theoretical properties 
such as convergence analysis of the algorithm and risk analysis of the curve esti-
mation in this context is another important direction. Finally, developing a spatial 
clustering method that accounts for the spatial dependence may help improve the 
performance of our method in our data examples.
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