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Abstract
Teaching statistics through engaging applications to contemporary large-scale 
datasets is essential to attracting students to the field. To this end, we developed a 
hands-on, week-long workshop for senior high-school or junior undergraduate stu-
dents, without prior knowledge in statistical genetics but with some basic knowl-
edge in data science, to conduct their own genome-wide association study (GWAS). 
The GWAS was performed for open source gene expression data, using publicly 
available human genetics data. Assisted by a detailed instruction manual, students 
were able to obtain ∼1.4 million p-values from a real scientific study, within sev-
eral days. This early motivation kept students engaged in learning the theories that 
support their results, including regression, data visualization, results interpretation, 
and large-scale multiple hypothesis testing. To further their learning motivation by 
emphasizing the personal connection to this type of data analysis, students were 
encouraged to make short presentations about how GWAS has provided insights 
into the genetic basis of diseases that are present in their friends or families. The 
appended open source, step-by-step instruction manual includes descriptions of the 
datasets used, the software needed, and results from the workshop. Additionally, 
scripts used in the workshop are archived on Github and Zenodo to further enhance 
reproducible research and training.
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1  Introduction

The overarching goal of this project is providing an example of engaging edu-
cation in statistics to attract senior high-school or undergraduate students to 
the field, who will eventually grow and mature as competent data scientists. To 
achieve this goal, we designed a week-long workshop that provides students con-
textual, immersed, and hands-on learning experience in data science, using pub-
licly available, contemporary datasets.

We chose genetic data as the domain knowledge because they are complex, 
large-scale, high-dimensional, and practically important [39]. Although we do not 
expect nor want all students to continue their studies in statistical genetics, at the 
end of the workshop we expect students to (a) know about the variations in the 
human genome and the structure of the human population, (b) put into use their 
statistical knowledge by working with the 1000 Genomes Project (1 KG) data [2], 
and (c) deepen their statistical understanding in areas including confounding [15, 
23], heterogeneity [21, 22], using principle component analysis to capture popu-
lation structure [1, 34, 38], multiple hypothesis testing [20, 41], results interpreta-
tion and data visualization [9, 24], and reproducible research [19, 32].

Although in this application we focused on genetic data, computational soft-
ware is important in many areas of large-scale data science, including for exam-
ple astrostatistics, engineering and manufacturing data management, health data 
analytics, quantitative finance, and social network modeling and analysis. We 
highlight that, while application-specific considerations (e.g., domain-specific 
data quality control procedures) are important, the key statistical concepts intro-
duced in this workshop are useful to analyze data from many domains other than 
genetic data. For example, multivariate linear regression is the building block 
for many applications that involve model fitting and statistical inference. Multi-
ple hypothesis testing adjustment is necessary for any large-scale data analysis to 
prevent overfitting and p-hacking. Principal component analysis is a dimension-
reduction technique popular in many data science fields. Finally, data visualiza-
tion is increasingly recognized as an integral part of good data science practice.

In the last 15 years, genome-wide association studies (GWAS) have become a 
highly efficient way to identify genetic variants associated with traits and diseases 
[26, 29, 44, 46]. The typical method involves testing millions of bi-allelic single 
nucleotide polymorphisms (SNPs), one-at-a-time for association with an outcome 
(e.g., the continuous blood pressure or the binary trait of high blood pressure) using 
either linear or logistic multivariate regression, and more recently generalized linear 
mixed-effect models [13, 51]. Although the commonly used statistical models are 
relatively simple for each SNP, the main challenge relates to the size of the human 
genome and the number of SNPs. For example, in imputed genetic data from the UK 
Biobank [5, 16], about 10 million SNPs are typically analyzed. Additionally, prior to 
association testing, several (domain-specific) quality control (QC) steps are neces-
sary to restrict the analysis to SNPs and individuals with high quality data [30].

Most individual-level genome-wide SNP data is not publicly available due 
to privacy [27]. We chose to illustrate GWAS using publicly available trait and 
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genetic data from the 1000 Genomes project, in which participants consented to 
their data being made freely available [12]. Due to the small sample size available 
(about 1000 in total with 88 Yoruban and 102 Utah individuals, small relative to 
1,344,840, the number of SNPs analyzed), we chose a trait that is known to be 
strongly associated with some SNPs with large genetic effects. This way, there 
would be sufficient power to detect the association with the small sample size; the 
remaining SNPs serve as negative controls and demonstrate issues pertinent to 
large-scale multiple hypothesis testing.

There is a wide variation in the level of gene expression in a specific tissue or cell, 
and much of this variation is influenced by SNPs near to a specific gene. We used 
an example from earlier literature to illustrate the identification of genetic variation 
associated with the level of expression of the gene named Endoplasmic Reticulum 
Aminopeptidase 2 (ERAP2) [11]. The ERAP2 gene expression levels were meas-
ured in peripheral blood B cell lines in Utah residents with European ancestry, and 
Yoruba people from Ibadan, Nigeria from the 1000 Genomes Project [40]. The pro-
ject is a publicly available catalogue of individual-level human genetic variation,1 
constructed by measuring genetic variation with an array of technologies in multiple 
populations around the world [2].

The workshop is designed to be executed with a 4–5 day period. The mornings 
can be used for the more traditional teaching modus operandi via lectures, while the 
afternoons may be dedicated to the hands-on component with sufficient Teaching 
Assistant (TA) support. The student-TA ratio could range from 1–5 to 1–10, depend-
ing on the readiness of the student cohort. The last 2–3 h of the workshop is recom-
mended for a general discussion and obtaining feedback from the students, and ide-
ally including short student presentations; see Sect. 2.5.

2 � Methods

First and foremost, the workshop provides extensive hands-on experience in con-
ducting, summarizing and interpreting a genome-wide association study to sen-
ior high-school students or junior undergraduate students with basic knowledge in 
data science. The hands-on experience includes using R [28], running PLINK v1.9 
[36] which is specific to the GWAS domain, and working with large-scale data. A 
detailed manual is attached as an Appendix. The most updated version, including an 
analogue of commands for PLINK v2 [8], is openly accessible.2

Additionally, the workshop has the more traditional teaching and learning com-
ponent through (interactive) lectures, covering complementary topics in genetics 
and statistics. We have made the lecture notes openly accessible.3

1  https://​www.​inter​natio​nalge​nome.​org/​about
2  https://​github.​com/​sugol​ov/​GWAS-​Works​hop
3  https://​github.​com/​LeiSu​nUofT/​How-​to-​Run-a-​GWAS.

https://www.internationalgenome.org/about
https://github.com/sugolov/GWAS-Workshop
https://github.com/LeiSunUofT/How-to-Run-a-GWAS
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2.1 � Datasets

In total, 190 individuals and 1,344,840 bi-allelic SNPs from the 1000 Genomes Pro-
ject [2, 40] passing quality control from The Centre for Applied Genomic (TCAG)4

Quality control is a significant component of conducting a proper GWAS [30]. 
However, in-depth QC is domain-specific and time-consuming, not suitable for the 
purpose of this workshop. We thus provides a set of good quality data while empha-
sizing the importance of QC, so that the participating students could successfully 
carry out a preliminary GWAS within the first two days of the workshop and obtain 
∼1.4 million p-values from a real scientific study. We note that this early success is 
critical to keeping the students engaged and motivated to learn the theories that sup-
port their empirical results.

[11] identified that the expression of the gene ERAP2 had strong genetic associa-
tion in HapMap 3 individuals [25], many of which overlapped with the 1 KG indi-
viduals. Gene expressions of ERAP2 measured in peripheral blood B cell lines were 
first extracted from Array Express [31, 43], then matched to the IDs of 1 KG indi-
viduals, and finally formatted for PLINK; see Appendix 1. The two largest 1 KG 
sub-populations are Yoruban individuals in Ibadan, Nigeria (YRI), and Utah resi-
dents (CEPH, Centre d’Etude du Polymorphisme Humain) with Northern and West-
ern European ancestry (CEU). In total, 91 YRI individuals and 104 CEU individuals 
matched between an independent subset of the 1 KG with no family relations and 
HapMap 3 datasets, and these genetic unrelated individuals were used for the work-
shop purpose.

Using principal component analysis (PCA) of PLINK v1.9 [36], three and two 
outliers were removed, respectively from the YRI and CEU samples. Thus, the final 
GWAS analysis was restricted to 88 YRI individuals and 102 CEU individuals, and 
their genetic data of 1,344,840, bi-allelic SNPs. The basic PCA analysis pipeline is 
provided in the appended manual and could be part of the workshop if time permits.

2.2 � Software

An introduction to PLINK (v1.90 beta 6.24) [35] is necessary for the purpose of 
this GWAS workshop. PLINK is a command line toolkit for performing the GWAS 
computation efficiently, giving students hands-on experience with the most popular 
software used in the ongoing GWAS research. The analysis pipeline was originally 
implemented with PLINK v1.9 [36] but equivalent commands for PLINK v2 [8] are 
also provided in a separate manual.

4  https://​tcag.​ca/​tools/​1000g​enomes.​html; https://​www.​inter​natio​nalge​nome.​org/ were used for the 
genome-wide association study. We note that the 1000 Genomes Project data contains some family data, 
but the individuals used for this workshop are genetically unrelated to each other. This is to facilitate the 
application of a simple multivariate linear regression, as accounting for related individuals requires more 
advanced statistical knowledge; directly applying the simple regression to a dependent sample leads to 
increased false positive rates.

https://tcag.ca/tools/1000genomes.html
https://www.internationalgenome.org/
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Depending on the readiness of the student cohort (and length of the workshop), a 
brief introduction to using R (v4.1.0) [37] could be also part of the workshop; open-
resource R introduction materials abound.5 The installation and use of R packages 
such as "qqman" [45], "ggplot2" [48] and "hexbin" [7] introduce students to effec-
tive data visualization, a core component of interpreting GWAS results. Included in 
the open source manual is also a brief introduction to an (optional) use of the UNIX 
environment.

2.3 � Overview of the Workshop Content

We summarize the main steps of running a GWAS of the gene expression data of 
ERAP2, using the 88 YRI individuals and their 1,344,840 SNP data of the 1000 
Genomes Project (i.e., the YRI GWAS); GWAS is often performed separately for 
each population [34], as trait distribution and SNP frequency may differ between 
populations.

We refer the readers to the open source manual and scripts for additional details, 
which include further analyses (i.e., the CEU GWAS of the 102 CEU individuals 
and their SNP data) that could be reproduced using the step-by-step instructions. In 
the analyzed sample, additional PCA may be conducted to capture fine-scale popu-
lation structure [38]; see Sect. 3 of the appended manual on population stratification. 

1.	 Prepare the datasets. Extract the cleaned 1 KG SNP data into a separate analy-
sis-specific directory.

	   First, students should specify the phenotype of interest and remove individuals 
who are not needed for the YRI GWAS. Students achieve these with the –pheno 
and –prune PLINK commands respectively; for additional details see the sec-
tion named ‘Standard data input’ of the PLINK v1.96 orPLINK v2.07 documenta-
tion.

	   Second, students remove rare SNPs (e.g., with a minor allele frequency (MAF) 
less than 5%) and the sex chromosomes from the analysis using the –maf 0.05 
and –chr 1-22 flags, respectively.8 (The 1000 Genomes data quality control 
performed by [40] does not include a MAF-based QC step.)

	   Third, we note that Hardy-Weinberg equilibrium is typically part of the QC 
procedure (using –hardy), as severe departure from HWE is usually an indica-
tion of genotyping error [14, 30]. However, HWE is a complex phenomenon and 
HWE QC criterion is unclear [50]. Thus, the workshop analysis did not include 
a test of HWE, but we note that HWE should be evaluated for any significant 
SNPs. Additionally, students should only analyze the autosomal common SNPs, 
as identifying associations on the sex chromosomes  [10, 47] and analyzing rare 
SNPs [17] requires more intricate methods beyond the scope of the workshop.

5  https://​cran.r-​proje​ct.​org/​doc/​manua​ls/r-​relea​se/R-​intro.​pdf.
6  https://​www.​cog-​genom​ics.​org/​plink/.
7  https://​www.​cog-​genom​ics.​org/​plink/2.​0/.
8  https://​www.​cog-​genom​ics.​org/​plink/1.​9/​filter.

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink/1.9/filter
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	   Lastly, for computational reasons, students create binary files from this dataset 
with –make-bed. The .bim, .bed, .fam file types should be generated and 
named after ERAP2_YRI. Students should verify that the parameters they have 
entered are correct by viewing the .log file.

2.	 Run the association analysis. Since gene expression data is continuous, students 
should specify a linear regression, with PLINK v1.9 command –linear or 
PLINK v2.0 command –glm. This evaluates the association between the gene 
expression and each SNP, also known as the expression quantitative trait loci 
(eQTL) analysis.

	   Association analysis often includes covariates to avoid spurious associations 
from confounding. The sexes of the individuals are included in the dataset, so 
students may include this covariate in the eQTL GWAS analysis using –linear 
sex in PLINK v1.9 or –glm sex in PLINK v2.

3.	 Post-association analysis and results interpretation. The association results 
can be sorted with sort.R, which also generates a file with the top 50 most 
significant SNPs. The genome-wide results may be plotted and interpreted, which 
we explain with examples in the next section; also see the appended manual 
for additional details. Using appropriate QC steps, including the MAF filter-
ing, prevents NA results in the output in principle. However, to be cautious the 
NA_removal.R script may be used to identify and remove NA results from 
the follow-up data visualization analyses. Hardy-Weinberg equilibrium may be 
checked for the top SNP using –hardy.

2.4 � A Highlight: Multiple Hypothesis Testing and Data Visualization

During the workshop, students are introduced to the multiple testing problem in 
GWAS through the morning lectures. Although the concept of multiple hypothesis 
testing, and its (theoretical) connection with ‘p-values being Unif(0,1) distributed 
under the null’, is covered in most introduction courses to statistics, student’s under-
standing and appreciation of this concept is often lacking, in part due to the tradi-
tional emphasis on identifying variables with p-values meeting some significance 
criterion, as opposed to exploring the whole distribution. This, in part, is a result 
from a lack of hands-on experience with large-scale real data analysis,

With close to 1.4 million p-values obtained from a real GWAS, students realize 
that many SNPs (close to 70,000 in fact) are ‘significant’ if the traditional � = 0.05 
type I error threshold were used. However, the histogram of p-values in Fig. 1 shows 
an empirical distribution close to Unif(0,1), the distribution expected under the null 
hypothesis of no association. This is expected for a typical GWAS, as unless the trait 
is polygenic (i.e., with a large number of contributing SNPs) and the sample size is 
very large, most of the SNPs are not expected to be associated with the trait or their 
associations are not detectable [18, 49].

Without going into the technical details, students are then introduced to the α = 
5.0 × 10−8 genome-wide significance threshold used in GWAS to control the fam-
ily wise error rate at 0.05 [20]. Further, two most commonly used data visualization 
plots in GWAS are introduced: the Manhattan plot and the Q-Q plot as shown in 
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Fig. 2. These two plots complement the histogram which lumps all small p-values in 
one bin, thus masking the individual significant results.

The Q–Q plot in Fig. 2 is a standard statistical plot, showing the quantiles of the 
observed p-values against those of Unif(0,1), on the −log_10 scale. In GWAS, the 
Q–Q plot serves two purposes. First, it highlights the significant results if there are 
any at the tail of the distribution. Second, it also shows the overall distribution of the 
GWAS p-values (though on the −log_10 scale), which is typically expected to fol-
low the main diagonal line.

Based on the Q–Q plot in Fig. 2, it is clear that several SNPs are significantly 
associated with the gene expression of ERAP2 in the YRI GWAS. However, their 
genomic locations (e.g., from which chromosome) are unclear. Thus comes the Man-
hattan plot which contrasts the −log_10 p-value of each SNP against its genomic 
location, with the � = 5.0 × 10−8 genome-wide significance line (7.3 on −log_10 
scale) marked in red. Other significance thresholds for ‘suggestive’ association may 
also be shown, such as the −log_10(10−5) blue horizontal line included in Fig. 2.

In total, there are 17 genome-wide significant SNPs with p-values less than 
5.0 × 10−8 , all from the locus on chromosome 5 (at 96.2 – 96.3 Mb) that is close 
to the ERAP2 gene. These are called cis-eQTL SNPs, i.e., SNPs near the gene and 
whose genotypes associated with differences in the gene expression level.

Fig. 1   Histogram of the 1,344,840 p-values from the YRI GWAS of the gene expression of ERAP2, 
obtained using the workshop materials. The histogram is close to Unif(0, 1), the expected distribution of 
p-values under the null of no association
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Another noticeable feature in a typical Manhattan plot is the ‘clustering’ of sig-
nificantly associated SNPs. This is due to the phenomenon called linkage disequilib-
rium (LD) between nearby SNPs [42]. The location, p-values, and the LD between 
SNPs of a significant locus may be visualized in a Manhattan-like plot using the 
LocusZoom service [3]. The implementation steps associated with the ERAP2 
example are included in the appended workshop manual. Although LD is akin to 
the statistical concept of correlation, it is an advanced concept in statistical genetics 
involving population genetics, thus not discussed further in this workshop.

2.5 � Summary of the GWAS Workshop Conducted

In the summer of 2021, our team offered this workshop to senior high school stu-
dents from the University of Toronto Schools (UTS) in Toronto, Ontario, Canada. 
Due to the pandemic and limited number of TAs available, it was offered online and 
restricted to 15 participants, which were selected based on their interests and readi-
ness in statistics, genetics and computing; see Appendix 1 for the application form. 
Post-workshop, a survey was conducted to collect participant feedback; see Appen-
dix 1 for the survey questions.

Prior to the workshop, in addition to the survey, an earlier version of the appended 
manual was distributed to the participating students. Additionally, given the rela-
tively low overall readiness of the participating students, the two lead TAs (AS and 
EE) provided detailed instructions for software installation and configuration, with a 
troubleshooting guide. Students followed this manual to work in groups, with clari-
fication from the TAs via an online tutorial session as well as Discord discussion; 
Discord was the preferred social media of this group of students. At the time of 
the workshop, AS and EE were first year undergraduate students majored, respec-
tively, in mathematics and life sciences, at the University of Toronto; AS and EE 
were mentored by ADP and LS during the summer of 2020.

Fig. 2   The Manhattan plot and Q-Q plot of the 1,344,840 p-values from the YRI GWAS of the gene 
expression of ERAP2, obtained using the workshop materials
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Throughout the 4.5-day workshop, the morning lectures providing the necessary 
background in genetics and statistics were given, respectively, by ADP and LS. The 
afternoon sessions were guided tutorials, lead by AS and EE with participation of 
ADP and LS. Notably, on the last morning, students were encouraged to select a 
trait from the GWAS catalog9 [4] and to present a 3–5 min summary of a paper that 
performed a GWAS for that trait. In addition, students were encouraged to describe 
their motivation for selecting each particular trait, which provided an emotional con-
nection to the science through personal stories, typically related to family history of 
diseases. The presented traits ranged from gout, breast cancer, to multiple sclerosis. 
Finally, to keep the students engaged, music were curated in advance and played 
during the (frequent) breaks, and the song “Another Brick in the Wall", by Pink 
Floyd, was much appreciated by the students based on their feedback.

3 � Student Feedback

After the workshop, a feedback survey (Appendix D) was distributed and eight 
responses were collected. Students found the workshop overall interesting, espe-
cially working with and interpreting the genetic component of the workshop. The 
students particularly enjoyed the SNP finding activity, and found the guided after-
noon sessions helpful to their understanding.

Due to the high school background of the students, and the workshop’s limited 
time frame, some found the pace of the lectures to be overwhelming, particularly the 
statistical section of the lectures. Subsequently, notes were added to explain the dif-
ficult levels of the five lecture slide decks. Students unaccustomed to programming 
found using the terminal-based PLINK to be confusing, and recommended adding a 
terminal tutorial to the workshop manual, which was later included.

4 � Discussion

Depending on the experience of participants, the scope of the workshop may be 
extended, including covering more advanced lectures, analyses and plots, as well as 
analyzing additional datasets. Discussion around the cleaning of the 1000 Genomes 
data could be included in the morning lecture sessions, and cleaning steps for the 1000 
Genomes individuals [40] may be replicated in the afternoons. More thorough descrip-
tions of large-scale multiple testing and fundamentals of regression in the GWAS con-
text may be included. An analysis using individuals with different populations, with 
PCA adjustment, may be given in the practical hands-on sessions. After conducting a 
sample GWAS in one population (e.g., the YRI GWAS), gene expressions with vari-
ous significance [11] matched with other 1 KG populations may be provided for stu-
dents to replicate. Included UNIX commands may be used as an introduction to con-
ducting a remote GWAS on a cloud-based system, which typically are UNIX-based.

9  https://​www.​ebi.​ac.​uk/​gwas/.

https://www.ebi.ac.uk/gwas/
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To adhere to the current standard of reproducible research [33], initial GWAS were 
conducted and documented independently by AS and EE. The two sets of results 
were then compared with each other, and the analyses and results were successfully 
reproduced, independently, by the workshop participants. Additionally, the observed 
ERAP2 significance replicates the earlier work by Cheung et  al. [11]. R, PLINK, 
and dataset versions were synchronized, and all scripts were version-controlled and 
hosted on the workshop GitHub. The exact analytical steps were recorded in a GWAS 
documentation, which would later become the appended, open source manual that 
allows users to reproduce the workshop GWAS materials. Finally, the tested work-
shop datasets and other materials were also made publicly available on Zenodo.10

Appendix

A Phenotype Extraction and Dataset Generation

Phenotype files containing gene expression data must be matched to cleaned, inde-
pendent 1000 Genomes individuals to create the datasets. Please refer to Github.​com/​
sugol​ov/​GWAS-​Works​hop/​Noteb​ooks/​Datas​etPre​parat​ion.​Rmd to create a phenotype 
file using the expression data from the University of Geneva Medical School [31, 43]. 
Phenotype files for ERAP2 are provided for the CEU and YRI populations for sin-
gle population and mixed population analysis on Github.​com/​sugol​ov/​GWAS-​Works​
hop/​Datas​ets. The PLINK binary format genotype files of independent samples were 
downloaded from http://​tcag.​ca/​tools/​1000g​enomes.​html [40]. Refer to Github.​com/​
sugol​ov/​GWAS-​Works​hop/​Noteb​ooks/​YRI_​Analy​sis.​Rmd to match the phenotype 
files with the 1 KG dataset from The Centre for Applied Genomics [2, 40]. For more 
information on required files and phenotype/genotype combination, please visit Sec-
tions 1.4 and 4.2 respectively of the manual, which can be found on the Github.

B High Coverage Dataset

The High Coverage dataset was generated using the 30x High Coverage samples 
from the New York Genome Center (NYGC) [6]. Please refer to https://​github.​
com/​sugol​ov/​GWAS-​Works​hop/​tree/​master/​Noteb​ooksGithub.com/sugolov/
GWAS-Workshop/Notebooks/

High_Coverage.Rmd to generate a set of High Coverage data.

C Application Form

The application form for students consisted of the following questions sent out as 
a Google Form. 

10  https://​zenodo.​org/​record/​78091​50.

http://Github.com/sugolov/GWAS-Workshop/Notebooks/DatasetPreparation.Rmd
http://Github.com/sugolov/GWAS-Workshop/Notebooks/DatasetPreparation.Rmd
http://Github.com/sugolov/GWAS-Workshop/Datasets
http://Github.com/sugolov/GWAS-Workshop/Datasets
http://tcag.ca/tools/1000genomes.html
https://github.com/sugolov/GWAS-Workshop/tree/master/Notebooks
https://github.com/sugolov/GWAS-Workshop/tree/master/Notebooks
https://github.com/sugolov/GWAS-Workshop/tree/master/Notebooks
https://github.com/sugolov/GWAS-Workshop/tree/master/Notebooks
https://zenodo.org/record/7809150
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1.	 Your name (First, Last)
2.	 Your email address
3.	 Please list relevant courses (UTS course codes and names) taken in statistics/data 

science, computer science and biology. (This is to help the workshop organizers 
to team up participants with complementing skills, if needed depending on the 
number of applicants.)

4.	 Check 1-2 boxes that reflect your strengths

•	 Statistics/Data Science
•	 Computing
•	 Biology

5.	 Explain why are you particularly interested in this workshop? (200 words)
6.	 Any preference or suggestion on the platform(s) to be used for the virtual work-

shop, and for the on-line discussion board?
7.	 Any other comments?

D End of Workshop Survey

The following questions were sent to the students as a Google Form after the end 
of the workshop. 8 students out of 17 responded. 

	 1.	 On a scale of 1 to 10, how difficult did you find the genetic component?
	 2.	 If you answered greater than 7 to the question above please specify what you 

found too difficult. If you answered below 5 to the question please specify what 
you found too easy. If ≤ 5 your answer ≤ 7, still say something:-)

	 3.	 Did you find the pace of the genetic component too quick or too slow? Please 
specify.

	 4.	 What would you have liked to seen more of?
	 5.	 On a scale of 1 to 10, how difficult did you find the statistics component?
	 6.	 If you answered greater than 7 to the question above please specify what you 

found too difficult. If you answered below 5 to the question please specify what 
you found too easy. If ≤ 5 your answer ≤ 7, still say something:-)

	 7.	 Did you find the pace of the statistic component too quick or too slow? Please 
specify.

	 8.	 What would you have liked to seen more of?
	 9.	 On a scale of 1 to 10, how difficult did you find the computing/hands on com-

ponent?
	10.	 If you answered greater than 7 to the question above please specify what you 

found too difficult. If you answered below 5 to the question please specify what 
you found too easy. If ≤ 5 your answer ≤ 7, still say something:-)

	11.	 Did you find the pace of the computing component too quick or too slow? Please 
specify.

	12.	 What would you have liked to seen more of?
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	13.	 If we were to do this workshop again what would you have liked to see more 
of? Select all that apply.

•	 Statistics
•	 Genetics
•	 Computing
•	 Nothing. The balance was perfect.
•	 Other:

	14.	 What was your favorite aspect of the workshop? Select all that apply.

•	 Statistics
•	 Genetics
•	 Computing
•	 None. I did not enjoy anything
•	 All. I loved everything
•	 Other:

	15.	 Would you like to have been presented with more references and resources 
before the workshop (i.e., terminal commands, file directory structure, etc)? If 
this is the case please specify.

	16.	 From a scale of 1 - 10 how much did you enjoy the music during breaks?
	17.	 Any other final remarks?
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