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Abstract
In youth with Type 1 diabetes, adherence to medical treatment regimens requires 
the involvement of both parent and child. A clinic-integrated behavioral intervention 
in the Family Management of Diabetes (FMOD) trial was shown to be effective in 
controlling deterioration in glycemic level; yet the mechanism remains unknown. It 
is possible that the effectiveness is through improved parent–child relation. To inves-
tigate whether the intervention improves parent–child relations, we proposed a novel 
approach that allows differential perceptions of parent and child toward the unob-
served parent–child relationship. Leveraging manifesto data collected from both par-
ent and child in the FMOD trial, the proposed approach extended a standard hidden 
Markov model by inserting a layer of parent- and child-specific hidden states. We 
took a Bayesian perspective to estimation and developed an efficient computational 
algorithm to sample from the joint posterior distribution. Extensive simulations 
were conducted to demonstrate the performance of the proposed modeling frame-
work. Application to the FMOD trial data reveals that families in the intervention 
arm are more likely to stay in the Harmonious parent–child relation state and less 
likely to transition from Harmonious to Indifferent state. Compared to parent, child 
tends to have a more heterogeneous perception of the parent–child relation.
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1 Introduction

Adherence to the medical treatment regimens is important in effective management 
of type 1 diabetes (T1D). In youth with T1D, good adherence requires well-func-
tioning partnership of both the parent and the child in checking blood glucose levels, 
administering insulin, and monitoring diets and physical activities. Unfortunately, 
during pre-adolescence and adolescence, these burdensome daily demands coin-
cide with a vulnerable period when youths undergo social, emotional, and physi-
cal changes that challenge parent–child relations [1, 2]. Glycemic control typically 
worsens during this period [3, 4], which can have both short- and long-term adverse 
effects. Pre-adolescence and adolescence also provide a critical window of oppor-
tunity for youth with T1D to develop self-care skills that can positively project into 
adulthood and lead to improved long-term outcomes. It is, therefore, of high public 
health importance to develop tools and strategies that can help parents and youths 
better adhere to their management regimen and improve glycemic control.

A wide range of behavioral interventions targeting diabetes-related parent–child 
relations have been evaluated [5–14]. The NICHD Family Management of Diabe-
tes (FMOD) clinical trial [15] investigated a practical, low-intensity, and clinic-
integrated behavioral intervention. Briefly, the FMOD trial enrolled and randomized 
390 families of youth with T1D into either an intervention or a usual-care treatment 
arm at baseline. These families were followed for approximately 2 years, with inter-
vention contacts and data collection occurring at routine clinic visits (typically every 
3–4 months). A description of the trial design and intervention conditions of the 
FMOD trial is provided in Sect. 2; more detailed information can be found in Nansel 
et al. [16]. The intervention was effective in reducing deterioration in glycemic con-
trol, registering a statistically significantly smaller increase in HbA1C from baseline 
to 24 month compared to the usual-care arm [16]. Some important secondary ques-
tions remain, however. What is the mechanism through which the study intervention 
worked to control the child’s HbA1C level? Is this effectiveness a result of improved 
parent–child relationship? In this paper, we address these questions by investigating 
whether the intervention affects parent–child relations.

In FMOD trial, the parent–child relationship is manifested by constructs previ-
ously shown to be relevant to diabetes management, two of which are considered in 
this paper. The first, parent task involvement, is assessed using the Diabetes Fam-
ily Responsibility (DFR) Questionnaire [17] which includes 17 items querying the 
division of responsibility between the child and the parent for diabetes management 
tasks. The second, parent–child conflict (PCC), indicates the level of family conflict 
over diabetes management issues using the 19-item Diabetes Family Conflict Scale 
[18]. In the remainder of the paper, these two constructs will be referred to as DFR 
and PCC, respectively. The parent and the child completed identical versions of both 
questionnaires at each study visit, giving rise to a longitudinal dyadic data struc-
ture. A summary score for each construct at each visit was calculated as the sum of 
responses to all items. The four summary variables, DFR and PCC reported by the 
parent and the child, respectively, formed the outcome data in our analysis and will 
be referred to as “manifesto variables” hereafter.
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Since the manifesto variables are driven by the unobserved parent–child rela-
tion, their marginal distributions are potentially multi-modal (see Fig. A.1). Con-
sequently, a hidden Markov model (HMM) is more advantageous than a Markov 
model in describing the underlying mechanism. As a generalization of finite mixture 
model under the longitudinal setup, a HMM can describe over-dispersion in data 
naturally. Moreover, modeling the unobserved relation as a Markov chain assumes 
that the state of parent–child relation is dynamic. It helps us to interpret how the 
relation evolves over time by estimating the Markov chain’s transition matrix. Fur-
thermore, mixed hidden Markov models [19, 20] permit greater flexibility in mod-
eling correlation structure by introducing random effects in and allowing multivari-
ate manifesto variables. By estimating transition matrices for different treatment 
arms, we can identify one subgroup of the population that is most responsive to the 
intervention. Appropriate statistical inferences can be conducted to examine whether 
the intervention impacts how the families transition from one parent–child rela-
tionship state to another. This approach is not satisfactory, however, as it implicitly 
assumes that the parent and the child are homogeneous in the process of manifesting 
the hidden states. This assumption is likely unreasonable and fails to recognize that 
the perception of the child may be substantially different from that of the parent. 
Indeed, when we fit separate HMMs to parents’ and children’s data, respectively, 
we obtained very different results (see Sect. 2). However, treating the parent’s con-
structs separately from the child’s will result in loss of information. Moreover, the 
disjoint model estimations make it difficult to interpret the results.

In this paper, we propose a novel extension of HMM, called perception-aug-
mented hidden Markov model (pHMM), which jointly models parent’s and child’s 
manifesto variables while explicitly allows each member to have heterogeneous per-
ceptions toward parent–child relations. Allowing differential perceptions helps us 
answer the research question without the above pitfalls, while at the same time hav-
ing a solid theoretical underpinning.

Developmental psychology has long recognized the importance of perceptions by 
the parent and the child [21]. For example, Van Slyke and Leton [22] examined how 
perception of family relations in children affects their school adjustment. Palmer 
et al. [23] reported that perceptions from mother, father, and children can be related 
to demographic factors in the context of diabetes control. It is, therefore, desirable 
to be able to model how parent–child relations transition over time and how they 
are perceived differentially by members of the dyad (i.e., a pair of parent and child). 
To that end, our proposed framework will assume the existence of a hidden state of 
family relationship, which forms a first-order Markov process. Based on this family 
relationship state, the parent and the child each form their perceived parent–child 
relationship state through a perception matrix. The observed outcomes from par-
ent or child are simply manifestations of their corresponding latent perceived states. 
In addition to allowing the treatment arm-specific transition matrices, the proposed 
pHMM can estimate perception matrices that are specific to the parent and the child, 
as well as to the study arms. As a result, pHMM can provide insights into some 
additional research questions: (1) Does the intervention affect the dynamic of par-
ent–child relations? (2) Do the parent and the child perceive their relationship dif-
ferently? (3) Are perceptions different between treatment arms? We believe this new 
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modeling framework suits the FMOD research questions better than the standard 
HMM approaches.

As a mixture model with the mixing distribution a finite-state Markov chain, the 
HMM has been widely used in many applications including smoking cessation and 
alcoholism treatment [24], education [25], and psychiatry [26], among many others. 
Central to a successful implementation of the classical HMM is the Baum–Welsch 
algorithm that used forward and backward recursion [27, 28] and the Viterbi algo-
rithms [29]. HMMs have been extended to longitudinal data settings for modeling 
multiple processes simultaneously [19, 20], to hierarchical and nested HMMs [30], 
to mediation analysis and causal inference framework [26, 31]. We incorporate ran-
dom effects similar to mixed Hidden Markov models (MHMM) [19, 20].

The paper is organized as follows. We motivate the proposed approach by dis-
cussing some preliminary analyses of the FMOD trial data in Sect.  2. We then 
describe the proposed perception-augmented HMM in Sect. 3 and its estimation in 
Sect. 4. In Sect. 5 we apply pHMM to the FMOD trial data, interpret the results, and 
check model goodness of fit. To evaluate the performance of pHMM, we conduct 
extensive simulations in Sect. 6. Finally, in Sect. 7, we conclude with discussions on 
strengths and weaknesses of the proposed approach and provide thoughts on future 
work directions.

2  An Initial Look at the FMOD Trial Data

The FMOD trial recruited 390 families of youth with T1D and randomly assigned 
them to either an intervention ( n = 201 ) or a usual-care ( n = 189 ) arm at baseline. 
Each family was followed for 2 years or until dropout. Brief questionnaires were 
administered at each clinic visit (typically every 3–4 months). In addition, a tel-
ephone assessment at study midpoint and an in-clinic 24-month final assessment 
were conducted. Following Nansel et al. [16] and Temmen et al. [32], we used ques-
tionnaire data from baseline, 6, 12, 18, and 24 month by taking the measurement of 
the closest visit or the average of the closest two visits in our analysis. More than 
75% (N = 254) of families have complete data for all five visits. Multivariate impu-
tation [33] was applied to impute missing values. All families received assistance 
with appointment scheduling; those in the intervention arm additionally participated 
in sessions with a specially trained health advisor at each clinic visit. Intervention 
activities included preparation assistance by phone before each clinic visit, the “WE-
CAN” manage diabetes applied problem-solving approach during the visit, and fol-
low-up phone consultation after the visit. Self-report questionnaires were completed 
at each study visit.

The parent and the child separately completed identical questionnaires for assess-
ment of parent task involvement (DFR) and parent–child conflict (PCC). These give 
rise to four manifesto scores: child-reported DFR (CDFR), parent-reported DFR 
(PDFR), child-reported PCC (CPCC), and parent-reported PCC (PPCC), which 
we use to infer the underlying parent–child relationship in this paper. Figure A.1 
in Supplementary Material provides violin plots of these outcomes over time strati-
fied by treatment arms. In general, children reported lower parent task involvement 
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and slightly higher parent–child conflict scores than parents. Moreover, parent task 
involvement declined and parent–child conflict remained relatively stable over time.

Early preliminary analyses of FMOD trial data have applied the latent class 
model (LCM, i.e., finite Gaussian mixture model) [34], separately to baseline and 
24-month data with the goal to estimate underlying parent–child relations at the start 
and the end of the study, and found that an LCM with 3 latent classes fit the data 
well at both times [32]. The estimated parent–child relationship classes consist of a 
Discordant class, characterized by high degree of parent involvement and high par-
ent–child conflict, a Harmonious class, characterized by high parent involvement 
and low conflict, and an Indifferent class, characterized by low parent involvement 
and low conflict; see Table 1.

While providing a rough picture of the parent–child relationship at the start and 
end of the study, these preliminary analyses treated data from baseline and 24 month 
independently and ignored the longitudinal feature of the FMOD trial data.

To understand the dynamics of unobserved parent–child relations, a natural 
extension of the above LCM approach is the hidden Markov model. To that end, we 
fit a multivariate mixed effect HMM (MHMM) [20] to the FMOD trial data, without 
differentiating between child and parent (hereafter we call it “the Family model”). 
In MHMM, the conditional distribution of each outcome given the current hidden 
state, or so-called emission probability model, is specified as a Gaussian distribu-
tion with mean resulting from both the subject-specific random effect and the fixed 
effect of the underlying hidden state, and variance resulting from the fixed effect of 
the underlying hidden state. We applied the widely applicable information criterion 
(WAIC) [35] for model selection. It suggests that a 3-state HMM fits the data well. 
In Supplementary Material, the top part of Table A.1 reports estimated fixed effects 
of the three hidden states and the top part of Table A.2 provides estimated initial and 
transition probabilities by treatment arms.

We first note that the pattern in estimated fixed effects of each state from the Fam-
ily model closely resembles that displayed in Table 1, suggesting that the same three 
latent classes of parent–child relationship, namely Discordant, Harmonious, and 
Indifferent, are underlying the manifesto variables. At baseline, about 43% and 49% 
families are in Discordant and Harmonious states, respectively, with the remaining 
in the Indifferent state (Table A.2). The estimated transition matrices in Table A.2 
indicate that families are more likely to move away from the Discordant state and to 
stay in the Harmonious state when they are in the intervention versus the usual-care 
arm. In order to further test the treatment differences, we obtain the 95% posterior 
credible intervals of the average transition probability differences and average sta-
tionary probability differences [24] and display them in Fig. A.2 in Supplementary 
Material. Despite not significant, the differences show that families in the interven-
tion arm are less likely to stay in the Discordant state and more likely to move into 
the Harmonious state. According to the stationary probability differences, families 
in the intervention arm are more likely to transition to the Harmonious state at the 
end of the study.

A limitation of this application of HMM to the FMOD trial data is that it assumes 
the same Markov process between child and parent. Since the manifesto variables 
were obtained from the parent and the child separately, it is possible that they reflect 
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different perceptions. Understanding these differential perceptions is important as it 
can shed insights in how the intervention works.

As a naive way to gauge these differences, we repeated the above MHMM to par-
ent- and child-specific outcomes separately (hereafter call them the “Parent model” 
and the “Child model”, respectively) and ended up with a three-state model for each. 
These results are reported in the second and third parts of Table A.1 for emission 
model parameters and of Table A.2 for initial and transition probabilities, respec-
tively. Several observations can be made. First, as in LCM and the Family model, 
the estimated latent classes/states in both Parent and Child models agree with those 
in Table 1. That is, the three identified states are featured by high parent–child con-
flict and high parent task involvement, low conflict and high involvement, and low 
conflict and low involvement, respectively. Although states from different mod-
els are centered at different values, we name them in the same way as the “Family 
model.” The within-dyad similarity stops here, however. While 35% , 44%, and 21% 
families at baseline are in Discordant, Harmonious, and Indifferent states according 
to the Child model, the corresponding prevalence according to the Parent model are 
18% , 76%, and 6% , respectively (Table A.2). Transition probabilities also differ sub-
stantially between the parent and the child. For example, while 35% in the usual-care 
arm and 23% in the intervention arm stay in the Discordant state by the Child model, 
77% and 71% do the same according to the Parent model. These differences in transi-
tion probabilities are evident by noticing the low diagonal entries (0.24, 0.53, and 
0.52) in Table A.3 which cross-tabulates estimated classes at each visit from the Par-
ent and Child models, respectively.

It is clear that there is a significant heterogeneity between child’s and parent’s 
perceptions of parent–child relations. The application of an HMM using all data (the 
Family model) fails to account for this heterogeneity. On the other hand, parent- and 
child-specific HMMs result in information loss and render results challenging to 
interpret. The next section will describe the proposed approach that aims at bridging 
this gap and provides a mechanism to address the research question of differential 
perceptions from the parent and the child toward parent–child relations.

Table 1  Characteristics of estimated parent–child relation classes from latent class model applied to the 
FMOD trial data

Outcome Parent–child relation class

Discordant Harmonious Indifferent

Parent task involvement (DFR)
 Child-reported DFR (CDFR) High High Low
 Parent-reported DFR (PDFR) High High Low

Parent–child conflict (PCC)
 Child-reported PCC (CPCC) High Low Low
 Parent-reported PCC (PPCC) High Low Low
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3  The Perception‑Augmented HMM (pHMM)

3.1  Overview

The proposed new hidden Markov model is intended for longitudinal multivariate 
data from members of a cluster where cluster-level states can be differentially per-
ceived by each member. For ease of understanding, the methodological development 
below will be in the context of the FMOD trial where family is the cluster and child 
and parent are the corresponding cluster members. We will also use class inter-
changeably with state when describing the hidden parent–child relationship, and 
sometimes omit the word “latent” if no confusion arises. The proposed framework 
consists of three layers of dependent processes, as illustrated schematically in Fig. 1. 
The first layer is a Markov process of the family-level states that are assumed to 
adhere to the first-order Markov assumption with initial and transition probabilities. 
The second layer comprises the hidden member-level states conditional on the first 
layer. In this layer, child and parent interpret the family-level state and form their 
own states. We call this interpreting process the “perceiving” process and the asso-
ciated matrix of probabilities the “perception matrix”. We assume that the percep-
tion matrix is homogeneous across time but can be different for family members and 
treatment arms. The third layer is the emission process. It specifies the mechanism 
by which the outcomes are manifested through the member-level states. Given the 
current family-level states, member-level states are assumed to be independent of 
each other. Similarly, given the member-level states, current observed variables are 
independent of past and future ones.

3.2  The Family‑Level Markov Process

Let Zit denote the unobserved family-level parent–child relationship state of family 
i at time t, i = 1,… ,N, t = 1,… , ni , where N is the number of families in the study 
and ni is the number of follow-ups of family i. Further, denote Zi = (Zi1,… , Zini ) 
to be the state sequence of family i and Z to be the collection of all Zi’s. Let 
si ∈ {1, 2,… , S} represent the treatment arm assigned to family i, where S is the 
total number of arms. In FMOD trial, S = 2 as the study treatments consist of the 
usual-care and intervention arms. Since our primary interest is in whether study 
treatment affects family transitioning from one parent–child relationship state to 
another, we allow for separate transition and initial probabilities.

Specifically, we assume that Zi arises from a Markov process of state space 
{1,… ,C} with transition matrix Psi = {P

si
kj
} and initial probability vector 

�si = {�
si
j
} , where C is the number of latent parent–child relationship states, 

j, k = 1,… ,C , and si = 1,… , S . Given the first-order property and time homoge-
neity, we can write the Markov chain of the hidden states Zi as follows:
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We note that other alternative formulations of the treatment effects on transition and 
initial probabilities are possible [24]. One straightforward extension is to incorporate 
in-homogeneous hidden process [36], which allows time-varying treatment effects, 
by estimating different transition matrix for each observational period. The primary 
advantage of our formulation is that it leads to simpler computational algorithm.

3.3  The Perception Process

It is possible that the family-level parent–child relationship state can be differen-
tially perceived by child and parent. Theoretical work in developmental psychology 
has long recognized this [21–23]. Empirically, we see from Fig. A.1 that there is 
a discernible difference in the two manifesto scores between parents and children. 
In particular, compared to parents, children tend to give lower scores in parent 
task involvement (DFR) (33.05 vs. 35.51), suggesting that they perceive less task 
involvement from parents. Similarly, children tend to give slightly higher scores in 
parent–child conflict (PCC). As such, it is helpful to allow this differential percep-
tion in the modeling framework. To that end, for member m ∈ {1,… ,M} in family i 
at time point t, let Zm

it
∈ {1,… ,Cm} denote the member-specific hidden state where 

M is the number of members in a cluster and Cm is the member-specific number of 
states. In FMOD trial, M = 2 . To model the perception process, we assume that Zm

it
 

P(Zi1 = j|si = s) = �s
j
,

P(Zit = j|Zi,t−1 = k, si = s) = Ps
kj
, t = 2,… , ni.

… … …

…

, …, … , …, 

Layer 2:

Layer 1:

Layer 3:

Random effects:

Fig. 1  Schematic overview of the perception-augmented hidden Markov model structure for the ith clus-
ter, with cluster-level hidden state process Zi , member-level hidden state process Zm , observed process yi , 
and random effects bi . In the diagram, n is the number of follow-ups, and M is the number of members in 
one cluster
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are mutually independent across m, for fixed i and t given the current state Zit and 
that

where Qs
mkj

 is the probability that the cluster-level state k is perceived as j by mem-
ber m in study arm s. To simplify notations and focus on the main idea, we will 
assume member-specific but study-arm-common perception matrices in the follow-
ing development so that superscript s is dropped in perception probability Qs

mkj
 . Let 

Qm be the collection of Qmkj’s.

3.4  The Emission Model

Let yit = (y1
it
,… , yM

it
) denote a multivariate longitudinal response for cluster i at time 

t. Specifically, ym
it
= (ym

i1t
,… , ym

iJmt
) is a Jm-dimensional outcome from member m in 

cluster i at time t. Here Jm is the number of outcomes associated with member m. In 
the FMOD trail, Jm = 2 for all m. Random vectors ym

it
 and ym

it′
 are independent given 

the current member states Zm
it

 and Zm
it′

 , for t ≠ t′ . In addition, to account for heteroge-
neity introduced by individual clusters, we assume i.i.d cluster-specific random 
effects bi = (bi1,… , bir) with a common distribution f (bi|Σ) , e.g., zero-mean multi-
variate normal, where r =

∑
m Jm and Σ is an unknown covariance matrix, which 

characterizes the correlation pattern of the longitudinal observable variables.
Given member’s hidden states Zm

it
 and the random effect bi of cluster i, the jth 

response outcome ym
ijt

 from member m in cluster i follows a normal distribution:

where uitk is a Cm-dimensional vector defining the contrast between latent states, 
with first k elements 1 and others 0, �m

j
= (�m

j,1
,… , �m

j,Cm ) represents the fixed effect 
intercept for all hidden states, Xit = (Xit1,… ,Xitq) are the covariates of cluster i at 
time t, �m

j
= (�m

j1
,… , �m

jq
) are the associated coefficient vector, �ij is a r-dimensional 

vector, and �m
j
= (�m

j,1
,… , �m

j,Cm ) the fixed effect on variance of the jth outcome varia-
ble from member m for the hidden states. We follow the same parameterization as in 
Scott [37] and in Raffa and Dubin [20]: The term uT

itk
�m
j
 gives the fixed effect inter-

cept of State k as the cumulative sum of the first k elements in �m
j
 . Similarly, uT

itk
�m
j
 

gives the variance of the kth state as the cumulative sum of the first k elements in �m
j
 . 

The vector �ij is used to express the random effect of variable j of cluster i, with 
value 1 at jth place of the vector and 0’s elsewhere. In this way, we define separate 
but correlated random effects of all response variables from cluster i.

P(Zm
it
= j|Zit = k, si = s) = Qs

mkj
, t = 1,… , ni,

(1)ym
ijt
|Zm

it
= k, bi, �

m
j
, �m

j
, �m

j
∼ N

(
uT
itk
�m
j
+ XT

it
�m
j
+ �T

ij
bi, u

T
itk
�m
j

)
,
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4  Estimations

The above specifications are tailored for the FMOD data and lead to a straightfor-
ward Bayesian computational algorithm. They can be easily generalized to more 
complex situations and to incorporate responses from other distributions. The mar-
ginal likelihood function given the above model formulations is

where y is the collection of all yit , � consists of all parameters, including those asso-
ciated with the Markov chains ( Ps , �s, and Qs

m
 ), with the emission probability 

( � = {�m
j
} , � = {�m

j
}, and � = {�m

j
} ), and those with the random effect ( Σ ), �ini

 is 
the forward probability for the ith cluster at time ni , and 1 is a vector of 1’s. More 
specifically, �i1 = �sG(yi1) for t = 1 , and �i,t = �i,t−1P

siG(yit) for t = 2,… , ni , where 
G(yit) is a diagonal matrix with entries 

∏M

m=1

∏Jm
j=1

∑Cm

k=1
f (ym

ijt
�Zm

it
= k, bi,�) ∗ Qmkh , 

h = 1,… ,C.
In order to deal with multiple members, each providing multiple response variables 

in the clusters, we need a flexible way for estimation with reasonable computational effi-
ciency. With the model specifications introduced in Sect. 3, we propose a Gibbs sampler 
to fit the model. This also eliminates the challenges in evaluating the high dimensional 
integrals related to the random effects in the model. Further, the Bayesian framework is 
straightforward to incorporate more complicated specifications.

We specify independent conjugate priors for components of parameter vector � 
as follows:

where I is an identity matrix with conforming dimension, IG, Dir and IW repre-
sent inverse Gamma, Dirichlet and inverse Wishart distributions, respectively. Based 
on these prior specifications, we can obtain a Gibbs sampler to sample from pos-
terior [�, b|y] where b is the collection of all bi’s. Specifically, the sampling pro-
cedure alternates between sampling from [Z,Zm|y,Θ, b] and [𝚯, b|Z,Zm, y] . We use 
stochastic recursion to sample from [Z|y,�, b] , with the hidden states of clusters 
sampled separately by calculating the forward probabilities �i . The hidden state 
of each member is then sampled accordingly with the current perception matrix. 
Once the samples from [Z,Zm|y,Θ, b] are updated, sampling from [𝚯, b|Z,Zm, y] is 
straightforward.

(2)L(�;y) =

N∏

i=1
∫bi

�ini
1fbi(bi|Σ)dbi,

(3)

� = [�, � , �,Qm,P,�,Σ]

= [�, �] × [�] × [Qm] × [P] × [�] × [Σ]

= 1 ×

M∏

m=1

Jm∏

j=1

IG(a, b) ×

M∏

m=1

C∏

k=1

Dir(1Cm) ×

C∏

k=1

Dir(1C) × Dir(1C)

× IW

(
M∑

m=1

Jm + 1, I

)
,
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5  Revisit of the FMOD Trial Data

We re-analyze the FMOD trial data with the proposed perception-augmented HMM 
framework. Its emission component is specified as in (1) with N = 390 , ni ≡ n = 5 , 
M = 2 , and Jm ≡ J = 2 . We adjusted for age at baseline and gender of youth in the 
emission model so that Xit = ( agei, genderi) . About 49% of youth in the study 
cohort are male and the average age at baseline is about 12.5 years. The study treat-
ment ( s = 1, 2 for usual care and intervention, respectively) was used in modeling 
transition probabilities so that arm-specific transition matrices are estimated.

5.1  Number of Latent Parent–Child Relationship States

As with any HMM, a key model selection component in the proposed pHMM is the 
number of latent parent–child relationship states. While pHMM accommodates var-
ying numbers of latent states between family, parent, and child, we consider the case 
where a common number is assumed. We use the widely applicable information cri-
terion (WAIC Watanabe [35]). A noted feature of WAIC and related information 
criteria is that they generally decreases as the number of latent states increases [20]. 
We observed similar phenomenon in our simulation (see Sect. 6.2 and Table C.1). 
As a result, we balance WAIC and model parsimony to select the number of latent 
states. For the FMOD trial data, WAIC values of pHMM with 2, 3, and 4 common 
latent parent–child relationship states are 14,963.8, 13,577.2, and 12,926.8, respec-
tively. Although the model with four states has the lowest WAIC value, the reduc-
tion is the biggest from 2 to 3 states. Moreover, two out of the four states are fea-
tured as the “Discordant” class in Table 1. Combining this observation with results 
in LCM and standard MHMM analyses, and for ease of interpretation, we decide to 
base on the model with three common latent states (hereafter the 3-state pHMM) 
to report our primary results. A sensitivity analysis (see Table B.1) allowing differ-
ent numbers of latent states between family, parent, and child corroborate the above 
findings that the 3-state model has the largest improvement compared to those with 
fewer states and smaller improvement compared with those with more states.

5.2  Model Parameter Estimates

Basing on the 3-state pHMM, we report estimated emission model parameters in 
Table  2, initial and transition probabilities in Table  3, and perception matrices in 
Table 4, respectively. We first note that, according to emission model parameter esti-
mates, the three latent states identified by the 3-state pHMM have the same charac-
teristics as those in Table 1, suggesting that the same three classes of relationship 
can be used here. From Table 3, we see that, at baseline, about half of families are 
in Discordant class, and 44% and 6% in Harmonious and Indifferent classes, respec-
tively. While families in the Indifferent class show little difference in transition 
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probabilities between intervention and usual-care arms [(0.01, 0.01, 0.98) versus 
(0.02, 0.02, 0.96)], families in the other two classes show discernible differential 
transition behavior. More specifically, intervention families are more likely to move 
out of the Discordant class (0.52, 95% CI 0.34–0.71) than usual-care families (0.42, 
0.25–0.59), although not statistically significant. These families mostly move into 
the Harmonious class, slightly more so for those in intervention than in usual-care. 
Moreover, families are more likely to stay in the Harmonious class when in the 
intervention arm (0.65, 0.51–0.75) than in the usual-care arm (0.47, 0.30–0.61), and 
less likely to stay in the Indifferent class when in intervention (0.96, 0.89–0.99) than 
in usual-care (0.98, 0.93–1.00). These findings are further tested by comparing the 
average transition probabilities and stationary probabilities between the intervention 
arm and the usual-care arm as shown in Fig. 2. From Fig. 2, we see some of the 
trends are statistically significant. For example, intervention arm has a significantly 
higher probability to transit into harmonious state in the end.

Turning to perception probabilities in Table 4, we first note that child tends to have 
a more diverging view toward family-level parent–child relation than parent—this is 
reflected in the smaller diagonal entries in the perception matrix of children than that of 
parents. For example, while a Discordant parent–child relationship is perceived by child 
to be discordant only 52% of the time, it is perceived so by parent 75% of the time. Fig-
ure 3 displays 95% posterior interval for average differences between parent’s and child’s 
perception matrices. It shows higher diagonal entries (Discordant–Discordant, Harmo-
nious–Harmonious, Indifferent–Indifferent) of parent perception matrix, indicating that 
parents are more likely to perceive the parent–child relationship as it is than children.

We note that the 3-state pHMM (WAIC = 13,577.2) fits the FMOD trial data bet-
ter than the Family model with three states in Sect. 2 (WAIC = 14,528.2), and also 
better than an extended pHMM where treatment-specific perception matrices are 
allowed (WAIC = 16,862.2). The latter result suggests that perception probabilities 
of child and parent are not associated with study arms.

5.3  Model Goodness of Fit and Diagnostics

Although the 3-state pHMM is chosen as the best model, it is important to investigate 
whether it fits the data well. In this section, we check the goodness of fit of the proposed 
method using posterior predictive checks [38]. The idea is to examine whether observed 
statistics are close to their predicted counterparts from the model. If the model is a good 
fit of the data, the observed statistics should not be in extreme quantiles of the predic-
tive distributions. As we assumed that the four outcomes are normally distributed (after 
logarithmic transformation in PCC), we conduct these goodness of fit checks using their 
means and variances. This gives rise to eight observed statistics (four means and four 
variances). To obtain the posterior predictive distributions, we utilize the MCMC samples 
of the model parameters and simulated 1000 sets of outcomes. We then construct the pos-
terior distributions of the eight statistics and compare the observed values of the statistics 
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with their corresponding simulated distributions (Table  5). We find that the observed 
means and variances are not located in the extreme tails of the respective distributions, 
with their placements (quantiles) ranging from 8 to 53%. These suggest that there is no 
evidence of lack-of-fit issue when applying the 3-state pHMM to the FMOD trial data. 
The QQ-plots of pseudo-residuals [39] in Fig. B.1 in Supplementary Material also show 
adequate predictive performance.

5.4  Computational Considerations

In the primary analysis of FMOD trial data using the 3-state pHMM, we used the fol-
lowing prior specifications:
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Fig. 2  95% posterior credible intervals of the average transition probability differences and average 
stationary probability differences between intervention and usual-care arms over all families from the 
3-state pHMM

Table 2  Posterior means and 95% credible intervals of fixed effects in the 3-state pHMM for the FMOD 
trial data

CDFR and PDFR are child- and parent-reported parent task involvement scores while CPCC and PPCC 
are child- and parent-reported parent–child conflict scores (CPCC and PPCC are on log scale)

Outcome Parent–child relation class

Discordant Harmonious Indifferent

CDFR 33.90 (32.75, 35.01) 34.29 (33.51, 35.09) 30.63 (29.83, 31.47)
CPCC  3.33 (3.26,  3.40)  3.19 (3.14,  3.23)  3.09 (3.04,  3.14)
PDFR 38.87 (37.84, 39.87) 36.93 (36.03, 37.74) 33.75 (32.88, 34.59)
PPCC  3.32 (3.26,  3.39)  3.22 (3.18,  3.26)  3.23 (3.19,  3.26)
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Table 3  Posterior means and 95% credible intervals of initial and transition probabilities from the 3-state 
pHMM applied to the FMOD trial data

Initial

probability
Transition probability

Usual-care Intervention

Discordant Harmoni-
ous

Indifferent Discordant Harmoni-
ous

Indifferent

Discordant 0.50

(0.27, 0.74)

0.58

(0.41, 0.75)

0.37

(0.18, 0.53)

0.05

(0.00, 0.17)

0.48

(0.29, 0.66)

0.47

(0.28, 0.67)

0.05

(0.00, 0.15)

Harmoni-
ous

0.44

(0.19, 0.67)

0.03

(0.00, 0.09)

0.47

(0.30, 0.61)

0.50

(0.37, 0.66)

0.03

(0.00, 0.09)

0.65

(0.51, 0.75)

0.32

(0.23, 0.44)

Indifferent 0.07

(0.01, 0.13)

0.01

(0.00, 0.03)

0.01

(0.00, 0.05)

0.98

(0.93, 1.00)

0.02

(0.00, 0.07)

0.02

(0.00, 0.08)

0.96

(0.89, 0.99)

Table 4  Posterior means and 95% credible intervals of perception probabilities from the 3-state pHMM 
applied to the FMOD trial data

Family Child Parent

Discordant Harmonious Indifferent Discordant Harmonious Indifferent

Discordant 0.52

(0.38, 0.69)

0.44

(0.27, 0.58)

0.04

(0.00, 0.13)

0.75

(0.49, 0.97)

0.23

(0.01, 0.49)

0.02

(0.00, 0.07)

Harmonious 0.06

(0.00, 0.18)

0.75

(0.61, 0.91)

0.19

(0.06, 0.32)

0.02

(0.00, 0.07)

0.94

(0.83, 0.99)

0.04

(0.00, 0.13)

Indifferent 0.02

(0.00, 0.06)

0.26

(0.17, 0.35)

0.72

(0.63, 0.81)

0.01

(0.00, 0.04)

0.02

(0.00, 0.07)

0.96

(0.91, 0.99)
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Fig. 3  95% posterior credible intervals of the perception probability differences between the parent and 
the child from the 3-state pHMM
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where Cm = C = 3 , M = 2 , and Jm = 2 . Moreover, we assume that regression coef-
ficient vectors � and � take non-informative priors. In our MCMC implementation, 
we first ran 4000 iterations with 3000 as burn-in and used the mean of converged 
value as the initial values for the second round. In the second round, we ran 40,000 
iterations with 30,000 as burn-in. Trace plots and diagnostic tools were used to 
ensure convergence of the algorithm. Trace plots of selected model parameters are 
presented in Fig. B.2. We noticed no label switching in the analysis of FMOD trial 
data.

6  Simulation Studies

To evaluate the performance of the proposed model, we conduct three simula-
tion studies under different scenarios. Section  6.1 introduces simulation setup, 
Sect. 6.2 assesses model selection performance of WAIC, Section 6.3 evaluates 
parameter estimations, and Sect. 6.4 examines latent class estimation.

� ∼ Dir(1C),

P
si
k
∼ Dir(1C), k = 1,… ,C

Σ ∼ IW

(
M∑

m=1

Jm + 1, I

)
,

Q
si
m,k

∼ Dir(1Cm), k = 1,… ,C,

�
2,m

lk
∼ IG(0.001, 0.0002), k = 1,… ,Cm, l = 1, 2,

Table 5  Summaries of the posterior predictive checks of means and variances of the four outcomes 
based on the 3-state pHMM against the FMOD trial data

CDFR and PDFR are child- and parent-reported parent task involvement scores while CPCC and PPCC 
are child- and parent-reported parent–child conflict scores (CPCC and PPCC are on log scale)

Statistic Quantile

2.5% 25% 50% 75% 97.5% Observed (percentile)

Mean
 CDFR 32.53 32.90 33.09 33.29 33.66 33.05 (0.44)
 CPCC 3.18 3.20 3.21 3.22 3.23 3.21 (0.44)
 PDFR 35.00 35.37 35.56 35.75 36.11 35.51 (0.43)
 PPCC 3.22 3.23 3.24 3.25 3.27 3.24 (0.48)

Variance
 CDFR 18.93 20.61 21.66 22.80 25.22 21.21 (0.39)
 CPCC 0.05 0.06 0.06 0.06 0.07 0.05 (0.08)
 PDFR 18.29 20.05 21.07 22.18 24.47 21.19 (0.53)
 PPCC 0.04 0.05 0.05 0.05 0.06 0.05 (0.18)
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6.1  Simulation Setup

Since we are comparing pHMM to both MHMM and an extended pHMM where 
treatment-specific perception matrices are allowed (hereafter pHMMe), we cre-
ate three scenarios by using each of them as the true model to generate data, and 
then fit all three models under each scenario. To mimic the real data application, 
we set the true parameters at the estimated values obtained in Sects. 2 and 5 and 
assume that the true number of hidden states is 3 for all three scenarios. As in 
FMOD trial, 390 families are included in each dataset, with each family followed 
up five times.

The steps of generating the simulation data are as follows. First, we generate 
the hidden states of the family as a Markov chain and the random effects following 
multivariate normal distribution independently. Second, when MHMM is the true 
model, we generate the observed process under MHMM framework. When pHMM 
is the true model, we generate the hidden states of the members with the member- 
and/or treatment arm-specific perception matrices. Third, with the members’ hidden 
states, we generated the observed process. For each scenario, we constructed 1000 
random replications and fit MHMM, pHMM, and pHMMe to each.

6.2  On Model Selection Using WAIC

To evaluate the performance of WAIC in selecting number of latent states, we fit 
2-, 3-, 4-, and 5-state pHMMs to the data generated by the 3-state pHMM. Table 
C.1 contains results based on 1000 simulation runs. We see that WAIC prefers more 
complicated model than simpler ones. There is a drop of about 1600 units in WAIC 
from the 2-state model to the 3-state model. However, the reduction in WAIC from 
3- to 4-state models is much smaller (at around 500).

6.3  On Parameter Estimation

In this part, we will focus on assessing performances of the three models in estimat-
ing initial probabilities, transition probabilities and perception matrices under each 
scenario by evaluating bias and coverage probability of 95% credible interval based 
on 1000 random simulations.

6.3.1  Scenario 1: MHMM as True Model

When data are generated from an MHMM, both pHMM and pHMMe perform well 
in estimating the initial probabilities and the transition matrices (Table C.2). The 
posterior means are all close to the true values with reasonably small variations. The 
95% credible intervals contain the true values at close to the nominal level.

The true perception matrix under this scenario is the identity matrix. As a fitting 
model, MHMM does not estimate perception matrices directly. However, we can 
approximate the perception matrices by estimating the hidden states of the trios of 
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family, parent, and child separately and cross-tabulating them. There are two ways 
to arrive at these hidden state estimates. One approach is to estimate them indepen-
dently for parent, child and the whole family using the corresponding data. We call 
this approach “unconstrained” hereafter. The other approach is to estimate the mem-
bers’ states while fixing the emission probability model parameters at those obtained 
from the Family model. We call this approach “constrained” hereafter. Table C.3 
reports estimated perception matrices. Since the approximations under MHMM are 
ad hoc, no posterior standard deviations are provided. Instead, we report the sample 
standard deviation of the posterior means over all simulation runs to reflect the vari-
ability of the estimation. The coverage probability is not applicable here either, as 
the true perception matrices have values that are at boundaries of unit interval. We 
observe that, under MHMM, the estimated perception matrices for parent are differ-
ent from the identity matrix under both constrained and unconstrained approaches. 
However, both pHMM and pHMMe have unbiased estimates of the perception 
matrices. In particular, when assuming two sets of perception matrices for the two 
study arms under pHMMe, both sets of perception matrices are close to each other 
and to the identity matrix.

6.3.2  Scenario 2: pHMM as True Model

When generating data with pHMM, we assume different perception matrices for 
child and parent and set the true values at the estimated perception matrices in 
Sect. 5. In this case, child tends to perceive hidden State 1 as State 2 more likely 
than parent. From the estimation results of initial probabilities and transition matri-
ces in Table C.4, we see that while pHMM and pHMMe both produce unbiased 
and reasonably precise estimates, MHMM results in very biased estimates of initial 
probabilities. While the true values are 0.76 and 0.18 for States 1 and 2, respec-
tively, the corresponding estimates from MHMM are 0.13 and 0.78. Estimates of 
some transition probabilities are also biased. For example the probability transiting 
from State 2 to 1 for the usual-care arm has a 95% CI (0.066, 0.213) which does 
not contain the true value of 0.029. The perception matrices were estimated well 
by both pHMM and pHMMe (Table C.5). As expected, pHMMe returned similar 
perception matrices for both study arms. Under MHMM, however, both approaches 
to approximate perception matrices performed poorly, with the estimated perception 
matrices similar to each other but very different from the truth. This poor perfor-
mance again confirms that MHMM is not capable of addressing differential percep-
tions adequately.

6.3.3  Scenario 3: pHMMe as True Model

In this scenario, we assume that both the child and parent perception matrices are 
study arm specific, so that the intervention plays a role in changing both transi-
tion and perception patterns. Generally, the simulation results are similar to Sce-
nario 2. For initial probability and transition matrices (Table C.6), both pHMM and 
pHMMe return unbiased estimates. On the other hand, MHMM return biased initial 
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probabilities and probabilities transiting between the first two states. For perception 
matrices (Table C.7), pHMM returns estimates approximately as the average of the 
two true perception matrices for the two study arms. The estimates from MHMM 
are either far from the true value or have too much variation, especially with the 
unconstrained approach.

6.4  On Latent State Estimation

Performance in calling latent states is another very important assessment of inter-
est. We evaluate pHMM and pHMMe of this aspect through several popular clas-
sification criteria [40] under the three scenarios. For comparison, we also evaluated 
MHMM using the same set of criteria. Let tpz , tnz , fpz and fnz stand for true posi-
tive, true negative, false positive and false negative respectively for the zth class, 
z = 1,… ,C , respectively. The set of criteria we used are as follows:

• Accuracy: 
∑C

z=1

tpz+tnz

tpz+tnz+fpz+fnz
∕C , which is the average per-class effectiveness of a 

classifier;
• Error Rate: 

∑C

z=1

fpz+fnz

tpz+tnz+fpz+fnz
∕C , which is the average per-class classification 

error;
• Micro-precision (Precisionm ): 

∑C

z=1
tpz∕

∑C

z=1
(tpz + fpz) , which indicates the 

agreement of the true class with the estimated class. This micro version of preci-
sion is equal to micro-recall and micro F-score;

• Precision: 
∑C

z=1

tpz

tpz+fpz
∕C , which is an average per-class agreement of the true 

class with the estimated labels;
• Recall: 

∑C

z=1

tpz

tpz+fnz
∕C , which is an average per-class effectiveness to identify 

each class;
• F-score: {Precision × Recall}∕{Precision + Recall} , which indicates the relation 

between the true positive labels and the estimated positive labels bases on a per-
class average.

From Table C.8, we see that the true model generally has the best performance 
in identifying latent states. In the first scenario, where data are generated from 
MHMM, MHMM has the best performance in calling states with respect to all met-
rics. At the same time, we observe that the performance of pHMM and pHMMe are 
reasonable, too. In the second scenario, pHMM has the best performance in calling 
latent state of family as well as of child’s and parent’s perceptions. While pHMMe 
has relatively good performance in comparison, MHMM performs much worse in 
identifying the correct latent states. When pHMMe is the true model, we observe 
good results from both pHMM and pHMMe. Still, MHMM returns poor latent state 
calling performance.
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7  Conclusions

Optimal glycemic control in youth with T1D requires effective parent–child team-
work. Thus, the mechanism for a behavioral intervention to reduce deterioration in 
glycemic control may be through its effect on improved parent–child relationship. 
We have proposed a novel modeling framework that allows us to test whether the 
intervention improves parent–child relationship while at the same time accommo-
dating heterogeneity in perceptions that the parent and the child have toward the 
underlying family relation. This framework extends standard HMM by adding a 
perception layer and enjoys many nice features of HMM in structured and efficient 
estimation algorithm. Based on this, it is of interest to develop mediation analysis 
tools in the future to test the intervention’s effect on glycemic control through par-
ent–child relationship.

The substantive findings from the FMOD trial data are interesting. Families in the 
intervention arm were more likely to stay in the Harmonious parent–child relation 
state and less likely to move from Harmonious to Indifferent. Intervention families 
were also less likely to stay in Discordant and more likely to move from Discordant 
to Harmonious state. Although there was no evidence of different perceptions in dif-
ferent treatment arms, they varied between children and parents. In general, parents 
were more likely to perceive the parent–child relationship as it is than were children.

Given the large number of parameters in the model, the moderate sample size of 
the FMOD trial data can potentially limit the statistical power of the study. A study 
with more families could mitigate this problem while also serving to validate the 
findings. For simplicity, we made several assumptions, including time-homogene-
ous, first-order hidden Markov process, conditionally independent perception pro-
cesses, and adjusted covariates only in emission models. These assumptions pose 
several limitations which can be addressed in future works. First, Scott et al. [36] 
have proposed an in-homogeneous but common hidden process, which allows differ-
ent transition matrices from the same distribution at different observational period. 
We believe it could be adapted to the model proposed here. Second, in FMOD study, 
we collected data from the same two types of measurements from both parent and 
child, which are correlated in nature. We accounted for these correlations in ran-
dom effects only. Some alternative ways are worthwhile investigating in the future 
work, including dependent perception processes. Last, the proposed model adjusted 
for covariates only in the emission probability model. Future work could explore dif-
ferent strategies to accommodate covariates in transition and/or perception matrices.

Due to its singularity, determining the number of hidden states is always a dif-
ficult task for HMM. There are only a few techniques that we can use for model 
selection. We applied WAIC for the real application and tested its performance in 
simulation studies. It generally prefers higher number of hidden states. The explana-
tion of this phenomenon and best practices of using it merit separate investigations 
in future works.
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