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Abstract
The multivariate probit is popular for modeling correlated binary data, with an 
attractive balance of flexibility and simplicity. However, considerable challenges 
remain in computation and in devising a clear statistical framework. Interest in 
the multivariate probit has increased in recent years. Current applications include 
genomics and precision medicine, where simultaneous modeling of multiple traits 
may be of interest, and computational efficiency is an important consideration. We 
propose a fast method for multivariate probit estimation via a two-stage compos-
ite likelihood. We explore computational and statistical efficiency, and note that the 
approach sets the stage for extensions beyond the purely binary setting.

Keywords Composite · Likelihood · Multivariate · Probit · Two-stage · Two-step

1 Introduction

The modeling of binary data has a long history in biostatistics and biological sci-
ences, with applications in areas as diverse as epidemiology [1] and expression 
quantitative trait analysis [2]. Despite the simplicity in outcomes, modeling binary 
data are not computationally trivial, often involving latent structures. Thus, the 
development of fast and effective modeling is of considerable importance.

The multivariate probit is a standard model for modeling correlated binary 
data, with advantages due to its flexibility in handling correlation structures and 
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interpretability of parameters [3]. The approach is conceptually simple, in the sense 
that the underlying multivariate latent normal requires specification of only means 
and covariances. However, for likelihood parameter estimation, the integrals for 
calculating the likelihood from the multivariate cumulative normal distribution are 
computationally intensive [3, 4], e.g., as detailed in documentation for software such 
as the R package mvProbit [5].

We consider the standard multivariate probit, where binary components of the 
multivariate response Y are modeled as the binarized result of a latent multivariate 
distribution. For identifiability, we assume unit marginal latent variances, i.e., the 
covariance matrix is a correlation matrix. With K binary response components, this 
implies 

(

K

2

)

 correlation values. We consider the N by P design matrix X as shared 
across components, as well as the P × K coefficient matrix B , where N, P, and K 
are the number of observations, predictors, and components, respectively. The role 
of X is to serve as a predictor matrix in a regression framework for the latent out-
come. For the multivariate probit, the role of the coefficients (in conjunction with 
the design matrix) can be viewed as specifying the mean for the latent multivariate 
normal probability, with the region of integration being (−∞, 0] or (0,∞) for a given 
component depending on whether the response is 0 or 1. Commonly, as we will do 
here, the mean is fixed at 0 and instead the coefficients help determine the bounda-
ries of integration—a numerically equivalent representation.

Thus, for multivariate binary response Y with K components the full likelihood 
for observation i is:

where

i corresponds to a given observation, and k a given component of Y . The i, jth term 
in � represents the latent correlation between the ith and jth components of the 
response. The latent multivariate normal variable is assumed to have a mean vector 
of 0, with the constants of integration determined by whether observed values of the 
multivariate binary response are 0 or 1.

We do not apply constraints to the correlations, and issues of positive definite-
ness are addressed below. With PK coefficient parameters and K(K − 1)∕2 correla-
tion parameters, the number of parameters grows quickly with increasing number of 
components.

Moffa and Kuipers [4] proposed a sequential expectation-maximization Monte 
Carlo method to estimate parameters in the multivariate probit. The approach builds 
on [3] and utilizes the truncated multivariate T distribution, with heavier tails than 
the normal. However, the approach can be computationally intensive, with variabil-
ity in results due to the stochastic sampling.

Lfull(�;yi) = ∫Ai1

…∫AiK

�(zi, 0,�)dzi

{

Aik = (−∞, xi�k] yik = 1

Aik = (xi�k,∞) yik = 0
,

� = {B,�}
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Mullahy [6] proposed that multivariate probit estimation be performed via 
“chained” bivariate probits. Each element in the correlation matrix is estimated pair-
wise for components in the response, and coefficient estimates are obtained by aver-
aging over coefficient estimates obtained from the bivariate pairings. The approach 
is computationally attractive, but statistical efficiency and other properties remain 
unclear. The chained bivariate probit approach is implemented in Mata’s bvp-
mvp(), as a faster alternative to Stata’s mvprobit [6]. Stata’s mvprobit [7] and 
R’s mvProbit both use the GHK (Geweke, Hajivassiliou and Keane) approach 
to simulate multivariate normal probabilities, and both can be computationally 
inefficient.

Fieuws and Verbeke [8] proposed taking a pairwise approach for estimat-
ing multivariate mixed models, given the computational challenges that can result 
when the number of components and/or the number of random effects is high. In 
this approach, (K)(K−1)

2
 likelihoods are maximized separately instead of the full like-

lihood, where K is the number of components. In each of these likelihoods, only 
parameters associated with each pair of components are estimated. A given param-
eter can appear more than once across these likelihoods, in which case the average 
is taken over these estimates. The authors performed a simulation study using 1,000 
replications of a trivariate mixed model with linear responses. They reported that the 
pairwise approach showed little bias in the estimates of the fixed effects, and showed 
little loss of efficiency for most of the parameters overall relative to the full trivariate 
approach. Fieuws et al. [9] applied this pairwise approach to a logistic model with 
random intercepts. Interestingly, the chained bivariate probit approach for the mul-
tivariate probit from [6] can be viewed as a special case of this pairwise approach.

Feddag [10] suggested using a composite pairwise likelihood approach in the 
context of estimating multivariate probit longitudinal models. In this formulation, an 
unconstrained covariance matrix is used (instead of correlation), and identifiability 
is assured by including a mean term and constraining coefficients to sum up to 0 
across components. Simulations were performed with response variables of 3, 5, and 
8 components with 50, 100, and 300 observations. Feddag [10] noted empirically 
that the general pairwise likelihood results retained nearly full statistical efficiency 
compared to using the full likelihood, but was much faster computationally. The 
standard deviations of coefficient estimates across simulations were similar between 
the full likelihood and their composite likelihood. For an example with 3 compo-
nents and 300 observations, maximizing the pairwise likelihood took 0.16 minutes 
for a desktop computer to converge, whereas the full likelihood took 27.3 minutes.

Jin [11] also found good performance of a composite pairwise likelihood for 
binary data using a different model. Pairwise likelihood also performed well in 
terms of both efficiency and computation time. In a larger exploration of a multivari-
ate normal model [12], included a similar two-stage composite likelihood for multi-
variate probit in simulations, where the first stage consisted of univariate marginals, 
and in the second stage bivariate marginals. However, they were chiefly concerned 
with analysis of data in familial units. Thus, their simulations were performed using 
models in which there were two mutual coefficients {�0, �1} across components (that 
is, coefficients across components were constrained to equality) and where cor-
relation parameters across components were either one �1 or �2 , corresponding to 
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parent-offspring or sibling-sibling correlations. Each of their simulations used 2,000 
families. The authors noted that the two-stage composite likelihood is faster to com-
pute than the pairwise composite likelihood, and both are more computationally effi-
cient than full maximum likelihood.

Ghosh [13] introduced a bivariate logistic model that includes an intermediate 
latent probit step. The approach, originally designed to handle bias in outcome-
dependent sampling situation, has considerable flexibility in handling nuisance 
covariates. However, it is not easily extensible beyond K = 2.

To address issues of computational efficiency while retaining a balance of sim-
plicity and flexibility, we introduce a novel two-stage composite likelihood approach 
for multivariate probit estimation. This approach is designed to be fast, and thus 
amenable to situations where many potential predictors are screened, such as with 
genome-wide association studies. Coefficient standard errors are obtained using a 
sandwich estimator appropriate for a composite likelihood. In contrast to [12], we 
focus upon multivariate probit models with unconstrained parameters, and show that 
our model can achieve impressive gains in computation time while largely maintain-
ing statistical efficiency.

2  Methods

2.1  Two‑stage Estimation

Two-stage, or “two-step,” likelihood estimation [14] can be an option for analyti-
cally or computationally difficult likelihood and/or log-likelihood functions. In two-
stage estimation, the original model is essentially split into two models, with the first 
embedded in the second. The first stage estimates parameters associated with the 
first likelihood, and the second stage the second likelihood. Following [14], suppose 
we start with a full log-likelihood and n independent observations:

The parameter vector �1 is associated via likelihood f1 with data x1, y1 , and in the 
first stage, the parameters in �1 are estimated by maximizing:

In the second stage, the estimates of �1 from the first stage can be used as fixed 
inputs to maximize the conditional likelihood via f2:

lnL(�1,�2) =

n
∑

i=1

ln f (y1i, y2i ∣ x1i, x2i,�1,�2).

lnL(�1) =

n
∑

i=1

ln f1(y1i ∣ x1i,�1).

lnL
(

𝜽2 ∣ �̂�15

)

=

n
∑

i=1

ln f2

(

y2i ∣ x2i,𝜽2,
(

x1i, �̂�1

))

,
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where y2i is a subset of responses from the i’th observation of response y , and y1i is 
another subset. x1i and x2i are their counterparts in the design matrix. �1 and �2 par-
tition the full parameter vector � . Either or both stages can be considered misspeci-
fied likelihoods, and for certain problems, maximizing the conditional likelihood is 
equivalent to maximizing the full likelihood. Since this is not always true in general, 
the suitability of two-stage estimation for a particular model and dataset would war-
rant further consideration. At the very least, the asymptotic covariance matrix of the 
second stage parameters would need to account for the first stage parameter esti-
mates being treated as fixed in second stage estimation [14–16], as we do here.

2.2  Composite Likelihood

A composite likelihood is formed by the product of so-called “associated" or “sub"-
likelihoods that are individually proper likelihoods. Like two-stage estimation, compos-
ite likelihoods are a popular alternative when maximizing the full likelihood is compu-
tationally difficult.

Lindsay et al. [17] provide an overview of theoretical properties and construction 
strategies. For proper sub-likelihoods, the composite likelihood is generally consist-
ent, but may suffer a loss in efficiency compared to the full likelihood [17]. Suppose 
there are A associated likelihoods (each of which in general involves all observa-
tions). Following [18], we write the composite likelihood:

where � is the parameter vector and wa denotes a non-negative weight for the a’th 
associated likelihood. This weight parameter is fixed in advance, and is often 1 for 
all sub-likelihoods (in which case the parameter can be ignored). A higher weight 
affords greater import to a given associated likelihood, vice versa for lower weights.

The simplest composite likelihood is the unweighted independence likelihood, 
where each associated likelihood k corresponds to the k’th component:

If dependence parameters are involved, a natural extension is the unweighted pair-
wise likelihood:

As discussed by [18], choice of weight parameters can depend upon the problem at 
hand. One example is clustered multivariate normal data. For pairwise likelihood, 
[19] recommended a weighting scheme of 1∕((mi − 1)(1 + 0.5(mi − 1))) , observa-
tions being yir, r = 1,…mi , where observations within the i’th cluster are correlated. 
This is a compromise between the 1∕(mi − 1) recommended by [12, 20, 21], which 

Lcomp(�;y) =

A
∏

a=1

f (y;�)wa ,

Lind(�;y) =

K
∏

k=1

f (yk;�).

Lpair(�;y) =

K−1
∏

i=1

K
∏

j=i+1

f (yi, yj;�).
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is suitable for low dependencies-and weights of 1∕(mi(mi − 1)) , which is better for 
stronger dependencies. Another example is longitudinal data, where commonly pro-
posed are weighting schemes that downweight pairs farther apart in time [18]. In 
fact, [19] found that using only adjacent pairs for the pairwise likelihood to be pref-
erable over using all pairs.

Varin et al. [18] provide a review of composite likelihood methods and remarked 
upon their practical high statistical efficiency. However, the efficiency and asymptotic 
properties can depend importantly on specific of the full likelihood and the composite 
set-up, e.g., marginal versus conditional likelihoods and the complexity of the sub-like-
lihoods [18, 22].

2.3  Two‑stage Composite Likelihood

We estimate parameters for the multivariate probit likelihood using a composite likeli-
hood, and divide the composite likelihood estimation process into two stages. For both 
stages, we use an implied weight parameter of 1 for all associated likelihoods-in the 
interest of simplicity-as is often done [18].

In the first stage, we obtain coefficient estimates from a composite likelihood con-
sisting of univariate marginals. Each associated likelihood involves one component 
from the response, which for our setting is the univariate probit:

As no parameters are shared across sub-likelihoods here, for estimation we can 
write:

Since these associated likelihoods can be estimated independently, this simplifies 
the computational process. For example, R’s glm() can provide coefficient esti-
mates for each of the components.

In the second stage, we estimate the correlation parameters, using as inputs the coef-
ficient estimates from the first stage. This plug-in approach can be justified from the 
fact that the first stage did not include the correlations, as well as consistency arguments 
that apply to each of the sub-likelihoods. Here each associated likelihood involves a 
pair of components, each a bivariate probit:

lnLuni(B;yi, xi) =

K
∑

k=1

ln f (yik, xi;�k).

maxB

N
∑

i=1

ln Luni(B;yi, xi) = maxB

N
∑

i=1

K
∑

k=1

ln f (yik, xi;�k)

= max�1

N
∑

i=1

ln f (yi1, xi;�1) +⋯ + max�K

N
∑

i=1

ln f (yiK , xi;�k).

lnLpair(�;yi, xi, B̂) =

K−1
∑

j=1

K
∑

k=j+1

ln f (yij, yik, xi;�jk, 𝜷j, 𝜷k).
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Again, no parameters are shared across associated likelihoods, so we approach max-
imization component-wise:

The primary gain in computational efficiency arises from this component-wise esti-
mation, which we can implement using simple maximization routines such as R’s 
optim(). Functions such as pbivnorm() [23] can provide fast bivariate probit 
probability calculations.

In contrast to models where parameters are constrained, such as the familial mod-
els explored by [12], here maximization can proceed independently. If the overall 
estimated K by K correlation matrix turns out not to be positive semidefinite, routines 
such as R’s nearPD() [24] can find the nearest positive definite correlation matrix 
as a post-processing step after estimation. However, for most real-world applications, 
especially the applications we have in mind-where sample sizes are large relative to the 
number of components and predictors-such a step is unlikely to be needed. For exam-
ple, a genomics dataset that we use below for simulations has 728 observations.

Maximization via the two-stage modeling procedure can conceivably produce a non-
positive definite correlation matrix estimate, which is somewhat analogous to difficul-
ties in variance estimation for variance component models [25]. We first note that, pro-
vided the correlation matrix is strictly positive definite (the case of interest), the large 
n consistency of composite likelihood ensures that the composite maximum likelihood 
estimate will be positive definite, with probability approaching one. This result follows 
from a continuous mapping theorem argument. In practice, all of our simulations and 
real data examples resulted in positive definite correlation estimates, except for a small 
proportion (4–8 components) of simulations for small sample sizes of 100. In these rare 
instances, we apply the method based on nearest Frobenius norm [26].

Composite likelihoods can be considered misspecified likelihoods, as the sub-like-
lihoods do not fully reflect data dependencies. [14] describes a robust variance esti-
mator to account for both misspecification and the two-stage nature of the estimation 
process—essentially a “sandwich” version of the Murphy–Topel variance estimator 
[16] for two-stage models. Following [14], let VS(�1

) denote the robust variance esti-
mator for �̂1 estimated in the first stage, and VS(�2

) for �̂2 in the second stage, with 
CovS(�1

,�
2
) the covariance between them. We have

where V
1
 is the non-robust (naive) likelihood-based asymptotic variance estimator 

for the stage one parameters �
1
 based upon the stage one log-likelihood lnL1(�1

) 

max
𝚺

∑N

i=1
ln Lpair(𝚺;yi, xi, B̂) = max

𝚺

∑N

i=1

∑K−1

j=1

∑K

k=j+1
ln f (yij, yik, xi;�jk, 𝜷j, 𝜷k)

=
�

max�1,2

∑N

i=1
ln f (yi1, yi2, xi;�1,2, ,𝜷1, 𝜷2) +⋯

+ max�K−1,K

∑N

i=1
ln f (yi(K−1), yiK , xi;�K−1,K , 𝜷K−1, 𝜷K)

�

.

VS(�1
) = V

1
V∗−1

1
V
1
= VS1

CovS(�1
,�

2
) = V

1
RTV

2
− VS1C

∗TV
2

VS(�2
) = V

2
V∗−1

2
V
2
+ V

2
(C∗VS1C

∗T − RV
1
C∗T − C∗V

1
RT)V

2

= VS2 + V
2
(C∗Vs1C

∗T − RV
1
C∗T − C∗V

1
RT)V

2
,
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(i.e., the expected value of the negative second derivatives), and V∗

1
 the expected 

value of the matrix of outer product of gradients. Similarly, V
2
 is the non-robust 

asymptotic variance estimator for the stage two parameters �
2
 based upon the stage 

two conditional log-likelihood lnL2(�2
∣ �

1
) , and V∗

2
 the expected value of the 

matrix of outer gradients. C∗ is the sub-matrix of the expected value of the nega-
tive second derivatives based on lnL2(�2

∣ �
1
) , the rows corresponding to �

2
 and the 

columns corresponding to �
1
 . R is the sub-matrix of the expected value of the nega-

tive second derivatives based on lnL2(�2
∣ �

1
) and lnL1(�1

) , the rows corresponding 
to �

2
 and the columns corresponding to �

1
 . Vs1 is the usual sandwich estimator for 

the stage one parameters, and Vs2 that of the second stage parameters (treating stage 
one parameters as fixed). Empirical plug-in estimates for the matrix elements are 
obtained by taking the mean across observations (using the final parameter estimates 
as inputs). Once estimated, these matrices can be used to calculate the robust Mur-
phy–Topel estimate of variance [16].

3  Examples

3.1  Six Cities

The Six Cities dataset has been a popular choice for comparing multivariate probit 
estimation methodologies. We performed our two-stage composite likelihood esti-
mation upon this dataset, and compared it to the results of [3, 4]. We were chiefly 
concerned with run-time and statistical efficiency, as judged by coefficient standard 
errors.

In the Six Cities data, wheezing status at ages 7, 8, 9, and 10 for 537 children 
were recorded as 0 or 1 to serve as the multivariate response, for four components 
with binary observations. Coefficients (shared across all components) included 
the intercept, age centered at 9, maternal smoking status (1 or 0), and an interac-
tion variable between maternal smoking status and age. These were represented 
by �0 , �1 , �2 and �3 , respectively. Note that the four components share coefficients, 
i.e., �

1
= �

2
= �

3
= �

4
= {�0, �1, �2, �3} . The covariance (correlation) matrix has 6 

off-diagonal entries, corresponding to correlations between wheezing status between 
various ages. Standard errors were calculated using the robust approach described 
in the previous section. 250 bootstrapped replications and estimates were also per-
formed for comparison.

Using our two-stage composite likelihood, the Six Cities coefficient and correla-
tion estimates are very similar to those previously published by [3, 4]. Parameter 
estimation took about 1

40
 of a second for our model on a Windows 2.70 GHz Intel 

i7-7500 laptop. The bootstrapped standard errors and empirical standard errors 
obtained from the original data are similar to each other, and also similar to those 
provided by [3, 4]. In summary, for these data the estimates do not reflect appar-
ent loss in statistical efficiency, and the correspondence with bootstrapped standard 
errors indicates appropriateness of the robust variance estimates (Table 1).

Interestingly, the two-stage composite likelihood produces estimates that achieved 
a higher log-likelihood when inputted into the full information likelihood than did 
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the log-likelihoods from [3] or [4]. However, as pointed out by [4], the stochastic 
nature of their processes (leading to noticeable variance across replications of log-
likelihood estimations upon the same dataset) may reduce the log-likelihood. They 
thus supply a correction calculation for the log-likelihood. The two-stage composite 
likelihood does not require such a correction. Furthermore, for the two-stage com-
posite likelihood, each replication and bootstrapped replication produced positive 
semidefinite estimates for the covariance matrix, so no post-processing steps were 
needed for positive definiteness.

3.2  MEPS

Started in 1996, The Medical Expenditure Panel Survey (MEPS) is a set of surveys 
containing data on how American families and individuals use health services [27]. 
The R package GJRM [28] provides a 2008 MEPS dataset with 18,592 observations 
of individual characteristics and their binary-coded disease statuses for diabetes, 
hyperlipidemia, and hypertension. The function gjrm() of GJRM can perform a 
variety of semi-parametric model estimations, including fully parametric univari-
ate, bivariate, and trivariate probit estimations using a general penalized maximum 
likelihood approach in conjunction with smoothing set-up via penalized regression 

Table 1  Comparison of Six Cities mean parameter estimates between [3, 4], and the Two-Stage Compos-
ite Likelihood

250 replications were done for the Two-Stage Composite Likelihood to calculate mean parameter esti-
mates and the mean log-likelihood value (its empirical standard error), and 250 bootstrapped replica-
tions for the bootstrapped standard errors. Empirical standard errors were calculated using the robust 
Murphy–Topel variance estimator. Parameter estimation took about 0.025 s for the Two-Stage Composite 
Likelihood

Six Cities Estimation Comparisons

Param. Chib and Greenberg Moffa and Kuipers Two-stage CL

(1998) (2014) (2019)

Est. SE Est. SE Est. BSE ESE

�
0

− 111.8 (6.5) − 112.3 (6.2) − 112.6 (6.5) (6.3)
�
1

− 7.9 (3.3) − 7.9 (3.1) − 7.7 (3.1) (3.1)
�
2

15.2 (10.2) 15.9 (10.1) 17.1 (10.6) (10.1)
�
3

3.9 (5.2) 3.8 (5.1) 3.7 (4.9) (4.9)
�
12

58.4 (6.8) 58.3 (6.6) 59.1 (6.5) (6.6)
�
13

52.1 (7.6) 52.2 (7.1) 53.1 (7.3) (7.2)
�
14

58.6 (9.5) 57.8 (7.4) 59.1 (7.5) (7.2)
�
23

68.8 (5.1) 68.6 (5.6) 69.2 (5.7) (5.6)
�
24

56.2 (7.7) 55.8 (7.4) 57.5 (7.5) (7.3)
�
34

63.1 (7.7) 62.7 (6.7) 64.1 (6.4) (6.6)
Est. Log-Lik − 794.94 (0.69) − 794.95 (0.82) − 794.76 (–) (0.00)
Corr. Log-Lik − 794.70 − 794.61 − 794.76
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splines [28]. Here, we use the MEPS dataset to compare gjrm() and the Two-
Stage Composite Likelihood in estimating a trivariate probit. The trivariate response 
is the three disease statuses, and individual characteristics serve as predictors: body 
mass index (BMI), age (in years), sex (1 for male, 0 for female), education (in years), 
income (log-transformed), race (coded as white, black, Native American, or other), 
and region (northeast, midwest, south, or west). 18,273 observations were retained 
after excluding those with incomes listed as zero.

The mean run-time for gjrm() on a Windows 2.70 GHz Intel i7-7500 laptop 
was about 32 s, whereas it was about 12 s for the Two-Stage Composite Likelihood. 
The coefficient estimates for the three components of Diabetes, Hyperlipidemia, and 
Hypertension are displayed below in Table 2. The correlation parameter estimates 
are included at the bottom. Like with the Six Cities example, no post-processing for 
positive definiteness was needed.

The parameter estimates were generally similar, and the bootstrapped standard 
errors for the two methods were nearly identical for both coefficients and correlation 
parameters. The reported standard errors from gjrm() and the empirical standard 
errors from the Two-Stage CL were generally close for coefficients. However, the 
reported standard errors from gjrm() were noticeably higher than the gjrm() 
bootstrapped standard errors, as well as both the empirical and bootstrapped stand-
ard errors from the Two-Stage CL (Table 2).

4  Simulations

4.1  Run‑time Comparisons with the Chained Bivariate Probit

Simulations were performed following the set-up described by [6]. That article 
found that the chained bivariate probit approach was much faster than a simulation-
based maximum likelihood approach. Following [6], the number of components 
considered was 4 and 8, the number of predictors considered was 5 and 9 (including 
intercepts), and the number of observations varied among 2000, 5000, and 10,000. 
We also included additional observation counts of 100 and 500. 500 simulations 
were ran for each of these 20 combinations for each approach.

For coefficients, the intercepts ranged step-wise from 0.7 to − 0.7 from the first 
component to the eighth, and the coefficients on the predictor of interest alternated 
between the values of 0.0 and 0.5. Other coefficient parameters were set to 0.0. 
When only four components were needed for a given combination of settings, the 
first four components were used. For our analysis, design matrices were constructed 
using an intercept and the first 3 or 7 principal component values from a genetic 
dataset consisting of ternary data obtained by subsampling a random set of genetic 
markers from HapMap data [29], with one arbitrarily chosen of the genetic markers 
(the first one) as the predictor of interest.

For each combination of number of observations, number of components, and 
number of predictors, a design matrix was sampled (with replacement) from the 
original 728 observations. The multivariate response was then simulated anew for 
each of the 500 simulations per combination. Run-time comparisons were made 
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Table 2  Comparison of estimates produced by gjrm() and the Two-Stage Composite Likelihood, dis-
played by component and coefficient, along with the correlation parameter estimates

MEPS Estimation Comparisons
Comp. Param. Gjrm() Two-stage CL

Est. SE BSE Est. ESE BSE

Diabetes Intercept − 375.4 20.6 21.6 − 360.9 21.0 22.0
BMI 5.3 0.2 0.2 5.1 0.2 0.3
Age 3.9 0.1 0.2 3.9 0.1 0.2
Sex 4.9 3.1 3.1 4.5 3.1 3.1
Education − 3.7 0.5 0.5 − 4.1 0.5 0.5
Income (10,000 s) − 5.5 1.8 1.7 − 5.9 1.9 1.7
Race (Black) 14.9 3.9 4.8 15.4 3.9 4.8
Race (Nat. Amer.) 44.6 12.5 12.8 43.5 12.8 12.8
Race (Other) 25.4 5.8 5.8 25.3 5.9 5.9
Region (Midwest) − 13.8 5.3 5.4 − 13.4 5.4 5.3
Region (South) − 3.1 4.5 4.4 − 3.0 4.6 4.4
Region (West) − 3.3 4.9 4.9 − 2.6 5.0 4.9

Hyperlipidemia Intercept − 400.3 15.3 14.6 − 400.4 15.3 14.7
BMI 3.4 0.2 0.2 3.5 0.2 0.2
Age 4.8 0.1 0.1 4.8 0.1 0.1
Sex 13.5 2.2 2.4 14 2.2 2.4
Education 0.9 0.4 0.4 0.8 0.4 0.4
Income (10,000s) 1.2 1.3 1.3 1.2 1.3 1.3
Race (Black) − 13.0 3.1 3.4 − 12.7 3.0 3.4
Race (Nat. Amer.) 13.1 11.0 10.7 13.2 11.3 10.7
Race (Other) 15.6 4.1 4.5 15.7 4.1 4.5
Region (Midwest) − 7.9 3.8 3.6 − 8.2 3.8 3.6
Region (South) 0.9 3.3 3.2 0.8 3.3 3.2
Region (West) − 7.3 3.6 3.8 − 7.3 3.6 3.8

Hypertension Intercept − 351.1 15.1 15.6 − 350 14.8 15.6
BMI 5.7 0.2 0.2 5.7 0.2 0.2
Age 4.8 0.1 0.1 4.8 0.1 0.1
Sex 11.7 2.3 2.3 12.1 2.3 2.3
Education − 0.6 0.4 0.4 − 0.7 0.4 0.4
Income (10,000s) − 8.5 1.3 1.2 − 8.5 1.3 1.2
Race (Black) 27.9 2.9 2.8 27.8 2.9 2.8
Race (Nat. Amer.) 25.9 10.8 11.1 26.3 10.5 11.2
Race (Other) 15.1 4.3 4.1 15.0 4.4 4.1
Region (Midwest) − 7.2 3.9 4.0 − 7.5 3.9 4.1
Region (South) 3.1 3.4 3.2 2.9 3.3 3.3
Region (West) − 9.2 3.7 3.5 − 9.3 3.7 3.5

Diabetes Hyperlipidemia 0.41 0.04 0.02 0.41 0.02 0.02
Diabetes Hypertension 0.35 0.03 0.02 0.35 0.02 0.02
Hyperlipidemia Hypertension 0.41 0.03 0.02 0.41 0.01 0.02

The standard errors from gjrm() come from its native reporting; empirical standard errors for the Two-
Stage Composite Likelihood were calculated using the robust Murphy–Topel variance estimator. 250 
replications were performed to record the bootstrapped standard errors; parameter estimation took, on 
average, about 32 s for gjrm(), and 12 s for the Two-Stage Composite Likelihood. Coefficient estimates 
multiplied by 100; correlation estimates displayed without rounding
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versus reported values from [6], in which the previous author used a desktop com-
puter with a higher clock speed (iMac 3.4 GHz Intel Core i7) than used here. The 
number of times the post-processing step was invoked for the two-stage composite 
likelihood to ensure positive definiteness is shown, as well (Table 3).

For each combination of settings, the two-stage composite likelihood was the 
fastest. [6]’s reported results were faster than the re-coded version of the chained 
bivariate probit, possibly at least partly due to processor specifications. As also 
observed by [6], the number of components had the greatest effect on run-time, fol-
lowed by number of observations, and the number of predictors had the least effect. 
In fact, for the two-stage composite likelihood, having nine predictors instead of five 
did not appear to result in longer run-times.

When the observation counts were low, on occasion one of the bivariate probits 
in the re-coded chained bivariate probit would fail to complete. When this occurred, 
the particular simulation was skipped over for the re-coded chained bivariate probit 
and excluded from the run-time average. However, this only occurred seven and five 
times out of 500 observations, respectively, for five and nine predictors when the 
number of components was eight and the observation count was 100. The two-stage 
composite likelihood did not experience this issue.

As expected, the two-stage composite likelihood did not produce non-positive 
semidefinite estimates for the covariance matrix when the number of observations 
was sufficiently large. Non-positive semidefiniteness occurred frequently when the 
number of observations was 100 and the number of components was eight, but 
rarely when the number of components was four. The additional time to check for 
positive semidefiniteness and, if necessary, perform the post-processing step for pos-
itive definiteness was included in the run-time estimates for the two-stage composite 
likelihood.

4.2  Coverage Percentages for the Two‑Stage Composite Likelihood

Using a similar set-up (and the same original data) as for the run-time compari-
sons, simulations were performed to gauge the 95% coverage percentages for the 
two-stage composite likelihood. The number of predictors was fixed at four, and the 
number of observations and components were varied for the simulations. 10,000 
simulations of each combination of observations and number of components were 
ran. The 95% coverage percentages for the coefficient and correlation parameters 
are displayed below. Coverage is near the target 95% in all instances for coefficients, 
similarly for correlation parameters as observation counts approach 800. The post-
processing step for positive definiteness was invoked only once, for when the num-
ber of observations was 200 and the number of components was five (Tables 4 and 
5).
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5  Discussion

Our proposed two-stage composite likelihood for the multivariate probit produces 
results similar to previously published results, for both parameter estimations and 
standard errors. Bootstrap comparisons show that the robust variance estimates pro-
vide accurate standard errors. Furthermore, these standard errors are comparable to 
those of full likelihood or those of alternate methods, suggesting little loss in statisti-
cal efficiency.

Run-times for the two-stage composite likelihood compare favorably to 
the chained bivariate probit approach, which was already much faster than the 
approach using simulated maximum likelihood. The effects of increasing set-
tings such as the number of observations, number of components, and number of 

Table 3  Mean run-time comparisons between [6]’s bvpmvp & the Two-Stage Composite Likelihood, by 
combinations of number of observations, number of components, and number of predictors

Number of times that the post-processing step for positive definiteness was invoked for the Two-Stage 
CL is shown, as well. Run-times for [6] are rounded to the nearest second as originally reported, nearest 
tenth for the re-coded chained bivariate probit and the Two-Stage CL. Each combination for the re-coded 
chained bivariate probit and the Two-Stage CL was simulated 500 times. [6]’s results were performed on 
an iMac 3.4 GHz Intel Core i7. The re-coded chained bivariate probit and the Two-Stage CL were ran on 
a Windows 2.70 GHz Intel i7-7500. The re-coded chained bivariate probit used R’s zelig() [30, 31] 
from the Zelig package to perform the bivariate probits

Mean Run-time Comparisons

# Obs # Comp # Pred bvpmvp Re-coded 
bvpmvp

Two-stage CL PD Step

100 4 5 0.5 0.0 1
100 4 9 0.5 0.0 3
100 8 5 2.3 0.1 189
100 8 9 2.5 0.1 239
500 4 5 0.7 0.1 0
500 4 9 0.8 0.1 0
500 8 5 3.4 0.3 0
500 8 9 3.5 0.3 0
2000 4 5 1 1.7 0.3 0
2000 4 9 1 1.8 0.3 0
2000 8 5 5 7.9 1.2 0
2000 8 9 8 8.0 1.1 0
10,000 4 5 2 6.5 1.3 0
10,000 4 9 3 7.1 1.4 0
10,000 8 5 14 31.8 5.9 0
10,000 8 9 19 33.2 5.9 0
50,000 4 5 12 34.3 7.9 0
50,000 4 9 18 35.4 7.4 0
50,000 8 5 65 146.3 28.8 0
50,000 8 9 86 157.1 29.0 0
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predictors has similar effects to that experienced by the chained bivariate probit. 
Under simulation, our approach produces near nominal confidence coverage.

A possible next step would be to extend this approach to incorporate hetero-
geneous multivariate responses, i.e., where the response can include both binary 
and continuous components. Such an approach would include bivariate normal 
densities for continuous-continuous pairs, as well as likelihoods for binary-con-
tinuous pairs. For binary-continuous pairs, the joint likelihood can be re-stated 
as the product of the marginal density of the continuous component multiplied 
against the conditional density of the binary component upon the continuous 
component.

Further considerations could include heteroskedasticity, i.e., non-constant vari-
ance across predictor values, which would further expand the range of applications.
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Table 5  95% Coverage Percentages for the correlation parameters of the Two-Stage Composite Likeli-
hood, using 10,000 simulations

The number of predictors was fixed at four, with the number of observations and components varied. Σk,l 
corresponds to the correlation parameter associated with the k’th and l’th components

Two-stage Composite Likelihood 95% Correlation Parameter Coverage Percentages

Obs Comp Σ
1,2

Σ
1,3

Σ
1,4

Σ
1,5

Σ
2,3

Σ
2,4

Σ
2,5

Σ
3,4

Σ
3,5

Σ
4,5

200 3 93.1 93.2 94.1
200 4 93.1 93.2 93.5 93.9 93.5 94.4
200 5 92.9 92.6 93.4 93.6 93.2 93.6 93.9 93.1 93.9
400 3 94.2 94.3 94.0
400 4 94.2 93.9 93.8 94.5 94.5 94.3
400 5 94.0 94.0 93.7 93.7 94.3 94.3 94.2 94.2 94.3 94.8
800 3 94.5 94.6 94.9
800 4 94.9 94.7 94.5 94.3 94.6 94.8
800 5 94.8 94.4 94.4 95.0 94.6 94.4 94.6 94.8 95.0 94.5
1600 3 94.8 95.2 94.7
1600 4 94.9 94.6 95.3 94.7 95.0 94.8
1600 5 95.0 94.4 94.4 95.3 94.4 94.8 94.8 95.0 95.1 94.9
3200 3 95.0 94.7 94.8
3200 4 94.7 94.6 94.9 94.8 95.0 95.0
3200 5 94.6 94.8 95.3 95.1 94.9 94.7 95.1 95.4 95.2 95.0
6400 3 95.0 95.0 94.8
6400 4 94.7 94.8 95.0 94.9 95.0 94.4
6400 5 95.0 94.8 95.0 94.9 94.8 95.2 94.8 95.0 95.4 94.7
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