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Abstract
To confine the spread of an infectious disease, setting a sensible quarantine time is 
crucial. To this end, it is imperative to well understand the distribution of incubation 
times of the disease. Regarding the ongoing COVID-19 pandemic, 14-days is com-
monly taken as a quarantine time to curb the virus spread in balancing the impacts 
of COVID-19 on diverse aspects of the society, including public health, economy, 
and humanity perspectives, etc. However, setting a sensible quarantine time is not 
trivial and it depends on various underlying factors. In this article, we take an angle 
of examining the distribution of the COVID-19 incubation time using likelihood-
based methods. Our study is carried out on a dataset of 178 COVID-19 cases dated 
from January 20, 2020 to February 29, 2020, with the information of exposure peri-
ods and dates of symptom onset collected. To gain a good understanding of possible 
scenarios, we employ different models to describe incubation times of COVID-19. 
Our findings suggest that statistically, the 14-day quarantine time may not be long 
enough to control the probability of an early release of infected individuals to be 
small. While the size of the study data is not large enough to offer us a definitely 
acceptable quarantine time, and further in practice, the decision-makers may take 
account of other factors related to social and economic concerns to set up a practi-
cally acceptable quarantine time, our study demonstrates useful methods to deter-
mine a reasonable quarantine time from a statistical standpoint. Further, it reveals 
some associated complexity for fully understanding the COVID-19 incubation time 
distribution.

Keywords COVID-19 · Incubation times · Profile likelihood · Quantile estimation · 
Quarantine time

 * Wenqing He 
 whe@stats.uwo.ca

1 Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON, 
Canada

2 Department of Computer Science, University of Western Ontario, London, ON, Canada

http://orcid.org/0000-0002-8913-9273
http://crossmark.crossref.org/dialog/?doi=10.1007/s12561-021-09320-8&domain=pdf


176 Statistics in Biosciences (2022) 14:175–190

1 3

1 Introduction

As of January 2021, more than 90 million confirmed COVID-19 cases and 1.9 
million resulting deaths had been reported in more than 200 countries and regions 
[19]. To control the virus spread, the  World Health Organization (WHO) sug-
gested a 14-day quarantine time for potential COVID-19 infected cases [18]. The 
14-day quarantine is primarily recommended to accommodate the incubation 
period of the virus, which is the length of time for a person exposed to the virus 
to become infectious.

Since the COVID-19 pandemic started, many authors have studied the incubation 
information. For example, Li et al. [12] studied the incubation time using the data 
of the first 425 confirmed infections in Wuhan city China. They assumed a gener-
alized Gamma distribution for the incubation times and estimated that the average 
incubation time was 5.2 days (95% confidence interval: 4.1–7.0 days) and the 95th 
percentile of incubation times was 12.5 days. Nevertheless, in their dataset, only 10 
cases were able to identify the exact date of exposure to the virus. Backer et al. [1] 
used travel histories and symptom onsets of 88 confirmed cases to characterize the 
distribution of incubation times. They estimated the mean incubation time to be 6.4 
days with a 95% confidence interval of 5.6–7.7 days. Charvadeh and Yi [3] esti-
mated the mean and median of the incubation period to be 5.8 and 5 days, respec-
tively, by examining a cohort of 3397 infected cases dated from January 22, 2020 to 
March 29, 2020. Examining 1084 confirmed COVID-19 cases who initially showed 
no signs of illness at their time of departure from Wuhan city, China, Qin et al. [16] 
conducted a forward follow-up study. They estimated that the median incubation 
time was 7.76 days (95% confidence interval: 7.02–8.53 days), the mean incubation 
time was 8.29 days (95% confidence interval: 7.67–8.90 days), the 90th percentile of 
incubation times was 14.28 days (95% confidence interval: 13.64–14.90 days), and 
the 99th percentile of incubation times was 20.31 days (95% confidence interval: 
19.15–21.47 days). He et al. [9] employed a meta-analysis method to combine five 
studies up to February 2020 and estimated the average incubation time to be 5.08 
days with a 95% confidence interval of 4.77–5.39 days. Banka and Comiskey [2] 
studied the incubation period distribution for COVID-19 and highlighted the need 
for a longer quarantine time than the initially suggested 14-days by the WHO. Quilty 
et al. [17] used an agent-based model to simulate incubation periods. Their findings 
indicated that self-isolation can prevent 39% of onward transmission from secondary 
cases, and that 14-day post-exposure quarantine for all contacts reduces transmis-
sion by 70%. Jiang et al. [10] manually collated the clinical data of 2015 COVID-19 
patients from official websites of local Chinese health agencies reported between 
January 1, 2020 and February 25, 2020. The cohort in their study was believed to 
represent a wide spectrum of COVID-19 cases with different age groups as well 
as hospitalized and non-hospitalized cases included. Their findings showed that the 
incubation time of COVID-19 ranges from 0 to 33 days, and the median incubation 
periods for adults and children are 7 and 9 days, respectively. Furthermore, they rec-
ommended extending the quarantine period for adults from 14 days to 18, or even 21 
days for a more effective quarantine.
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While the principle of setting a quarantine time is clear, it is challenging to deter-
mine a plausible quarantine time because of the uncertainty and different reveal-
ings from different studies as well as the considerations of balancing the COVID-19 
impacts on the other aspects of the society such as the economy and humanity con-
cerns. Public health officials often use the tail end of the incubation range to deter-
mine a quarantine time [15]. A good understanding of the distribution of incuba-
tion times thereby becomes critical. The incubation time of a case is associated with 
many factors such as gender, age, socio-economic status, underlying health condi-
tions, and the disease transmission method (i.e., direct contact or indirect contact). 
It is imperative to broadly examine the distribution of COVID-19 incubation times 
from different angles in order to better understand  the underlying truth.

In this study, we aim to investigate whether the currently used 14-day quarantine 
period is long enough to effectively control the virus transmission for COVID-19 
by examining different ways of modelling the distribution of  COVID-19 incuba-
tion times. Our explorations are carried out on a dataset of 178 COVID-19 cases 
collected between January 20, 2020 and February 29, 2020, with the information of 
exposure periods and dates of symptom onset available for the study subjects. Our 
findings suggest that the current practice of setting 14-days as a quarantine time may 
not be long enough to control the probability of an early release of infected individu-
als to be small. Though it may be premature to recommend a sensible quarantine 
time based on this small-sized data we study, the explorations here offer us methods 
to examine the COVID-19 incubation time distribution, and they also demonstrate 
associated complexity in this process.

The remainder of the article is organized as follows. In Sect. 2 we describe the 
data and outline useful distributions for describing incubation times of an infec-
tious disease. We present the methodology for inference and discuss modelling for 
the case with observed incubation times or interval-censored incubation times in 
Sects. 3 and 4. We investigate different analyses in the hope of revealing broad sce-
narios for assessing whether the period of 14 days is a sensible quarantine time for 
COVID-19. In Sect. 5 we examine the percentiles of the incubation times to see how 
a sensible quarantinetime may be considered. We conclude the manuscript with a 
discussion in the last section.

2  COVID‑19 Data and Model Framework

2.1  COVID‑19 Data

We consider the data of 178 COVID-19 cases in Shiyan city, Hubei province, China, 
which were reported between January 20, 2020 and February 29, 2020 [20]. For 
each case in the dataset, the information, including gender, age, the source of infec-
tion, the date of exposure, the date of symptom onset, and the date of diagnosis, was 
collected through an epidemiological survey. The date of exposure refers to either 
(a) entry and exit dates of Wuhan or (b) the earliest and latest dates of close contact 
with a Wuhan-imported/locally infected case. Let Si be the symptom onset time for 
case i, and let ELi and EUi be the lower and upper time points for the exposure period 
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for case i, respectively. Then, shown in Fig.  1, the incubation time for case i is 
bounded by the interval [tLi, tUi] , where tLi = Si − EUi and tUi = Si − ELi . Table S1 in 
the Supplementary Material reports tLi , and tUi for each of the 178 cases, and Fig. S1 
in Supplementary Material illustrates the interval incubation times by gender and 
three different age groups.

2.2  Useful Distributions

Parametric modeling is often employed to describe the distribution of incubation 
times of an infectious disease. Typically, distributions such as Gamma, Weibull, log-
normal, and generalized Gamma are commonly used to study incubation times of 
SARS [5]. Since SARS-CoV-2 virus is genetically closely related to severe acute 
respiratory syndrome coronavirus (SARS-CoV), those distributions are also consid-
ered in studies of COVID-19 incubation times (e.g., [14]).

Let T denote a continuous non-negative random variable representing the incuba-
tion time of a patient with an observed value, denoted t, and let f(t) denote its prob-
ability density function (pdf). It is often convenient to work with the log-location-
scale distribution of T. For this, we start from a random variable, say Z, with the 
distribution, say g(z), of the support on (−∞,∞) , and consider a family of distribu-
tions of the location-scale form:

where �0 and 𝜎 > 0 are parameters.
The Weibull distribution is one of the most widely used distributions for describ-

ing the incubation time of a disease. Letting Z in (1) have the standard extreme value 
distribution with the density g(z) = exp{z − exp(z)} , one obtains that the incubation 
time T has a Weibull distribution with the density function

where � = exp(−�0) and p = 1∕�.
Another commonly used distribution for characterizing incubation times is the 

Gamma distribution. If setting � = 1 and letting Z in (1) have a generalized 

(1)log T = �0 + �Z,

f (t) = �pptp−1 exp{−(�t)p},

Fig. 1  Timeline of the incubation period
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extreme-value distribution with the density g(z) = exp{kz−exp(z)}

� (k)
 , we obtain that the 

incubation time T follows a Gamma distribution with the density function

where � = exp(−�0) , k > 0 is the shape parameter, and � (⋅) represents the Gamma 
function.

If Z in (1) has a standard normal distribution with the density 
g(z) =

1√
2�

exp{−
z2

2
} , then the incubation time T has a log-normal distribution with 

the density function

The aforementioned distributions can be cast under a more general distribution 
form. The incubation time T has a generalized Gamma distribution with the density 
function

if a standard generalized Gamma distribution is specified for exp(Z) in (1), where 
�0 is the location parameter, and � and k are the scale and shape parameters, respec-
tively. Generalized Gamma distributions include Weibull ( k = 1 ), Gamma ( k = � ), 
exponential ( k = � = 1 ), and log-normal ( k = 0 ) distributions as special cases [6].

The log-logistic distribution is another choice for modeling incubation times [4, 
13]. The incubation time T has a log-logistic distribution with the density function

if Z in (1) follows a standard logistic distribution with the density g(z) = exp(z)

{1+exp(z)}2
 , 

where � = exp(−�0) and p = 1∕�.

3  Analysis Methods When Incubation Times are Available

3.1  Estimation Procedures

With the preparations in Sect. 2.2, we now turn to the problem of our interest. We 
are interested in delineating the distribution of incubation times associated with 

f (t) =
�(�t)k−1 exp(−�t)

� (k)
,

f (t) =
1

(2�)1∕2�t
exp

{
−
1

2

(
log t − �0

�

)2
}

.

f (t) =

⎧
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COVID-19. Before we present detailed analyses, here we introduce the basic nota-
tion and discuss the estimation strategy.

Let T denote the incubation time of COVID-19 for any individual, and assume 
that the distribution of T is characterized by the pdf f (t;�) , where f (⋅) takes a form 
from a class of distributions such as those outlined in Sect. 2.2, and � is the param-
eter whose value is unknown. Let F(⋅;�) denote the corresponding cumulative distri-
bution function (CDF) of T. Let M0 denote the maximum incubation time of all the 
individuals in the target population, thus, implicitly, we have T ≤ M0 . Suppose that 
we have a sample of observed incubation times, {t1,… , tn} , for n randomly selected 
COVID-19 patients.

One may be interested in estimating M0 using the sample information. To this 
end, we introduce a generic parameter M which represents a sufficiently large time 
so that it is unlikely for an observed incubation time to exceed it, and M0 is regarded 
as the true value of the parameter M. For the clarity of exposition, we consider that 
the parameter M varies in the parameter space indicated by [M1,∞) , where M1 is a 
specified finite positive value. For instance, setting M1 to be 1 day reflects that incu-
bation times are longer than one day.

We now consider the density function of T truncated by M, given by

where F(M;�) = ∫ M

0
f (u;�)du . Then, the likelihood function of � and M is obtained 

as

where t(n) = max(t1,… , tn).
Estimation of � and M may be carried out using the likelihood method by maxi-

mizing L(�,M|t1,… , tn) with respect to � and M simultaneously. However, as � and 
M govern the likelihood differently, we employ an alternate by breaking the one-
step maximization into a two-step procedure. That is, we take the profile likelihood 
approach by maximizing the profile likelihood for one parameter with the other fixed 
at a given value.

Specifically, with a given value M, analogous to Farewell et al. [8], we maximize 
L(�,M|t1,… , tn) with respect to � and let �̂�(M) denote the resulting value of � . Then, 
the profile likelihood for the parameter M is given by

ftrunc(t;�,M) =
f (t;�)

P(T ≤ M)

=
f (t;�)

F(M;�)
,

(2)
L(�,M�t1,… , tn) =

n�
i=1

ftrunc(ti;�,M)

=

∏n

i=1
f (ti;�)

{F(M;�)}n
if t(n) ≤ M,

(3)Lp(M|t1,… , tn) = L(�̂�(M),M|t1,… , tn).
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By the form of (2), for any given � , L(�,M|t1,… , tn) is a non-increasing function in 
M, which suggests that M reaching its lower bound maximizes L(�,M|t1,… , tn) for 
any given � , and thus, maximizes (3) as well. Thus, M̂ = t(n) is the maximum likeli-
hood estimate (MLE) of M.

3.2  Relative Profile Likelihood

In reality, using an estimate of the maximum incubation time M0 to be a quarantine 
time for the whole population is not completely sensible, because incubation times 
for a very small portion of patients can be extremely large while the majority of the 
infected cases may have a lot shorter incubation times. Consequently, we focus on 
identifying a practically feasible value M above which it is unlikely for the exposed 
individuals to develop symptoms of COVID-19. This problem can be approached 
by adapting the idea of the relative likelihood, which provides a convenient metric 
ranging between 0 and 1 to rank all parameter values according to their plausibility 
in light of the data [11].

Given the data {t1,… , tn} and the resultant MLEs of � and M, denoted, respec-
tively, �̂� and M̂ , the relative plausibility of values of � and M may be assessed by 
comparing the likelihood of those values to the likelihood of the MLEs. In notation, 
the relative likelihood function of � and M is defined as

Since our focus is on parameter M, we propose to use the profile likelihood (3) and 
consider the relative profile likelihood (RPL), defined as

For a pre-specified constant c with 0 ≤ c < 1 , define

The set S(c|t1,… , tn) collects those values of M that are implausible in the sense 
that they yield small values of the profile likelihood, with the resulting profile 
likelihood no bigger than 100c% of the profile likelihood evaluated at the MLE 
M̂ . As Lp(M|t1,… , tn) is a non-increasing function of M, it is immediate that if 
M∗ ∈ S(c|t1,… , tn) , then all values larger than M∗ belong to S(c|t1,… , tn) . It 
is thereby of interest to identify the smallest value in S(c|t1,… , tn) for a given c, 
denoted Mc = minS(c|t1,… , tn) . In the instance where the smallest value does not 
exist, we set Mc to be M1 . Apparently, the set S(c|t1,… , tn) tends to become larger as 
c becomes bigger, and hence, Mc1

≤ Mc2
 if c1 ≥ c2 . One needs, however, to note that 

S(c|t1,… , tn) can be empty when c is smaller than a certain value.
We hope to set a possibly small quarantine time so that the chance of an incuba-

tion time exceeding it is slim. By controlling the value of c, we are able to collect 

L(𝜃,M|t1,… , tn)

L(�̂�, M̂|t1,… , tn)
.

RPL(M) =
Lp(M|t1,… , tn)

Lp(M̂|t1,… , tn)
.

(4)S(c|t1,… , tn) =
{
M ≥ M1 ∶ RPL(M) ≤ c

}
.
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those implausible values of M so that the corresponding profile likelihood is upper 
bounded by a fraction of the maximum profile likelihood. In principle, the smaller 
we set a value for c, the more conservative it may yield a quarantine time. In spirit 
similar to the discussion about the likelihood region by Kalbeisch [11, p. 18], one 
may consider taking different threshold values for c to describe the varying degree 
of the plausibility for a value of the parameter M. While there is no gold standard for 
the choice of c, it is sensible to treat the values in S(c|t1,… , tn) to be very implau-
sible if c is close to 0. For instance, we may treat the M values in S(0.1|t1,… , tn) as 
“implausible” and those in S(0.01|t1,… , tn) as “very implausible” (if those sets are 
non-empty).

3.3  Determination of Quarantine Time Using Surrogate Incubation Times

A quick approach to analyzing interval-censored incubation times described in 
Sect. 2.1 is to take the midpoint of the incubation interval for each case as the sur-
rogate of the incubation time and then estimate the distribution of the incubation 
times accordingly. In this section, we take this approach and consider the five trun-
cated parametric models described in Sect. 3.2 in combination with the discussion 
in Sect. 2.2

For i = 1,… , n , let t∗
i
 be the midpoint of the interval [tLi, tUi] , where t∗

i
=

tLi+tUi

2
 . 

For the COVID-19 data we consider here, the midpoints of the incubation inter-
vals [tLi, tUi] range from 1.5 to 21 days, with the mean 6.92 days and the standard 
deviation 3.75 days. We fit the surrogate data {t∗

i
∶ i = 1,… , n} with each of the five 

distribution described in Sect.  2.2, and then estimate the model parameters using 
the method outlined in Sect. 3.1. To assess the performance of the model fit, we cal-
culate the Akaike information criterion (AIC) and Schwarz’s Bayesian information 
criterion (BIC) for each model, respectively, given by

where q is the number of the model parameters. The results are reported in Table 1. 
The Gamma model has the lowest AIC and BIC, while the Weibull and generalized 
Gamma models have the highest AIC and BIC, respectively, though the differences 
are not large.

(5)
AIC = −2 logL(�̂�, M̂|t∗

1
,… , t∗

n
) + 2q;

BIC = −2 logL(�̂�, M̂|t∗
1
,… , t∗

n
) + q;

log n,

Table 1  Summary of the model fit for the surrogate data

Fit Distribution

Gamma Generalized 
Gamma

Log-normal Log-logistic Weibull

AIC 945.30 948.88 947.88 949.78 950.86
BIC 951.66 958.42 954.24 956.15 957.22
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In Fig. 2a, we plot the pdf for five distributions discussed in Sect. 2.2 with the 
parameters replaced by their estimates, in contrast to the histogram for the data. Fig-
ure 2b shows the corresponding CDFs of the five truncated models along with the 
empirical CDF of the data. While there are differences in these distributions, they fit 
the data generally well.

Despite the fact that M̂ , being 21 days, is not affected by the distributional 
assumption of the incubation times, the shape of the profile likelihood of M, and 
therefore, a plausible quarantine time, depends on the distribution forms, especially 
the tails of the distributions [8]. Figure 3a presents the RPL for M for the five con-
sidered models. The RPL for Weibull is nearly flat for M values greater than 24 and 
stay around 0.85, i.e., RPL(M) ≈ 0.85 for any M ≥ 24 . This implies that any values 
of M ≥ 24 do not decrease the corresponding profile likelihood to be greatly lower 
than 0.85 of the profile likelihood at the MLE. Therefore, the truncated Weibull dis-
tribution does not provide much information about the choice of a quarantine time 
larger then 24. For the truncated generalized Gamma model, the RPL for M has a 
steeper change than that of the truncated Weibull model, but remains stable around 
0.40 for M greater than 28. The RPL for the truncated Gamma model shows a simi-
lar trend to that of the truncated generalized Gamma model. The RPLs of the trun-
cated log-normal and log-logistic models drop sharply towards 0, suggesting that 
any values of M ≥ 26 make the profile likelihood Lp(M|t∗

1
,… , t∗

n
) less than 10% of 

that evaluated at M̂ . Therefore, fitting the truncated log-logistic or log-normal model 
to the data suggests that a quarantine time of Mc = 26 days may be plausible if we 
regard c = 0.1 as a threshold for identifying implausible values for M.

Fig. 2  Two goodness-of-fit plots for the truncated distributions fitted to the surrogate data

(a) (b)

Fig. 3  RPLs for the surrogate data
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Diving deep into the data, we find that the maximum observed surrogate incu-
bation time, 21 days, comes from a 17 years old male patient. Speculating the 
possibility that this observation is merely on outlier, we repeat the same analysis 
by removing it to see how the results may change; the new M̂ becomes 18.5 days. 
The results are displayed in Fig. 3b, showing that all the truncated distributions 
become more informative. In particular, the truncated log-logistic and log-normal 
models suggest 21 days as a reasonable quarantine time. These findings also dem-
onstrate the considerable influence of potential outliers.

4  Analysis Methods with Interval‑Censored Incubation Times

4.1  Estimation with Interval‑Censored Data

In Sect. 3.3, using the midpoint of [tLi, tUi] as a surrogate of the true incubation 
time for subject i gives us quick analysis results. However, such a method may 
incur some bias because the true incubation times may not be identical to the 
surrogate values. Furthermore, the method in Sect.  3.3 ignores the uncertainty 
induced from interval-censored data. In this section, we describe an inference 
method for interval-censored data.

Using the notation in Sect.  3, suppose the incubation times {t1,… , tn} for n 
study subjects are not directly observed, but instead, we observe a sequence of 
exposure windows 

{
[tLi, tUi] ∶ i = 1,… , n

}
 , where ti ∈ [tLi, tUi] for i = 1,… , n . 

Again, similar to the idea in Sect. 3.1, we consider the distribution of incubation 
times truncated by M, a time point varying in [M1,∞) . Let I be the index set for 
the individuals with interval-censored observations, and let L be the index set 
for the individuals with left-censored observations (i.e., individuals with tLi = 0 ). 
Therefore, the likelihood function for the interval-censored data is given by

Maximizing the log-likelihood, logL(�,M|[tL1, tU1],… , [tLn, tUn]) , with respect to � 
and M gives the MLE of � and M, denoted �̂�cens and M̂cens , respectively.

Analogous to the discussion in Sect. 3.2, we consider the RPL function of M 
for interval-censored incubation times

For a given c, the set

L(�,M|[tL1, tU1],… , [tLn, tUn])

=
1

{F(M;�)}n

[∏
i∈I

{F(tUi;�) − F(tLi;�)}

]{∏
i∈L

F(tUi;�)

}
.

RPL(M) =
Lp(M|[tL1, tU1],… , [tLn, tUn])

Lp(M̂cens|[tL1, tU1],… , [tLn, tUn])
.

(6)S(c|[tL1, tU1],… , [tLn, tUn]) =
{
M ≥ M1 ∶ RPL(M) ≤ c

}
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is constructed to determine a plausible quarantine time, and we are interested in 
identifying

if existing; otherwise, set Mcens to be M1.

4.2  Determination of Quarantine Time Using Interval‑Censored Incubation Times

Here we use the development in Sect. 4.1 to analyze interval-censored data under the 
same models in Sect. 3.3. To determine how well the models fit the data, we calcu-
late the AIC and BIC of the fitted models using (5) with L(�̂�, M̂|t∗

1
,… , t∗

n
) replaced 

by L(�̂�cens, M̂cens|[tL1, tU1],… , [tLn, tUn]) , and report the results in Table  2. Clearly, 
the Gamma distribution shows the best fit in terms of both AIC and BIC values. 
Among other four distributions, generalized Gamma, log-normal, log-logistic and 
Weibull perform similarly in terms of AIC, whereas log-normal is slightly better 
than others if using BIC. Using the R package fitdistrplus [7], we produce probabil-
ity–probability (P–P) plots for the models and report them in Fig. S2 in Supplemen-
tary Material, which shows similar patterns for the five models.

In Fig. 4a, we report the RPL for M derived from the five models assumed for the 
incubation times. The RPLs for the log-normal and log-logistic distributions are maxi-
mized at a relatively same value of M. The RPL for the Weibull is nearly flat, taking a 
value slightly smaller than 1 for M ≥ 22 , offering little information regarding a reason-
able quarantine time. For the generalized Gamma and Gamma models, the RPL does 

Mcens ≜ minS(c|[tL1, tU1],… , [tLn, tUn])

Table 2  Summary of the model fit for the interval-censored data

Fit Distribution

Gamma Generalized 
Gamma

Log-normal Log-logistic Weibull

AIC 573.42 575.41 575.20 575.65 576.00
BIC 582.97 588.13 584.74 585.20 585.54

(a) (b)

Fig. 4  RPLs for the interval-censored data
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not suggest any plausible quarantine time because they become flat around a large value 
(e.g., a value higher than 0.6). From the RPL for the log-logistic model, it is apparent 
that the profile likelihood is more than 10 times smaller for any value of M ≥ 26 than 
that evaluated at M̂cens . This suggests that, under the log-logistic model, setting 26 days 
as a quarantine time may be necessary. The RPL under the log-normal model suggests 
a longer quarantine time than 26 days.

In contrast to excluding a possible outlier with the incubation interval  (18, 24)  in 
Sect. 3.3, we repeat the preceding analysis with this observation removed and plot the 
RPL in Fig. 4b. It is clear that the pattern of the RPL for M is consistent with that 
shown in Fig. 4a. The RPLs for the log-normal and the log-logistic models drop below 
0.1 around M = 22 , suggesting that 22 days may be a plausible quarantine time if a 
potential outlier is removed in the analysis.

5  Determination of Quarantine Time Based on Percentile Estimation

Using the function RPL(M) offers us a convenient and intuitive way to determine a 
practical quarantine time, as illustrated in Sects. 3 and 4 . However, this approach has 
the limitation in its sensitivity to possible outliers. To alleviate the issue, we now alter-
natively employ the percentile estimation method to determine a quarantine time. A 
reasonable quarantine time may be specified as a time beyond which no large percent-
age of cases would develop symptoms.

Unlike the RPL methods discussed in Sects. 3 and 4 which consider truncated dis-
tributions of incubation times, here we consider directly using the five distributions in 
Sect. 2.2 to model incubation times of COVID-19. Taking the same data treatment as in 
Sects. 3 and 4 , we present two types of analysis in the following subsections using the 
percentile estimation method.

5.1  Analysis Using the Middle Points of the Incubation Intervals

Using the data {t∗
i
∶ i = 1,… , n} considered in Sect. 3.3, we fit each of the five distri-

butions described in Sect. 2.2. Specifically, we calculate the likelihood function

(a) (b)

Fig. 5  Two goodness-of-fit plots for the untruncated distributions fitted to the surrogate data
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for the distribution function f (⋅) , as described in Sect. 3.1. Then we maximize (7) 
with respect to � to obtain the MLE of � . Figure 5 shows the resulting estimated 
density functions in contrast to a histogram of the surrogate data {t∗

i
∶ i = 1,… , n} , 

together with the estimated CDFs against the empirical CDF. The five estimated dis-
tributions fit the data generally well; in fitting the right tail of the data, the Gamma 
and generalized Gamma distributions are slightly better than others. AIC and BIC 
values (not reported here) of the model fits, obtained from a form modifying (5), 
indicate that, the Gamma model results in the lowest AIC followed by that for the 
generalized Gamma model.

Next, for each of the five estimated distributions, we calculate the 95% and 
99% percentiles and obtain their corresponding 95% bootstrap confidence inter-
vals, where 10,000 bootstrap    samples are considered. The results are reported in 
Table 3. The confidence intervals for 95% percentile under the Gamma, generalized 
Gamma, and Weibull distributions suggest that the currently recommended quar-
antine time of 14 days is not long enough, because approximately 5% of infected 
patients may show symptoms after 14 days of quarantine. Assuming the  log-nor-
mal and log-logistic distributions for incubation times, a quarantine time of 14 days 
may release more than 5% of infected patients prior to the appearance of the symp-
toms. The 99% percentiles of the Gamma, generalized Gamma, and Weibull models 
suggest that if we extend the quarantine time to be about 18 days, then only 1% of 
released individuals could be infected cases. On the contrary, the log-normal and 
log-logistic models require over 23 and 29 days, respectively, to reach this small 
percentage.

(7)L(�|t∗
1
,… , t∗

n
) =

n∏
i=1

f (t∗
i
;�)

Table 3  Estimates of 95% and 99% percentiles and their associated 95% bootstrap confidence intervals 
(in day)

Data Gamma Log-normal Generalized 
Gamma

Log-logistic Weibull

t
∗
i

95% percentile 14.15 15.65 14.03 16.73 13.71
95% C.I. (12.90, 15.42) (14.07, 17.23) (12.73, 15.41) (14.73, 18.63) (12.53, 14.94)
Length of C.I. 2.52 3.16 2.68 3.90 2.41
99% percentile 18.70 23.46 18.36 29.44 17.08
95% C.I. (16.88, 20.56) (20.33, 26.40) (15.76, 20.97) (24.51, 34.07) (15.35, 18.84)
Length of C.I. 3.68 6.07 5.21 9.56 3.49

[t
Li
, t
Ui
] 95% percentile 13.87 14.82 13.72 15.72 13.51

95% C.I. (12.59, 15.14) (13.28, 16.37) (12.40, 15.09) (13.87, 17.52) (12.28, 14.77)
Length of C.I. 2.55 3.09 2.69 3.65 2.49
99% percentile 18.20 21.55 17.71 26.58 16.75
95% C.I. (16.31, 20.12) (18.49, 24.33) (15.17, 20.20) (21.88, 30.79) (14.98, 18.54)
Length of C.I. 3.81 5.84 5.03 8.91 3.56
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5.2  Analysis Using the Incubation Intervals

We now turn our focus to the percentile estimation with incubation intervals. To 
be specific, we fit each of the distributions described in Sect. 2.2 to the incubation 
intervals 

{
[tLi, tUi] ∶ i = 1,… , n

}
 . Modifying the discussion in Sect. 4.1, we calcu-

late the likelihood function

to obtain the MLE of � associated with f (⋅) . Figure S3 in the Supplementary Mate-
rial displays P–P plots of the estimated distributions, showing that those five dis-
tributions seem to provide fairly reasonable fit to the data though there are minor 
differences from distribution to distribution.

Next, for each of the estimated distributions, we calculate the 95% and 99% per-
centiles and obtain their corresponding 95% bootstrap confidence intervals, together 
with the length of each confidence interval, where  10,000 bootstrap samples are 
considered. The results are reported in Table  3. The estimates of the percentiles 
obtained from the interval-censored data are smaller than those obtained from the 
surrogate data. The lengths of the confidence intervals obtained from the different 
treatments of the data are fairly close, indicating the similar variability incurred in 
the estimation procedures.

6  Discussion

In this paper, we analyze COVID-19 incubation times using a publicly available 
dataset and use different models to characterize the distribution of incubation times. 
Our findings suggest that the currently recommended 14-day quarantine time is not 
long enough to control the probability of an early release of infected individuals to 
be small.

While the data are analyzed from multiple angles, we comment that certain 
aspects need further attention. Recall bias and reporting bias are likely to be present 
in the data, and de-biasing adjustments need to be employed in the inferential pro-
cedures to remove the bias. The data analyzed here are homogeneous in the sense 
that the study subjects come from the same city in China. However, people of differ-
ent races and demographic features may respond differently to infectious diseases. 
As pointed out by a referee, disease incubation is just one component related to the 
disease transmission process. In the case where the disease infectivity is negatively 
correlated with the length of the incubation period, aiming to quarantine the full 
length of incubation may not be reasonable. The incubation period may have a close 
association with many factors such as age, gender, chronic health diseases, family 
health history, and so on. We also note that the size of the data analyzed is not large. 
Having a large and representative study sample of the whole population is desirable 

(8)L(�|[tL1, tU1],… , [tLn, tUn]) =

[∏
i∈I

{F(tUi;�) − F(tLi;�)}

][∏
i∈L

F(tUi;�)

]
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to determine a sensible quarantine time by facilitating the underlying heterogeneities 
of the population.

In most epidemiological studies of incubation times, the attention is focused 
on finding an ideal quarantine time merely to ensure infected individuals not to 
be released too early. However, this may not be the best criterion to reduce the 
pandemic impacts on the economy, social activities, and schooling, etc. To set 
the optimal quarantine time, epidemiological-economic models can be carefully 
studied to take into account both the risk of early release of cases and the impacts 
on the economy.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s12561- 021- 09320-8.
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