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Abstract
Time-to-event outcomes with cyclic time-varying covariates are frequently encoun-
tered in biomedical studies that involve multiple or repeated administrations of an 
intervention. In this paper, we propose approaches to generating event times for Cox 
proportional hazards models with both time-invariant covariates and a continuous 
cyclic and piecewise time-varying covariate. Values of the latter covariate change 
over time through cycles of interventions and its relationship with hazard differs 
before and after a threshold within each cycle. The simulations of data are based 
on inverting the cumulative hazard function and a log link function for relating the 
hazard function to the covariates. We consider closed-form derivations with the 
baseline hazard following the exponential, Weibull, or Gompertz distribution. We 
propose two simulation approaches: one based on simulating survival data under a 
single-dose regimen first before data are aggregated over multiple-dosing cycles and 
another based on simulating survival data directly under a multiple-dose regimen. 
We consider both fixed intervals and varying intervals of the drug administration 
schedule. The method’s validity is assessed in simulation experiments. The results 
indicate that the proposed procedures perform well in generating data that conform 
to their cyclic nature and assumptions of the Cox proportional hazards model.
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1 Introduction

Time-to-event outcomes with cyclic time-varying covariates are frequently encoun-
tered in biomedical studies that involve multiple or repeated administrations of an 
intervention. For example, the plasma concentration of a drug taken orally daily to 
prevent a certain infection would usually fluctuate on a daily cycle, and it is often of 
interest to identify whether and how the cyclic drug concentration associates with the 
hazard of infection. In the two harmonized Antibody Mediated Prevention (AMP) 
Phase 2b efficacy trials (ClinicalTrials.gov #NCT02716675 & #NCT02568215), 
more than 4500 HIV-uninfected participants at high risk for acquiring HIV infection 
are randomized to receive 10 infusions every 8 weeks of either VRC01 or placebo 
and followed for 80 weeks for the study endpoint of HIV infection [1]. VRC01 is a 
monoclonal antibody that has been shown to neutralize most strains of the HIV virus 
in laboratory studies, and the AMP trials will test whether VRC01 reduces the rate 
of HIV infection compared to placebo. The concentration of VRC01 in participants’ 
blood samples, which we refer to as “drug concentration,” changes continuously and 
cyclically over time. As illustrated in Fig. 1, the drug concentration typically peaks 
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Fig. 1  Illustration—simulated VRC01 serum concentration over time following ten 8-weekly IV infu-
sions at 10 mg/Kg and 30 mg/Kg dose levels with perfect study adherence, according to the pharmacoki-
netics model described in Huang et al. [2]. Solid lines are the medians; shaded areas are the 2.5% and 
97.5% percentiles of the concentrations over 1000 simulated datasets. A body weight of 74.5 Kg is used 
in the simulations
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within hours after an infusion, followed by a decline over weeks of time and may 
reach below a clinically protective threshold, s [2–4].

In the context of drug concentration being a potential biomarker that predicts the 
risk of infection, s is referred to as the zero-protection threshold. This implies that, 
during periods when drug concentration is below s, the individual receives no pro-
tection from the drug. A simulation model was previously developed to address the 
same issue, for a different context of studying time-independent biomarkers as cor-
relates of cumulative outcome risk [5]. The primary objective of the AMP trials is 
to evaluate the efficacy of VRC01 (vs. placebo) to prevent HIV infection at dose lev-
els of 10 mg/Kg and 30 mg/Kg. A key secondary objective assesses the association 
of the current value of VRC01 serum concentration (or other anti-viral functional 
biomarker) with the instantaneous rate of HIV infection. Such time-dependent sur-
vival analysis is desirable to aid HIV vaccine development by setting a benchmark 
biomarker value for the required potency of a vaccine-induced immune response to 
putatively achieve a high level of protection against HIV infection. Findings from 
such analysis will thus help define study endpoints in phase 1 and 2 trials that vet 
candidate HIV vaccines for their potential efficacy [1].

For joint modeling of longitudinal biomarker data and time-to-event data (e.g., 
[6–8]), simulation studies are often needed in the method development for the analy-
ses of such data. An essential starting point is to produce simulated survival times 
from a known data-generating process [9–13]. For continuous covariates, to our 
knowledge previous work has been limited to simulating event times that the time-
varying covariates follow a simple linear relationship with time and/or log-trans-
formed time [14–16], or the covariates change at integer-valued steps of the time 
scale [17] throughout the entire follow-up period. Such data-generating processes 
are only appropriate when individuals are uniformly exposed to risk of acquiring 
the survival outcome at each unit of time (e.g., oral daily dose of the same drug 
amount). Therefore, new or extensions of these methods are needed for settings like 
the AMP trials with a cyclic and piecewise time-varying covariate.

Cox proportional hazards (PH) regression models are the most common approach 
for evaluating the association of covariates, including time-varying covariates with 
survival outcomes. The objective of this paper is to develop methods for the genera-
tion of survival times that follow a Cox PH model with time-invariant covariates, 
as well as a cyclic and piecewise time-varying covariate. We generate time-to-event 
data based on inverting the cumulative hazard function and a log link function for 
relating the hazard function to the time-varying and time-invariant covariates. We 
provide closed-form derivations for simulating time-to-event data with the base-
line hazard following three commonly used distributions: exponential, Weibull, and 
Gompertz, all of which satisfy the PH assumptions with the Cox regression model 
[18] . We propose two simulation approaches. The first approach is based on simu-
lating survival data under a single-dose regimen before such data are aggregated 
over multiple-dose intervals; the second approach is based on simulating survival 
data directly under a multiple-dose regimen. Under the latter approach, we also pro-
vide derivations for simulating time-to-event data from studies with varying drug 
administration intervals to accommodate variable visit windows and possible missed 
visits.
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The paper is structured as follows. In Sect. 2, we introduce notations and assump-
tions, followed by descriptions of the single-dose and multiple-dose approaches 
for simulating survival times. For the single-dose approach, we provide, under the 
zero-protection model, details of the closed-form derivations of the baseline haz-
ard following an exponential distribution in the main text. Derivations for Weibull- 
and Gompertz-distributed baseline hazard are presented in the Appendices. For the 
multiple-dose approach, we provide details of the derivations assuming a monotonic 
relationship between the time-varying covariate and the survival outcome within 
each dosing cycle in the main text. Extensions incorporating the zero-protection 
model and varying drug administration intervals are provided in the Online Appen-
dices. In Sect. 3, we describe three simulation experiments to assess the developed 
methods with application to the AMP CoR study. Conclusions are provided in 
Sect. 4.

2  Methods

For concreteness, we describe notations and methods in the context of the AMP tri-
als. However, the same data-generating concepts can be generalized to other appli-
cable biomedical settings with repeated drug administrations.

2.1  Notation

Let event time, t, be time (in days) from study enrollment (i.e., first study admin-
istration) to HIV-1 infection, and � the final study follow-up visit time. Suppose a 
maximal number of M infusions are planned in the study ( M = 10 for AMP) and 
m be the number of infusions one actually received, where m ≤ M due to possible 
missed infusions or early dropout. Let D1 …Dm be the actual dose infusion visit 
times since enrollment with 0 = D1 < ⋯ < Dm ≤ 𝜏 . Let I1 , I2 , … , Im−1 be the m − 1 
infusion interval lengths (in days) between the m infusions, and Im the interval 
between the last infusion and the end of follow-up in that Ik = Dk+1 − Dk , k = 1 , 2, 
..., m-1, and Im = � − Dm.

The hazard of HIV-1 infection, h(t), is modeled as a function of time-invariant 
covariates and a time-varying covariate according to the Cox PH model as

where z(t) denotes the time-varying covariate, whose value changes over the dura-
tion of the follow-up time, while its association with the hazard of the outcome stays 
constant as denoted by the regression coefficient � ; x denotes the time-invariant 
covariates, and � is the vector of regression coefficients associated with the vector 
of fixed covariates x. h0(t) is the baseline hazard function, i.e., the hazard function of 
the outcome for those subjects with x = 0 and z(t) = 0 . In addition, let ts be the time 
(in days) since the most recent infusion when drug concentration reaches the zero-
protection threshold, s.

(1)h(t|x, z(t)) = h0(t) exp(�z(t) + ��x),
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2.2  Cyclic and Piecewise Time‑Varying Covariate

Under the zero-protection threshold model, we define the time-varying covariate as 
time since the most recent infusion or ts in a cyclic and piecewise manner:

Although z(t) may be defined directly as the drug concentrations over time, one 
advantage of the above definition is the easy interpretation of � in Eq. (1) as the per-
day change effect on log-hazard before ts is reached within each drug administration 
cycle. Intuitively, � is ≥ 0 if the risk of infection with respect to z(t) is expected to 
be nondecreasing over time within each cycle. In other words, we consider z(t) as a 
proxy of the drug concentration at time t because after each infusion, drug concen-
trations are expected to change with time in a monotonic fashion. For example, for 
drug concentrations that follow a log-linear relationship with time, as specified by a 
one-compartment pharmacokinetics (PK) model with a single decay rate, or for drug 
concentrations that follow a bi-exponential two-compartment PK model with a brief 
distribution phase but a much longer elimination phase (as shown in Fig.  1), the 
effect of drug concentration on log-hazard is measured by simply rescaling � by the 
elimination decay rate. This relationship is expected to be held for many monoclonal 
antibodies that exhibit the described pharmacokinetic patterns (see review in, e.g., 
[19]).

Another advantage of this definition of z(t) is the generalizability of the derivations 
described in the following sections without being constrained to a specific nonlinear 
PK model of drug concentration over time, while also sidestepping the issue of not hav-
ing a closed-form derivation of the survival time for more complex nonlinear PK mod-
els. The reason why z(t) takes the value of ts after drug concentration reaches below s is 
to ensure that, beyond ts within each drug administration cycle, the hazard of individu-
als who received the drug does not keep changing at the rate of exp(�) but maintains 
at the same level as that of individuals who did not receive the drug. This tactic avoids 
the need to impose a different value of � when the effect of the time-varying covariate 
changes after ts under the zero-protection threshold model.

In reality, ts could differ across individuals. For simplicity and faster computation, 
an average ts can be used in the actual simulation of survival times. For example, based 
on the population PK model of VRC01 described in Huang et al. [2] , we estimate that 
ts = 57 days for the 10 mg/Kg dose group, and ts = 81 days for the 30 mg/Kg dose 
group with s = 5.0 mcg/mL, a level of VRC01 concentration that is hypothesized to 
confer protection against HIV infection [20–23]. This implies that the instantaneous 
hazard remains constant after 57 and 81 days, respectively, in the low- and high-dose 
groups of the AMP trials. This ensures meaningful simulated survival time to account 
for the wide infusion visit window in AMP (− 1 week to + 7 weeks around the target 
8-weekly infusion visits) and for individuals whose infusion intervals are great than 8 
weeks due to missed infusions.

(2)z(t) =

⎧
⎪⎨⎪⎩

t − Dk if Dk < t ≤ Dk+1 & t − Dk ≤ ts, k = 1, 2,… ,m − 1,

t − Dm if Dm < t ≤ 𝜏 & t − Dm ≤ ts,

ts otherwise.
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2.3  Assumptions

The following assumptions are used in the derivations for the single- and multiple-
dose approaches described below.

– The effect of both the time-invariant and time-varying covariates on hazard is 
multiplicative (i.e., the PH assumption).

– � is a time-invariant coefficient in Eq. (1). This implies that the association 
between z(t) and hazard does not change between cycles (i.e., the cycle-invariant 
assumption).

– Under the zero-protection threshold model, the instantaneous hazard at ts within 
each cycle is assumed to be h(t = Dk + ts|x, z(t)) = h0(ts) exp(�ts + ��x) = �p(x) , 
k = 1 , 2, ..., m, where �p(x) indicates the hazard rate in the control group where 
no association of the drug with survival is expected to be observed. Of note, �p(x) 
is allowed to vary with x if incorporating between-individual variability due to 
time-invariant covariates is desirable in the simulated datasets.

2.4  Simulating Survival Times

As shown in Eq. (1), the Cox model is formulated through the hazard function. 
Therefore, the simulation of appropriate survival times for this model needs further 
manipulation based on the relationship between the hazard function and the covari-
ate as discussed in [9–12, 14–17]. The translation of the regression coefficients from 
hazard to survival time is relatively easy if the baseline hazard function is constant 
with h0(t) = � , 𝜆 > 0 . In this case, the cumulative hazard function of model (1) is 
given by:

Because of the survival function of the above model, S(t|x, z(t)) = exp(−H(t|x, z(t))) 
follows the standard uniform distribution U(0,1), [9, 11, 12] have demonstrated that 
a survival time, T, can be generated by inverting the cumulative hazard function via 
T = H−1(− log(U)) , where U ∼ U(0, 1).

In the following, we extend the work of Austin [14] to accommodate both time-
invariant covariates, x, and a continuous time-varying covariate, z(t). Importantly, 
the values of z(t) change over time in a cyclic form and the association between z(t) 
and survival changes in a piecewise manner within each cycle.

2.4.1  Single‑Dose Approach

The single-dose approach considers simulating survival data over one-dose interval 
as a first step before such data are aggregated over multiple-dose intervals. Instead 
of having the same continuous relationship with t throughout the entire follow-up 
time as described in Austin [15], z(t) in our case changes at ts within each drug 

(3)H(t|x, z(t)) = ∫
t

0

� exp(�z(u) + ��x) du.



330 Statistics in Biosciences (2020) 12:324–339

1 3

administration cycle, as shown in Eq. (2). In the following, we describe the steps to 
simulate survival times after a single dose, by inverting the cumulative hazard func-
tion. We show derivations in details for Cox models with an exponential baseline 
hazard; details for the Weibull and Gompertz distributions are reported in Online 
Appendices A1 and A2, respectively.

For exponentially distributed baseline hazard, h0(t) = � , t actually follows the 
Gompertz distribution with a scale parameter of � exp(��x) and a shape parameter 
of � . Therefore, if t ≤ ts , the event time can be generated as

where u is the realization of a U(0, 1) random variable. The detailed derivations are 
provided in Online Appendix A0 and follow similar steps as described in Austin 
[15] for Gompertz-distributed event times.

If t > ts , the cumulative hazard function is equal to

Consequently, the inverse cumulative hazard function is

Therefore, an event time can be generated as

where u is the realization of a U(0, 1) random variable.
In summary, in order to simulate survival times under a zero-protection thresh-

old model after a single dose is given, a random uniform sample, u , is first simu-
lated and the survival time takes the form in Eq. (4) if 
− log (u) <

𝜆 exp (𝜂�x)

𝛽

[
exp (𝛽ts) − 1

]
 , or the form in Eq. (5), otherwise.

After the single-dose survival time according to the exponential, Weibull-, 
or Gompertz-distributed baseline hazard is simulated as described above or in 
the Online Appendix, the survival time after multiple doses can be simulated as 
follows: 

1. Simulate the actual infusion visit times (since enrollment), D1 < ⋯ < Dm for each 
individual’s m infusions  (e.g., [24]). Consequently, the infusion intervals can be 
calculated as Ik = Dk+1 − Dk , k = 1 , 2, ..., m − 1 , and Im = � − Dm . Infusion visit 
windows and possible missed infusions and/or permanent infusion discontinu-

(4)T =
1

�
log

(
1 +

�(− log(u))

� exp(��x)

)
, if − log(u)

� exp(��x)

�

[
exp(�ts) − 1

]
,

H(t, x, z(t)) =∫
ts

0

�(�u + ��x) du + ∫
t

ts

� exp (�ts + ��x), du

=� exp (��x)

(
1

�
( exp (�ts) − 1) + (t − ts) exp (�ts)

)
.

H−1(v) =
v

� exp (�ts + ��x)
+

1 − exp (�ts)

� exp (�ts)
+ ts.

(5)

T =
− log (u)

� exp (�ts + ��x)
+

1 − exp (�ts)

� exp (�ts)
+ ts, if − log (u) ≥ � exp (��x)

�

[
exp (�ts) − 1

]
,
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ations could be considered here. For example, the probability of a missing visit 
can be specified for each infusion for different scenarios of adherence level. In the 
case of the AMP study, the target visit date of each subsequent infusion is relative 
to the immediately previous infusion visit. Therefore, for AMP, the actual infu-
sion visit times will need to be simulated sequentially and an uniform distribution 
could be used to simulate the visit time of an infusion to be between a window 
of, say 51 days and 105 days after the previous infusion visit date;

2. For each individual, independently simulate the single-dose survival time T1 , T2 , 
..., Tm for each of the m infusion intervals according to Eqs. (4) and (5);

3. If all Tk > Ik , k = 1 , 2, ..., m, then the final multiple-dose survival time of this 
uninfected individual is censored at S =

∑m

i=1
Ii . Otherwise, randomly pick a k 

that satisfies Tk < Ik , and the final multiple-dose survival time for this infected 
individual is S =

∑k−1

i=1
Ii + Tk.

This approach guarantees that, as desired, the event time follows the same survival 
function within each infusion interval. In addition, the probability of infection dur-
ing a given interval is not affected by the probability of the same individual not 
being infected in the prior infusion interval because P(infected in I2 ) = P(infected 
in I2 | not infected in I1 ) = P ( T2 < D2 | T1 > D1 ) = P ( T2 < D2 ) (given that Tk ’s are 
i.i.d).

2.4.2  Multiple‑Dose Approach

For simulating survival time with a cyclic time-varying covariate, instead of the 
approach described above via aggregating survival times generated in single-dose 
intervals, the multiple-dose approach considers simulating survival data over mul-
tiple-dose intervals directly. The following steps can be used to generate survival 
times for participants receiving up to m doses. These steps apply when all dosing 
intervals, I1,… , Im , are smaller than ts , i.e., the next dose is always given or the 
study is ended before the drug concentration reaches below s. If some of I1,… , Im 
may be greater than ts , then strategies that combine the cumulative hazards before 
ts and after ts can be employed (Online Appendix A3). Similarly, survival times are 
simulated by inverting the cumulative hazard function. In the following derivations, 
the baseline hazard is assumed to be exponentially distributed.

If D1 ≤ t < D2 , following similar derivations shown in Online Appendix A0, t 
can be generated as

where b1 =
�

�
exp (��x)

[
exp (� × D2) − 1

]
, and u ∼ U(0, 1).

If D2 ≤ t < D3 , the cumulative hazard function is equal to

(6)T =
1

𝛽
log

(
1 +

𝛽(− log (u))

𝜆 exp (𝜂�x)

)
, if − log (u) < b1
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Consequently, the inverse cumulative hazard function is

Therefore, an event time can be generated as

where

u is the realization of a U(0,1) random variable.
Similarly, for Dk ≤ t < Dk+1 , k = 2,… ,m − 1 , the cumulative hazard function is

and the inverse cumulative hazard function is

Therefore, an event time can be generated as

H(t, x, z(t)) =∫
t

0

� exp (�z(u) + ��x) du

=� exp (��x)∫
t

0

exp (�u) du

=� exp (��x)

(
∫

D2

0

exp (�u) du + ∫
t

D2

exp (�(u − t2)) du

)

=� exp (��x)

(
1

�
( exp (� × D2) − 1) +

1

�
( exp (�t − � × D2) − 1)

)

=
�

�
exp (��x)

(
exp (� × D2) + exp (�t − � × D2) − 2

)
.

H−1(u) =
1

�
log

(
exp (� × D2)

(
�u

� exp (��x)
− exp (� × D2) + 2

))
.

T =
1

𝛽
log

(
exp(𝛽 × D2)

(
𝛽(− log(u))

𝜆 exp(𝜂�x)
− exp(𝛽 × D2) + 2

))
,

if a2 ≤ − log(u) < b2,

a2 =
�

�
exp(��x)

(
exp(� × D2) − 1

)
,

b2 =
�

�
exp(��x)

(
exp(� × I1) + exp(� × I2) − 2

)
, and

H(t, x, z(t)) =
�

�
exp(��x)

[
k∑

i=2

exp(� × Ii−1) + exp(�t − � × Dk) − k

]
,

H−1(u) =
1

�
log

(
exp(� × Dk)

(
�u

� exp(��x)
−

k∑
i=2

exp(� × Ii−1) + k

))
.
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where

u is the realization of a U(0, 1) random variable.
Lastly, if t ≥ Dm , an event time can be generated as

where bm =
�

�
exp (��x)

�∑m

i=2
exp(� × Ii−1) − (m − 1)

�
 and u is the realization of a 

U(0, 1) random variable.
In summary, the infusion times, D1 < ⋯ < Dm , for each participant and a random 

uniform variate U are first simulated. Then, for each k = 1,… ,m − 1 , ak and bk are 
calculated, where a1 = 0 and ak+1 = bk . The survival time takes the form in Eq. (6) 
if − log(u) < b1 , or the form in Eq. (7) if ak ≤ − log(u) < bk , or the form in Eq. (8) if 
− log(u) ≥ b9.

3  Applications

We next apply the described survival data-generating approaches and evaluate their 
validity in simulation experiments. These simulations are motivated by the AMP 
trials in the context of HIV infection; however, the described procedures can be gen-
eralized to other biomedical applications. In the context of HIV infection in healthy 
adults, previous HIV vaccine efficacy trials have found support for the assumption 
of a constant hazard over time in the placebo group [25–30]. Therefore, we chose 
the exponential baseline hazard function in the following illustrations.

In the first experiment, the single-dose approach is used to simulate sur-
vival data for 1000 AMP-like trials, each with n = 1500 participants in each 
of the 10 mg/Kg VRC01, 30 mg/Kg VRC01 and placebo groups. Within each 
trial, the time-varying covariate (i.e., time since infusion) is associated with the 
survival outcome (i.e., time to HIV infection in days) according to Eq.  (1) with 
� = 0.03 and � = 0 for both dose groups. In addition, z(t) takes the piecewise form 

(7)
T =

1

𝛽
log

(
exp(𝛽 × Dk)

(
𝛽(− log(u))

𝜆 exp(𝜂�x)
−

k∑
i=2

exp(𝛽 × Ii−1) + k

))
,

if ak ≤ − log(u) < bk,

ak =
�

�
exp(��x)

(
k∑

i=2

exp(� × Ii−1) − (k − 1)

)
,

bk =
�

�
exp(��x)

(
k+1∑
i=2

exp(� × Ii−1) − k

)
, and

(8)
T =

1

�
log

(
exp(� × Dm)

(
�(− log(u))

� exp (��x)
−

m∑
i=2

exp(� × Ii−1) + m

))
,

if − log(u) ≥ bm,
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as described in Eq. (2) with a zero-protection threshold s = 5 mcg/mL. Conse-
quently, the baseline hazard h0(t) = daily HIV incidence rate divided by exp(�ts) , 
where ts = 57 and ts = 81 for the low- and high-dose groups, respectively, to 
ensure the same baseline HIV infection rate beyond ts in the two dose groups. 
These parameter values indicate that, before an individual’s drug concentration 
reaches 5 mcg/mL, the hazard ratio over a 28-day period is exp(28 × 0.03) = 2.31 , 
but the rate of infection remains constant ( = 0.04/year) once the individual’s drug 
concentration falls below 5 mcg/mL. We consider two study adherence levels: the 
high and medium adherence scenarios assume the probability of missing a given 
infusion is 2% and 10% for each of the 10 infusions, and are simulated based 
on random draws from binomial distributions with success probabilities 0.02 and 
0.1, respectively. More details in the simulations of such AMP-like study setup 
can be found in Zhang et al. [8].

We expect three patterns in the simulated data. First, the low-dose group should 
have higher risk of infection than the high-dose group. This is because drug con-
centrations in the former group on average are expected to reach the zero-protection 
threshold, 5 mcg/mL in a shorter time or, in other words, the lower-dose group is 
expected to have a smaller ts=5mcg/mL than the higher-dose group, although the two 
dose groups do have the same risk (due to having the same � = 0.03 ) until their 
respective ts=5mcg/mL time points within each dosing cycle. Second, a lower risk of 
infection should be associated with a better study adherence due to less missed infu-
sions and less follow-up time with concentration below the zero-protection threshold 
s = 5 mcg/mL. Third, a shorter duration between time of infection and prior infusion 
should occur with better study adherence due to shorter average infusion intervals 
when there are less missed infusions, although a smaller number of infections do 
occur with a better study adherence. As shown in Fig. 2, all these patterns are con-
firmed. In addition, the same patterns are observed when the sample size is reduced 
to n = 700/group (Online Appendix A4).

In the second experiment, the multiple-dose approach is used to simulate AMP-
like trials under perfect study adherence scenarios with � = 0 and h0(t) = daily HIV 
incidence rate divided by exp(� × 56) . Each trial includes n = 1500 VRC01 recipi-
ents in each of the 10 mg/Kg and 30 mg/Kg dose groups. Two � values, 0.01 and 
0.03, are considered in order to verify how risk of infection varies by � within each 
dose group. Similar to the first experiment, the two dose groups share the same 
beta value under each scenario. Figure 3 shows that the probability of HIV infec-
tion within each 8-weekly infusion cycle is smaller as � gets larger. This pattern is 
also expected because a higher � indicates a larger association of the biomarker with 
reduced risk of infection. In addition, as desired, the rate of HIV infection increases 
over time (as concentration gets lower) within each infusion cycle, and the pattern 
remains the same over all cycles under the ‘cycle-invariant’ assumption described 
in Sect.  2.3. The same patterns are observed when the sample size is reduced to 
n = 700/group (Online Appendix A4).

In the third experiment, we expand the first experiment with a total of four � val-
ues in both the high and medium adherence scenarios. We evaluate the empirical 
characteristics of 𝛽  . Specifically, within each simulated trial of n = 3000 VRC01 
recipients, besides the cyclic and piecewise time-varying covariate, z(t) defined in 
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(Sect. 2.2), we construct an indicator function, I(z(t) ≤ ts) , as another time-depend-
ent covariate. We then use a Cox proportional hazards regression model to regress 
time-to-infection on the product of z(t) and I(z(t) ≤ ts) ; � is the coefficient of this 
interaction term with its interpretation preserved as the per-day change in log-hazard 
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Fig. 2  Distributions of simulated event times since prior infusion (a) and cumulative hazard of HIV 
infection since the first infusion (b) under imperfect study adherences in AMP-like trials. The single-
dose approach is used in these simulations of 1000 trials, each with a total of n = 4500 participants ran-
domized to receive ten 8-weekly infusions of 10 mg/Kg VRC01, 30 mg/Kg VRC01, or placebo in a 
1:1:1 ratio. The high and medium adherence scenarios assume 2% and 10% of infusion visits missed, 
respectively. Additional assumptions are as follows: annual HIV incidence rate = 4% in the placebo 
group, � = 0.03 or HR= 2.32 per 28 days for both VRC01 dose groups, and zero-protection concentra-
tion threshold s = 5 mcg/mL
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prior to ts within each dosing interval. As illustrated in Table 1, the maximum partial 
likelihood estimator of � is close to zero empirical bias and Wald-type 95% confi-
dence intervals for � with the robust Huber sandwich variance estimator achieves 
nominal coverage as desired. This further confirms that data simulated using our 
proposed method maintain the intended nature and effect size of the cyclic and 
piecewise time-varying covariate.

In addition, our proposed methods have been applied to simulate survival data in 
the evaluation of pharmacokinetics marker correlates of outcome [31]. popPK mod-
els were used to estimate the marker value over time [2]. Satisfactory performance 
was observed in terms of type I error and statistical power to detect as statistically 
significant the hazard ratio of HIV infection associated with the pharmacokinetics 
marker.

4  Conclusions

In this paper, we considered simulating event time data with a continuous time-
varying and piecewise covariate. The values of the covariate vary with time 
through multiple repetitive cycles, and its association with survival changes 

ββ ==
ββ ==

β ==
β ==

β

Fig. 3  Cumulative hazard of HIV infection within each infusion interval following ten 8-weekly IV infu-
sions of VRC01 under perfect study adherence in a simulated trial of 3000 VRC01 recipients. Red lines 
are for � = 0.01 or HR = 1.32 per 28 days; blue lines are for � = 0.03 or HR= 2.32 per 28 days (Color 
figure online)
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differently before and after a threshold within each cycle. The latter particularly 
accommodates settings with a zero-protection biomarker threshold, above which 
the drug provides a varying level of protection depending on the biomarker level, 
but below which the drug provides no protection. We proposed two simulation 
approaches: one based on simulating survival data under a single-dose regimen 
first before data are aggregated over multiple doses and another based on simu-
lating survival data directly under a multiple-dose regimen. The derivations of 
the former are more straightforward for handling different event time distribu-
tions and can be more easily extended to data models with multiple protection 
threshold values within a cycle. The derivations of the latter are more compact, 
and simulations are generally faster than those based on the former approach. The 
latter approach is also more flexible to be extended to data models with cycle-
specific z(t) functions.

Motivated by the AMP data example, we considered that the time-varying 
covariate values (i.e., log-transformed drug concentrations) change linearly with 
time before the protection threshold is reached. Similar derivations can be carried 
out for covariates that follow a more complex nonlinear relationship with time. 
In those cases, approximations may be needed in the inversion of the cumulative 
hazard function. The validity of our proposed methods was assessed in multiple 
simulation experiments. The results indicate that the proposed procedures per-
form well in producing data that conform to their cyclic and piecewise and the 
effect size of the time-varying covariate under a Cox model. An extension can be 

Table 1  Empirical 
characteristics of 𝛽

Under each scenario, the single-dose approach is used to simulate 
1000 trials each with a total of n = 3000 participants receiving 10 
mg/Kg VRC01 or 30 mg/Kg VRC01. � indicates the per-day 
increase in log-hazard of HIV infection for both dose groups. 𝛽  is 
estimated using a Cox proportional hazards model as described in 
Sect.  3. Reported are mean of 𝛽  , relative bias, RBias 
=

1

K

∑B

k=1
(
𝛽
k
−𝛽

𝛽
) × 100 , relative root mean squared error, RRMSE 

=

�
1

K

∑B

k=1
(
𝛽
k
−𝛽

𝛽
)2 × 100 , and coverage probability, CP=proportion 

of datasets with Wald-type 95% confidence intervals including the 
true value of the parameter � . The high and medium adherence sce-
narios assume 2% and 10% of infusion visits missed, respectively. 
Annual zero-protection HIV incidence rate is 4% with a zero-protec-
tion concentration threshold s = 5 mcg/mL

Adherence True � Mean of 𝛽 RBias% RRMSE% Coverage%

High 0.01 0.01 0 1.0 95.0
0.02 0.0197 − 1.5 0.5 95.4
0.03 0.0286 − 4.7 0.3 95.2
0.04 0.0384 − 4.0 0.5 95.7

Medium 0.01 0.0097 −3.0 1.0 95.8
0.02 0.0192 − 4.0 0.5 96.0
0.03 0.0291 − 3.0 0.3 95.1
0.04 0.0393 − 1.8 0.5 95.2
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considered to add the number of doses as another time-dependent covariate. Con-
sequently, the ‘cycle-invariant’ assumption about the effect of the time-varying 
covariates not changing between cycles can hence be relaxed. Lastly, for drugs 
that do not satisfy the ‘cycle-invariant’ assumption, different � coefficients can be 
assumed for each cycle and derivations of the simulation procedure based on the 
multiple-dose approach can be similarly extended for such data models.
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