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Abstract Time-dependent Cox regression and landmarking are the two most com-
monly used approaches for the analysis of time-dependent covariates in time-to-event
data. The estimated effect of the time-dependent covariate in a landmarking analysis
is based on the value of the time-dependent covariate at the landmark time point, after
which the time-dependent covariate may change value. In this note we derive expres-
sions for the (time-varying) regression coefficient of the time-dependent covariate in
the landmark analysis, in terms of the regression coefficient and baseline hazard of
the time-dependent Cox regression. These relations are illustrated using simulation
studies and using the Stanford heart transplant data.

Keywords Landmarking · Time-dependent covariates · Time-dependent Cox
regression

1 Introduction

Time-dependent covariates play an important role in the analysis of censored time-to-
event data. Prominent examples include the effect of heart transplant on survival for
heart patients [6] and the effect of CD4+ T-cell counts on the occurrence of AIDS or
death for HIV-infected patients [15]. In the first example the time-dependent covariate
is a binary covariate, in the second example a numerical covariate, typically mea-
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sured longitudinally. These two examples constitute the most common instances of
time-dependent covariates in survival analysis. Examples in the context of organ trans-
plantation include the aforementioned heart transplant example, but also the effect of
kidney transplantation or changing dialysis modality in end-stage renal disease, or the
effect of graft failure on survival for patients with a liver transplant.

Broadly speaking, two approaches have come in general use in estimating the effect
of time-dependent covariates. The first is time-dependent Cox regression, already
mentioned by [5]. In this approach the hazard at time t is assumed to depend on the
current value at time t of the time-dependent covariate, X (t), through the product of a
baseline hazard and exp(βX (t)). This approach yields valid inference if the value of
the time-dependent covariate is known for all subjects at all event time points without
error, and the regression model is correctly specified. Especially in the longitudinal
setting, this is typically not the case and many researchers have studied the amount
of bias when measurement error and ageing of covariates are present [2,11,15]. A
second approach is landmarking [3], which involves setting a landmark time point
s, and using the value of the time-dependent covariate at s (or using some other
appropriate summary of the history of the time-dependent covariate up to s) as a time-
fixed covariate in an analysis of survival from s onwards, in a subset of subjects at risk
at s. For overviews we refer to [7,12].

In principle, both approaches can be used for estimating the effects of time-
dependent covariates, and there are no clear settings where the choice between
time-dependent Cox and landmarking is obvious. Each of the two methods has its
advantages and disadvantages. To get some feeling of the relative merits of the two
approaches, let us consider the situation of the Stanford heart transplant example [6].
Patients are admitted to a waiting list, the time to event is time from admittance to
the waiting list until death, which may be subject to censoring, and interest is in the
effect of a heart transplant on survival. The time-dependent covariate heart transplant,
X (t), is thus initially equal to 0, and attains the value 1 as soon as the patient receives
a heart transplant. (If the patient never receives a heart transplant, the value remains 0
throughout his/her follow-up.) The most important reason for the popularity of land-
marking, especially in the present context of a binary time-dependent covariate, is its
transparency. It is clear what is being compared: at the landmark time s, two groups
are compared with regard to their survival from time s onwards, one group with-
out, the other group with a heart transplant received before or at time s. Differences
between these two groups can be visualized by plotting the Kaplan–Meier survival
curves for the two groups. In contrast, such a visualization is much less obvious for
the time-dependent Cox model. Survival curves can only be shown for patients with
X (t) ≡ 0 and X (t) ≡ 1, respectively. Model-free curves have also been proposed in
this context, sometimes referred to as Simon–Makuch curves [13]. Both model-based
and Simon–Makuch curves show the survival for fictional patients who either never
receive a heart transplant (X (t) ≡ 0) or have received a heart transplant at t = 0
(X (t) ≡ 1). In both cases one may question whether these curves reflect clinically
realistic quantities. The landmarking curves have a much clearer interpretation; see
also [4] for a detailed discussion on this topic. Disadvantages of landmarking are first
of all the need for a (to some extent arbitrary) choice of landmark time point, and also a
loss of power because, especially for later landmark time points, subjects with an event
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before the landmark time point are excluded from analysis. In many cases, early land-
mark time points also lead to a loss of power, because in the beginning of follow-up,
there will be few subjects with a heart transplant, leading to highly unbalanced groups.
For estimation of the effect of a heart transplant on survival, both methods are equally
applicable. The topic of this paper is the following: suppose that a time-dependent
Cox regression model is valid. In a landmark analysis at landmark time s two groups,
one with (X (s) = 1) and one without (X (s) = 0) a heart transplant are compared.
Those subjects without a heart transplant at time s might in the future receive one, so
that X (t) = 1 for some future t , whereas for subjects with a heart transplant at time s,
X (t) will keep the value 1. This will make the groups with X (s) = 0 and X (s) = 1
more similar in the future and will therefore attenuate the effect of the time-dependent
covariate, compared to the time-dependent Cox regression.

The purpose of this paper is to understand, quantify and illustrate the differences
between the regression coefficients of a time-dependent Coxmodel and those obtained
in a landmark analysis. Starting from a time-dependent Cox regression model, which
we assume to be correctly specified, we will derive formulas for the (time-varying)
regression coefficient corresponding to the landmark model. We study two special
cases of time-dependent covariates in more detail and show that if the time-dependent
Cox model satisfies the proportional hazards assumption, there will be attenuation in
the sense that the landmark regression coefficient is between the time-dependent Cox
regression coefficient and 0. We show that the degree of attenuation depends on the
rate of change of the time-dependent covariate. An illustration using the Stanford heart
transplant data is provided.

2 Theory

Let T denote the time-to-event random variable of interest. Let X (t) denote a time-
dependent covariate, which for simplicity we take to be one-dimensional, and denote
its complete history until time t by X(t) = {X (s); 0 ≤ s ≤ t}. We assume that the
hazard of T , conditional on X(t), is given by

h(t | X(t)) = lim
dt↓0 P(T ≤ t + dt | T ≥ t)/ dt = h0(t) exp(β(t)X (t)),

i.e. the hazard at time t is assumed to depend on the whole history X(t) only through
the present value, and it follows a Cox model with possibly time-varying effect given
by β(t). The relations to be derived in this paper are valid irrespective of censoring, but
for consistent estimation of the parameters in the model and survival predictions it is
assumed that censoring is independent of T and X (·), possibly given other time-fixed
covariates in the model, which have been omitted here for the sake of simplicity.

Fix a time point s. A landmark analysis at time s will fix the value of X (·) at X (s),
and assume a model for T with X (s) as time-fixed covariate, based on the survivors at
risk at time s [3]. Independent censoring, and, if appropriate, truncation, is assumed,
which implies that the survivors at risk at time s are representative for survivors at
time s. As a result the hazard considered for the landmark model at landmark time s
is given by
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hLM (t | s, X (s)) = lim
dt↓0 P(T ≤ t + dt | T ≥ t, X (s), T ≥ s)/ dt,

where the additional conditioning on T ≥ s is in fact superfluous. It is only retained
in the notation of hLM(t | s, X (s)) to emphasize that the landmark analysis is based
on survivors at s. The postulated model for this landmark hazard is typically taken to
be a proportional hazards model as well:

hLM(t | s, X (s)) = hLM,0(t | s) exp
(
βLM(t | s)X (s)

)
. (1)

Often βLM(t | s) is taken to be time-fixed in the analysis, i.e. βLM(t | s) ≡ βLM(s), but
it may (and typically will) depend on s.

The question addressed in this note is as follows: what is the relation between
βLM(t | s) and β(t), and how does it depend on h0(t) and on the development of X (t)?
Intuitively, the landmarkmodel employs an old value, X (s), instead of the current value
X (t) to describe the hazard at time t . As a result, if X (t) changes rapidly between
X (s) and X (t) and if X (t) is strongly related to T , one may expect a large discrepancy
between β(t) and βLM(t | s). The aim is to quantify how quickly βLM(t | s) changes
for t ≥ s, depending on the rate of change of X (t), on β(t) and on h0(t).

Our development will start by considering the conditional survival function at time
t > s, given survival until time s and given X (s),

S(t | s, X (s)) = P(T ≥ t | T ≥ s, X (s))

= E

[
exp

(
−

∫ t

s
h0(u)eβ(u)X (u) du

) ∣
∣∣ X (s)

]
.

The landmark hazard hLM(t | s, X (s)) is the derivative with respect to t of the negative
logarithm of S(t | s, X (s)) at t = s + w,

hLM(t | s, X (s))

= − d
dt S(t | s, X (s))

S(t | s, X (s))

=
E

[
h0(t)eβ(t)X (t) | T ≥ t, X (s)

] · E
[
e− ∫ t

s h0(u)eβ(u)X (u) du | T ≥ s, X (s)
]

S(t | s, X (s))

= h0(t)E
[
eβ(t)X (t) | T ≥ t, X (s)

]
, (2)

provided that, conditional on T ≥ t and X (t), T is independent of X (s). This expres-
sion can also be found in [15].

It is possible to further evaluate hLM(t | s, X (s)) for a number of specificmodels for
the development of X (t). In what follows we consider two of such models. The first
of these is the common situation where X (t) is dichotomous, the other is a specific
case where X (t) is continuous.
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2.1 Dichotomous Time-Dependent Covariates

Let X (t) be a dichotomous time-dependent covariate. This is the type of situation for
which the landmarking approachwasoriginally proposed [3]. In that paper the endpoint
was overall survival, and interest was in the effect of response to chemotherapy (a time-
dependent covariate, coded as 0=no response, 1= response). Many more examples
can be given, including the effect of disease recurrence on survival [16], the effect
of treatment adherence on disease recurrence [8] or the effect of adverse events on
recurrence rates [9].

2.1.1 Theory

In this context our aim is to obtain an expression of

hLM(t | s, X (s) = g) = h0(t)E
[
eβ(t)X (t) | T ≥ t, X (s) = g

]
, g = 0, 1. (3)

The conditional expectation can be evaluated by considering the multi-state model
given in Fig. 1.

States 0 and 1 correspond to the values of the time-dependent covariate (response)
being 0 and 1, respectively, and state 2 is the death state. The original landmarking
paper did not consider a possible transition back from state 1 to 0, but we will allow
this here. The relation between the event time T and the multi-state model X (t) is
given by the equivalence {X (t) = 2} ⇔ {T ≤ t}.

In the present context, Eq. (3) is valid if for those alive at time t , conditional on the
current state X (t), the transition to death is independent of X (s), the state at time s.
This assumption is fulfilled if the multi-state model is Markov. If that is the case, then
the transition probabilities Pgh(s, t) = P(X (t) = h | X (s) = g) can be calculated
if the hazards of making a transition from 0 to 1 or backwards and the transitions
from 0 or 1 to state 2 (death) are known, using the Kolmogorov–Chapman forward
equations. The transition hazard from g to h will be denoted by λgh(t). The conditional
prevalence probabilities

State 0
(no response)

State 1
(response)

State 2
(death)

Fig. 1 An irreversible illness-death multi-state model, with response as the illness state
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πg1(s, t) = P(X (t) = 1 | X (s) = g, T ≥ t)

= P(X (t) = 1 | X (s) = g, X (t) = 0/1) = Pg1(s, t)

Pg0(s, t) + Pg1(s, t)
,

defined for g = 0, 1, describe the conditional probability of being in response (in state
1) at time t , given in state g at the earlier landmark time s, and given alive at time t .
Finally, we define πg0(s, t) = 1 − πg1(s, t). The conditional expectation in (3) can
then be written as

πg0(s, t) + eβ(t)πg1(s, t).

This implies that the hazard ratio in the landmark model can be expressed as

exp
(
βLM(t | s)) = hLM(t | s, X (s) = 1)

hLM(t | s, X (s) = 0)
= π10(s, t) + eβ(t)π11(s, t)

π00(s, t) + eβ(t)π01(s, t)
. (4)

A number of remarks can be made regarding this expression. First, if β(t) ≡ 0,
that is, when the time-dependent covariate has no effect at all on survival, then we
have βLM(t | s) ≡ 0, independently of πg0(s, t) and πg1(s, t). Second, the landmark
regression coefficient βLM(t | s) is always between −β(t) and β(t). A further simpli-
fication can be made when considering the most common situation, the irreversible
case, where the 1 → 0 transition is not possible, and hence π11(s, t) ≡ 1. This gives

exp(βLM(t | s)) = eβ(t)

π00(s, t) + eβ(t)π01(s, t)
= eβ(t)

1 + (eβ(t) − 1)π01(s, t)
, (5)

and has 0 ≤ βLM(t | s) ≤ β(t). The intuitive explanation of the formula is as follows:
if those with X (s) = 0 quickly jump to 1 (so if π01(s, t) is high), then the effect is
quickly attenuated, so βLM(t | s) is close to 0, while if those with X (s) = 0 remain in
0, then the effect is not attenuated, so βLM(t | s) will be close to β(t). The derivative
with respect to t of βLM(t | s), evaluated at the landmark s, is given by

β ′(s) −
(
eβ(s) − 1

)
·
{
λ01(s) + λ10(s)e

−β(s)
}

.

If the time-dependent Cox model is correct and satisfies the proportional hazards
assumption, i.e. ifβ(t) ≡ β, thenβLM(t | s)will usually vary over t , unless for instance
β = 0. As mentioned earlier, usually the effect of the time-dependent covariate is esti-
mated through a proportional hazards model like (1), where the proportional hazards
assumption would ignore the possibly time-varying nature of βLM(t | s). Equations (4)
and (5) show that a proportional hazards landmark model would typically be misspec-
ified. If such a misspecified Cox regression landmark model is fitted, then [17–19] the
estimate obtained in that model will be approximately equal to

β∗
LM(s) ≈

∫ thor
s βLM(t | s)var(X (t)|T = t)h(t)S(t)C(t) dt

∫ thor
s var(X (t)|T = t)h(t)S(t)C(t) dt

. (6)
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2.1.2 Illustration

Figure 2 shows a plot of βLM(t | s) of Eq. (5) on the y-axis in the irreversible case,
where both time to response and time to death follow exponential distributions with
different values of the rates λ01(t) ≡ ρ for response, and β; the death rate without
response was set to λ02(t) ≡ λ = 0.1. The landmark regression coefficients βLM(t | s)
have been recalculated for different values of s.

The attenuation as time between s and t increases can be clearly seen. The degree
of attenuation increases with larger values of ρ.

The time-dependent effect of βLM(t | s) is further illustrated by generating a single
large dataset (n = 10, 000) based on the same exponential distributions as before with
ρ = 0.2, λ = 0.1, β = 1. A landmark analysis was performed at s = 2, with death
as endpoint and X (s), response at 2 years, as time-fixed covariate. Subsequently the
method of [10] based on Schoenfeld residuals, as implemented in cox.zph in the
survival package [14] in R was applied. This method gives an approximation of
β̂LM(t | s) as function of t . Figure 3 shows the result, on the left the plot including the
residuals, on the right only the (default) lowess curve in black showing the approxi-
mation of β̂LM(t | s), with 95% confidence intervals in black dashed lines. In dotted
lines the theoretical formula of (4) is shown.
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Fig. 2 The (time-dependent) landmark regression coefficients (on the y-axis) for different values of ρ and
β
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Fig. 4 Estimates of β∗
LM(s) for ρ = 0.2, λ = 0.1, β = 1; without (a) and with (b) censoring

The conclusion is that the theoretical time-varying effect of βLM(t | s) can be
detected and retrieved (the lowess curve being close to the theoretical curve) in a
large dataset.

After focusing on the time-varying nature of βLM(t | s) of the landmark model, we
now turn to what is being estimatedwhen (as is usually done in practice) a proportional
hazards landmark model is fitted to the data. Figure 4 shows box-plots of the estimates
of β∗

LM(s) of (6), obtained from 1000 simulations from datasets of 10,000 subjects,
with ρ = 0.2, λ = 0.1, β = 1, for values of s = 2, 4, 6, 8, 10, together with the
time-dependent Cox regression estimate. In Fig. 4a no censoring was applied, while
in Fig. 4b independent uniform censoring between 7.5 and 12.5 was applied.

The mean of the estimates of β∗
LM(s) hardly changed with s (a minimal decrease

from 0.504 at s = 2 to 0.476 at s = 10). The mean for the time-dependent Cox
regression was 1.001. With censoring, the mean of the estimates of β∗

LM(s) increased
from 0.558 at s = 2 to 0.808 at s = 10. The reason for this increase compared to the
case of no censoring is that for later landmark times, contributions from βLM(t | s) for
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Fig. 5 Estimates of β∗
LM(s) for ρ = 0.05, λ = 0.1, β = 1; without (a) and with (b) censoring

larger t get less weight (because of censoring, C(t) is smaller). With censoring, the
mean for the time-dependent Cox regression was 0.999.

Figure 5 is similar to Fig. 4, the only difference being that now ρ = 0.05. The
difference between the time-dependent Cox and the landmark analyses is now much
smaller, because with smaller ρ, π01(s, t) is now smaller.Without censoring, the mean
of the estimates of β∗

LM(s) decreased from 0.826 at s = 2 to 0.819 at s = 10. With
censoring, the means increased from 0.852 at s = 2 to 0.946 at s = 10. The means of
the time-dependent Cox estimates were 1.000 (no censoring) and 0.998 (censoring).

2.2 Continuous Time-Dependent Covariates

2.2.1 Theory

Explicit calculations as for the case of dichotomous time-dependent covariates are
much harder to obtain for continuous time-dependent covariates. Recall from (2)

hLM(t | X (s)) = h0(t) · E
(
eβ(t)X (t) | T ≥ t, X (s)

)
. (7)

We will follow [2,15] in assuming that conditioning on T ≥ t is negligible [11]
(see also), and that the joint distribution of X (s) and X (t) is Gaussian. The results
given below should thus be understood as approximations that should be reasonable in
low-risk situations. We will derive such approximations for the case where the time-
dependent covariate X (t) follows a Gaussian process with mean μ(t) = EX (t) and
covariance function K (s, t) = cov(X (s), X (t)). Then the conditional distribution of
X (t) given X (s) is normal with mean μ(t | X (s)) = μ(t)+K (s, t)K−1(s, s)(X (s)−
μ(s)) and variance σ 2(t | X (s)) = K (t, t) − K 2(s, t)K−1(s, s). The conditional
expectation on the right-hand side of (7) is in fact the moment generating function of
the conditional distribution of X (t), given X (s), evaluated at β(t) (recalling that the
additional condition that T ≥ t is ignored). This leads to the approximation
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E
(
eβ(t)X (t) | T ≥ t, X (s)

)
≈ exp

{
β(t)μ(t | X (s)) + 1

2
β2(t)σ 2(t | X (s))

}
. (8)

Note again that the approximation in (8) is due to having ignored the selection on
having survived to time t .

A quite useful special case, also considered in [2], is the case where the time-
dependent covariate of subject i at time t follows

Xi (t) = μ(t) + bi + X∗
i (t), (9)

with the mean μ(t) a deterministic time trend, bi a random person effect, following
a zero mean normal distribution with variance ω2, and X∗

i (t) a mean zero Ornstein–
Uhlenbeck (OU) process, starting at X∗

i (0) = 0, and defined further by

dX∗
i (t) = −θX∗

i (t) dt + σ dWi (t), (10)

where Wi (t) is a Wiener process and θ and σ are parameters describing the degree of
mean reversal (to zero) and influence of the random fluctuations of theWiener process,
respectively. The solution of (10) is given by [1] (see, e.g.) [A.4]

X∗
i (t) = σ

∫ t

0
exp(−θ(t − s)) dWi (s).

This is a stationary Wiener process with covariances

cov(X∗
i (s), X

∗
i (t)) = σ 2

2θ
exp(−θ |t − s|).

Adding the random person effect b, the result is a stationary Wiener process with

cov(Xi (s), Xi (t)) = ω2 + σ 2

2θ
exp(−θ |t − s|) = σ 2

tot (ρ + (1 − ρ) exp(−θ |t − s|)) ,

where σ 2
tot = ω2 + σ 2/(2θ) is the total variance of X (t) and ρ = ω2/σ 2

tot is the
intraclass correlation, the proportion of the total variance represented by the random
person effect variance. The correlation

ρ(s, t) = ρ + (1 − ρ) exp(−θ |t − s|) (11)

drives the conditional distribution of Xi (t), given Xi (s), which can be seen to be
normal with mean μ(t | Xi (s)) and variance σ 2(t | Xi (s)), given by

μ(t | X (s)) = μ(t) + ρ(s, t) (X (s) − μ(s)) ,

σ 2(t | X (s)) = σ 2
tot

(
1 − ρ2(s, t)

)
.
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Using (8), this leads to the approximation

E
(
eβ(t)X (t) | T ≥ t, X (s)

)

≈ exp

[
β(t) {μ(t) + ρ(s, t)(X (s) − μ(s))} + 1

2
β2(t)σ 2

tot

{
1 − ρ2(s, t)

}]
. (12)

Taking logarithms in (12) and differentiating with respect to X (s) yields

βLM(t | s) = d

dX (s)
ln hLM(t | X (s)) ≈ β(t)ρ(s, t). (13)

So, when the time-dependent covariate follows (9)–(10), the regression coefficient
βLM(t | s) in the landmark model is approximately equal to the regression coefficient
β(t) in the time-dependent Cox model, attenuated by the correlation function ρ(s, t),
defined in (11). The correlation function ρ(s, t), defined in (11), decreases exponen-
tially from 1 to ρ as t increases from s to ∞, the speed of decay depending on θ .

2.2.2 Illustration

Four plots in Fig. 6 illustrate the approximation in (12) for a relatively simple situation
with one time-dependent covariate. The baseline hazard h0(t)was taken to be constant,
equal to 0.1, corresponding to an exponential distribution with mean 10. The hazard
at time t , given the history X(t), was taken to be

h(t | X(t)) = h0(t) exp(βX (t)), (14)

with β = 0.5. Figure 6a shows the reference situation where the trajectories of the
time-dependent covariate were generated according to an OU process, with μ(t) ≡ 0,
total variance σ 2

tot = 0.5, intraclass correlation ρ = 0.5 and θ = 1. For given σ 2
tot, ρ

and θ , the random person effect varianceω2 was chosen such thatω2/σ 2
tot = ρ, and σ 2

such that ω2 + σ 2/(2θ) = σ 2
tot. The landmark was fixed at s = 1. The approximation

in (12) is contrasted with a Monte Carlo approximation where an OU process with the
parameters specified above was generated, jointly with an event time following (14).
For each of a very large number of subjects, i = 1, . . . , N , first a random effect bi
was generated according to a mean zero normal distribution with variance ω2. The
starting value of the realization of X∗

i (t) was set to X∗
i (0) = 0. Subsequently, for a

series of very short intervals of length dt (we took 0.01), given the current value of
X∗
i (t), the value of Xi (t) was set at bi + X∗

i (t), the hazard was calculated according
to (14), and a coin was tossed with probability h0(t) exp(βXi (t)) dt to decide if the
subject would die in that interval. If not, a new value for X∗

i (t + dt) was calculated
according to X∗

i (t) − θX∗
i (t) dt + σU dt , with U an independent standard normal

random variable, and Xi (t + dt) was set as bi + X∗
i (t + dt). The procedure for

subject i stopped when the subject died or at a censoring time of 10 years. A very
large database of processes and associated death or censoring times was stored. For
a given landmark time point s, here 1 year, the number of evaluable subjects (i.e.
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Fig. 6 Theoretical and Monte Carlo approximations of E
(
eβ(t)X (t) | T ≥ t, X (s)

)
for reference setting

[a σ 2
tot = 0.5, ρ = 0.5, θ = 1], and for different choices of θ = 1 (b), ρ = 0.25 (c), and σ 2

tot = 1

surviving until s) was set at 500,000. Conditioning on X (s) = 0 was achieved by
considering only those simulated processes for which X (s) was less than dX away
from 0 (we took dX = 0.1). Finally, E

(
eβX (t) | T ≥ t, X (s) = 0

)
for fixed t > s

was approximated by considering the further subset of processes for which T ≥ t
and calculating the average value of eβX (t) within those subsets. The procedure of
taking appropriate subsets (from the same database) was repeated for X (s) = ±0.5.
These latter approximations are shown as the logarithm in solid (wiggly, because
of Monte Carlo error) lines, the approximations in (12) (also logarithm) as dotted
lines. Figures 6b–d show results when the reference situation is changed by choosing
different values of θ (b), ρ (c) and σ 2

tot (d).
All curves in Fig. 6a–d start at βX (s) = 0.25, 0,−0.25, for X (s) = 0.5, 0,−0.5,

respectively, at t = s. The parameters θ and ρ determine the speed of attenuation for
t > s and the asymptotes for t → ∞ of the regression coefficients βLM(t | s) in the
landmark analyses. Lower values of θ and ρ imply a higher degree of attenuation. The
second term 1

2β
2σ 2

tot(1 − ρ2(s, t)) increases from 0 at t = s to 1
2β

2σ 2
tot at t → ∞

and is incorporated equally in each of the dotted curves with each plot, since it does
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not depend on X (s). Changing the value of σ 2
tot [comparing (a) and (d)] only leads to

vertical shifts of the dotted curves and does not change the relative distance for different
values of X (s). Finally, the difference between the theoretical approximations shown
in the dotted lines and the Monte Carlo approximations in the solid lines reflect the
effect of selective removal (because of death), which was ignored in (8) and onwards.
Compared to a situation with no removal of subjects because of death, for a given
X (s), subjects with higher X (t) have a higher probability of being removed. As a
result, subjects with lower X (t) remain in the population, which results in the dotted
curves beingpulled downwards. The total varianceσ 2

tot ,whichwas seennot to influence
the theoretical βLM(t | s) in (13), does influence this selective removal. This behaviour
is quite similar to the selective removal of subjects with high frailty values in frailty
models, the effect of which is also stronger with increasing frailty variance. Further
simulation studies (not shown here) indicated that the effect of selective removal is
stronger (i.e. the approximation of (12) less accurate) when the baseline death rate is
increased, a phenomenon that is also present in frailty models.

3 Data Illustration

Wefurther illustrate our results using thewell-knownStanford heart transplant data [6],
consisting of 103 patients admitted to a waiting list for a heart transplant. The event
time is time from admittance to the waiting list until death; interest is in the effect of a
heart transplant on survival. Of the 103 patients, 69 received a heart transplant, and a
total of 75 patients died, 45 with a heart transplant and 30 without a heart transplant.
Median follow-up calculated by reverse Kaplan–Meier was 2.51 years. An important
covariate predictive of the effect of heart transplant is the mismatch score, measured
for those patients with a heart transplant. It is a continuous score derived from antibody
responses of pregnant women [6] and reflects the degree of incompatibility (based on
tissue typing) between the donor and recipient. Median mismatch score was 1.08,
with 0.75 and 1.58 as 25th and 75th percentiles. Because different effects of the heart
transplant may be expected for patients with a high mismatch score and patients with
a low mismatch score, we distinguish between patients with a mismatch score in the
highest quartile and the rest. Four patients with a heart transplant and no mismatch
score (because no tissue typingwas performed) are included in the larger set of patients
with a mismatch score ≤ 1.58. We define two time-dependent covariates of the type
studied in Sect. 2.1: X1(t) = 1, if the patient has received a heart transplant before
time t with a mismatch score higher than 1.58 and 0 otherwise, and X2(t) = 1, if
the patient has received a heart transplant before time t with a mismatch score less
than or equal to 1.58 and 0 otherwise. A time-dependent Cox regression with X1(t)
and X2(t) as time-dependent covariates resulted in estimated regression coefficients
of 0.605 with a standard error (SE) of 0.386 (hazard ratio; 95% confidence interval
1.83; 0.86–3.90) for X1(t), and −0.031 with a standard error (SE) of 0.319 (hazard
ratio; 95% confidence interval 0.97; 0.52–1.81) for X2(t). The tentative conclusion,
which has to be seen in the light of the fact that heart transplantation was in its infancy
during data collection, seems to be that heart transplants with a high mismatch score
do more harm than good and that no clear effect can be seen of heart transplants
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Table 1 Results of time-dependent Cox regression and landmark analyses at landmark time points
s = 1, 1.5, 2 months

s n Transplants Death β(SE) HR (95% CI)
(score > 1.58)

Time-dependent Cox 103 16 (15.6%) 75 (72.8%) 0.605 (0.386) 1.83 (0.86–3.90)

1 month 74 10 (13.5%) 48 (64.9%) 0.560 (0.444) 1.75 (0.73–4.18)

1.5 months 65 10 (15.4%) 40 (61.5%) 0.255 (0.492) 1.29 (0.49–3.39)

2 months 57 10 (17.5%) 32 (56.1%) 0.431 (0.533) 1.54 (0.54–4.37)

with a low/medium mismatch score. Since differences between time-dependent Cox
regression and landmarking can be most clearly seen for time-dependent covariates
with large effects, wewill focus on the effect of X1(t) in a number of landmarkmodels.

Most of the heart transplants in the data occur in the first couple of months, so
we take s = 1, 1.5, 2 months as landmark time points for illustration. Earlier and later
landmark time points result in numbers of transplant with (mismatch) score > 1.58 of
less than ten. Table 1 gathers the results of the time-dependent Cox regression and of
the three landmark analyses.

It is clear that, compared to the hazard ratio of 1.83 of the time-dependent Cox
regression, the estimated hazard ratios are indeed attenuated towards 1, as predicted
by our results. The degree of attenuation is determined by many factors: π01(s, t) in
Eq. (4), possible time-varying effects β(t) in the time-dependent Cox model, and by
the degree of censoring [see Eq. (6)], which makes it hard to compare the results of
the different landmark models.

4 Discussion

In this paper we derived relations between the regression coefficients obtained in a
landmark analysis and those of a time-dependent Cox regression, when interest is
in the effect of a time-dependent covariate on survival. In case the time-dependent
covariate has no effect on survival at all, i.e. when the time-dependent Cox regression
coefficient is identically 0, the landmark regression coefficient is identically 0 as well.
Otherwise the time-dependent Cox regression coefficient will be attenuated. Different
formulas apply for dichotomous and continuous covariates, but the degree of attenu-
ation is mainly determined by how quickly the value of the time-dependent covariate
changes over time. For dichotomous time-dependent covariates this is expressed in the
prevalence probabilities, while for the Ornstein–Uhlenbeck example it is expressed in
terms of the intraclass correlation and the θ parameter describing the degree of mean
reversal.

We did not study the effects ofmeasurement error (misclassification error in the case
of dichotomous time-dependent covariates) or ageing due to infrequentmeasurements.
The approximations in Sect. 2.2.1 can be adapted to account for that, in the spirit of [2],
and theywill result in a further attenuation of the regression coefficient of the landmark
analysis. The main reason for not considering this aspect in detail is that landmark
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analysis and time-dependent Cox regression analysis will both be affected by these
complications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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