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Abstract The multiplex-case and control design in which multiple cases are sampled
from the same family is considered. In such studies phenotype information of the un-
genotyped relatives might be available.We intend to use additional family information
when performing genetic association tests. A score test is revisited to provide a flexi-
ble framework to accommodate various genetic models and to improve power of the
association test by adding available family information. The proposed test accounts
for correlations induced by multiple cases from the same pedigree, directly deals with
X-linked SNPs in mixed-sex-related samples, and incorporates additional phenotypic
information such as the number of (un-genotyped) siblings and parents with similar
symptoms by assigning the weights to (genotyped) multiplex cases. In addition, the
score test directly incorporates posterior probabilities of imputed genotypes, which
leads to an efficiency measure that reflects imputation uncertainty on the test con-
ducted. The proposed test is applied to real applications for illustration. Its efficiency
is demonstrated via simulations.
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1 Introduction

We investigate the use of family-based samples for conducting case–control associ-
ation analysis. The family-based association tests such as the FBAT [33] are robust
against population structure, but lack power because they utilize only thewithin-family
component for the construction of the association test [19,34,40]. The population-
based tests that incorporate between-family information for family data may be more
powerful. A hybrid case–control family-based analysis has been proposed, in which
family-based designs integrate unselected controls from other studies into the analysis
[21]. In contrast, we incorporate multiplex cases into population-based case–control
study in the framework of score test. Although cases as well as controls can be sampled
from families, we focus on the multiplex-case and control design using familial cases.
The primary advantage of this design would be that familial cases are enriched for
genetic factors and therefore may be more informative for genetic research [3]. Such
families may have higher frequencies of susceptibility alleles, and the expected differ-
ence in frequencies can be greater using multiplex cases and unrelated controls than
using independent samples [19,34]. Since the test statistic to detect association typi-
cally depends on the difference in genotype frequencies between cases and controls this
design may improve power to detect association, in particular using next-generation
sequencing data [48].

When cases are ascertained via multiple affected individuals within pedigrees, the
ascertainment issue should be addressed. It is argued that the ascertainment event
depends on the phenotype but is conditionally independent of the genotype given dis-
ease outcome. The retrospective likelihood, therefore, is appropriate under selection
[44,45]. Using a score test simplifies this matter, in which both prospective and retro-
spective model can be dealt with [28]. There are other advantages of using a score test
based on genotypes. Firstly, it does not require the genotype frequencies to comply
with Hardy–Weinberg proportions (HWP). Earlier work by Sasieni [35] demonstrated
that statistical tests based on the comparison of allele frequencies rather than geno-
type frequencies between unrelated cases and controls can have an increased rate of
false-positive conclusions when genotype frequencies do not satisfy HWP. Secondly,
it provides a simple framework; different dosage scores of the high-risk allele can be
used to test for multiplicative, dominant, or recessive effect. Lastly, the score test can
be equally applicable for a quantitative phenotype, even when the sample is selected
by extremes of phenotype [44].

To consider family-based samples for conducting case–control association analysis,
we need to take into account within-family correlations to obtain the proper type I error
rates. Generalized estimating equations (GEE) can be used to account for correlations
between related individuals [25]. Slager et al. found that this method often fails due to
the singularity in the working correlationmatrix [37]. Slager and Schaid [36] proposed
a statistical test based on the Cochran–Armitage test for trend in proportions [4,11]
which included a variance appropriately accounted for family relationships. Bour-
gain et al. [5] constructed a quasi-likelihood score (QLS) test statistic that accounts
for correlations between individuals by including kinship coefficients, thereby uti-
lizing information from the known pedigree structure. In order to utilize additional
phenotype information of un-genotyped family members, Thornton and McPeek [40]
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proposed the more powerful quasi-likelihood score (MQLS) test. This extension of
the QLS test incorporates additional phenotypic information of relatives who are not
genotyped. That is, the phenotype data of un-genotyped family members are used to
give corresponding weights to the (genotyped) multiplex cases. Note that both QLS
and MQLS tests are based on the best linear unbiased estimator of allele frequency.
These are more suited for related samples from a large complex pedigree for which
maximum likelihood estimation is impractical [30]; data collected on the Hutterites
and such are outside the scope of this work. Being an allelic test the MQLS test does
not have flexibility to test for multiplicative, dominant, or recessive effect. Uh et al.
[43] extended theMQLS to genotypicMQLS (gMQLS) test to accommodate different
genetic models. Note that the weighting scheme using positive family history, which is
similar to that of theMQLS test, has been proposed by Callegaro et al. in allele-sharing
statistics for genetic linkage analysis [7]. In this work we incorporate this weighting
scheme for the association analysis directly in the score statistic.

Working within the framework of the score test makes other extensions feasible.
Firstly, we wish to test for association on the X chromosome in a related sample. For
the X chromosome, females have two chromosomes but males have only one. As the
X chromosome represents 2.5 % of the human genome for males and 5 % for females,
information coming from the X chromosome cannot be ignored. Until recently little
research has been reported on performance of such test statistics for association on the
X chromosome. For unrelated samples, Loley et al. conducted a broadly conceived
simulation study comparing different tests for association on the X chromosome [26].
One option is that after applying an allele-based test to males and females separately
the two statistics of χ2

(1) distribution can be combined to a test statistic of χ2
(2) [46].

Although this approach is straightforward to apply, it often is not a valid test for
family data. For example, when a sibling consists of a brother and sister pair, the two
χ2

(1) tests of males and females are not independent; combining these two statistics
becomes rather complicated. Alternatively, for construction of X-linked score test for
the multiplex-case and control design, we follow the line of reasoning by Clayton
[10]. While males carry 1 copy, in females most loci on the X chromosome are subject
to X inactivation [9]; a female will have approximately half her cells with 1 copy
active while the remainder of her cells have the other copy activated. In the absence
of interaction with other loci or environmental factors, males should be equivalent to
homozygous females. Therefore, X loci in males are coded 0 or 2. To account for
relatedness in multiplex cases, an X-linked correlation matrix can be calculated either
using the ITO matrices of Li and Sacks [22] or using MINX (MERLIN in X, [1]).

In the Genome-Wide Association Studies (GWAS) era, another important point
to be considered is the imputation of the genotypes. By borrowing external informa-
tion of reference haplotypes from the Haplotype Mapping Project (HapMap, http://
www.hapmap.org/) and 1000 Genomes Project (http://www.1000genomes.org/), the
number of SNPs to be tested increased from 2.5 to 6.7 million [38]. Considering the
number of imputed SNPs will increase, and providing computationally efficient soft-
ware is as important as guarding both accuracy and precision of the test using these
imputed genotypes. Therefore, we propose a one-step approach to test and to deal
with uncertainty of imputed genotypes. Based on the well-known results concerning
the score function for incomplete data [13], we replace the genotype by its poste-
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rior expectation given imputed data. The variance of the score statistic measures the
statistical information contained in the data. As in Louis [27], Marchini et al. [29]
incorporated in the variance term the loss of information from not observing the real
genotype. In this manner, the score test provides an efficiency measure R2

T that reflects
the impact of imputed genotypes on the specific test conducted [41,42]. In order to pro-
vide computationally feasible software for dealing with GWAS using imputed SNPs,
C++ executable programs (CCassoc and QTassoc) are available at http://www.lumc.
nl/uh.

2 Methods

2.1 Score Test for the Ascertained Cases

We first address the ascertainment of the independent subjects. Let Y = (Y1, . . . ,Yn)
be the phenotype, X = (X1, . . . , Xn) denote genotype dosage 0, 1, or 2. Further, Ȳ is
the mean of Y in the whole sample, or the proportion of cases in case–control stud-
ies. Since the ascertainment event S depends on the phenotype but is conditionally
independent of the genotype given Y , P(X | Y,S) = P(X | Y ). Therefore, the retro-
spective likelihood based on P(X | Y ) is appropriate under selection [44,45]. Based
on the retrospective likelihood, the score statistic for testing for an additive effect of a
genotyped locus on phenotype is

UX = (Y − Ȳ )�X. (1)

Although the score statistic initially is tomodel for the effect of genotype on phenotype,
the subscript X is to note that UX is based on the distribution of P(X | Y ) [12,28].
The score statistic UX is asymptotically normally distributed under H0 with the zero
mean and variance

VarUX = (Y − Ȳ )�VarX (Y − Ȳ ). (2)

Under H0, U 2
X/VarUX is asymptotically distributed as chi-squared with 1 degree of

freedom. The variance of genotype X can be estimated by

ˆVarX = σ 2
X = p̃1(1 − p̃1) + 4 p̃2(1 − p̃2) − 4 p̃1 p̃2,

where p̃ = ( p̃0, p̃1, p̃2)� denotes genotype frequency estimate. Here the genotype
frequencies do not need to comply with Hardy–Weinberg proportions (HWP). Note
that this test can be applied to a binary trait as well as a quantitative phenotype, even
when the sample is selected by extremes of phenotype [44]. The score statistic and its
variance can be adapted to test other genetic models and for X-linked SNPs.
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2.2 Score Test for Related Sample Using Genetic Correlation

When using multiplex cases from the same pedigree, we need to take into account the
correlations. We define the correlation matrix K for n subjects as follows:

K =

⎛
⎜⎜⎜⎝

1 ρ12 . . . ρ1n
ρ12 1 . . . ρ2n
... . . . . . .

...

ρ1n ρ2n . . . 1

⎞
⎟⎟⎟⎠ . (3)

The off-diagonal entries, ρi j s, are twice the kinship coefficient between individuals i
and j (i �= j). Here we use prior kinship coefficients [6]; these are based on expected
identical by descent (IBD) sharing of randomly chosen alleles from each of the two
individuals, and calculated from the pedigree structure.

Let� = σ 2
X11

� be n×n matrix where 1 represents a vector of ones of length n. To
take into account correlations induced using multiplex cases from the same pedigree,
the expression of the variance of UX in (2) can be replaced by

VarUX = n−1(Y − Ȳ )�[K ◦ �](Y − Ȳ ), (4)

where ◦ denotes the (Hadamard) termwise product. Because� is a covariance matrix,
it must be symmetric and positive semidefinite and is invertible, and K inherits these
properties. Note that K is invertible if and only if the sample does not include both
members of any MZ twin pair [40]. Using this modified variance ofUX , under H0 the
ratio U 2

X/VarUX is chi-squared distributed with 1 degree of freedom [43].
We next describe methods to calculate correlation coefficients of K in (4) for

different genetic models and X-linked SNPs to modify the variance of the score test.

2.3 Correlation coefficients for Autosomal Loci

2.3.1 Additive Model

To calculate ρi j in (3), we consider the ITO method [22]. The ITO method uses three
stochasticmatrices: I, T, andO. Each row of eachmatrix corresponds to the conditional
probability of genotype, given both genotype and IBD status, 2 IBD (I) , 1 IBD (T),
and 0 IBD (O), respectively. Let ρT be the correlation for the T-component, then the
correlation between the i th and j th relatives for autosomal loci is

ρi j = π2 + π1ρT (5)

where πk is the probability that the specified relatives should share k alleles IBD.
Note that ρi j is twice the value of kinship coefficient, and ρi j = (1/2)R where R
is the degree of relationship [39]. For autosomal loci ρT equals to 1/2. Hence, for
example, the correlations between a sib-pair are ρsib-pair = 1/4 + 1/2ρT = 1/2,
and the correlations between double first cousins are ρdouble-first-cousins = 1/16+
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6/16ρT = 1/4. For computation of K existing software such as MERLIN [1] or
KinInbcoef [2] can be used. Because we also want to extend the multiplicative models
to alternative ones and to test X-linked SNPs, we apply the approach of Li and Sacks.
For an outbred population, the correlation matrix consists of sub-blocks of families.

2.3.2 Recessive and Dominant Model

For the recessive model the correlation coefficient is no longer independent of allele
frequencies. Let K rec denote the correlation matrix for the recessive model containing
ρreci j off the diagonal. We denote p̂ the minor allele frequency estimate. The formula
for the additive model (5) should be replaced by ρreci j = π2+π1ρT rec, where ρT rec =
p̂/(1 + p̂), when random mating condition is satisfied. For example, the correlation
of a sib-pair is

ρrecsib-pair = 1

4
+ 1

2

(
p̂

1 + p̂

)
= 1 + 3 p̂

4(1 + p̂)
.

The expression in (4) is then VarUX = n−1(Y − Ȳ )�[K rec ◦ �](Y − Ȳ ) and the
element of �, σ 2

X , can be replaced by p̃2(1− p̃2), where p̃2 denotes the frequency of
the 2/2 genotype. Analogously assuming complete dominance of one allele over the
other allele the above can be applied by flipping the values 1 and 0 for the dominant
model.

2.4 Correlation Coefficients for X-linked Loci

An X-linked analog of the autosomal correlation matrix (3) is denoted as K X . For an
additivemodel K X can be calculated either by the algorithmused inMINX (“MERLIN
in X”) [1] or by KinInbcoefX [2]. Deriving the correlation for an X-linked gene is
exactly the same as for the autosomal correlation, except that there are four basic
correlations, ρT , in (5). For an additive model we have

ρTf,f = 1/2, ρTf,m = ρTm,f = 1/
√
2, ρTm,m = 0,

where the subscripts indicate female pairs, mixed pairs, and male pairs, respectively.
Thus, the correlation between full sisters with respect to sex-linked traits is

ρX,sisters = 1/2 + 1/2ρTf,f = 3/4,

and the correlation for maternal uncle and niece is

ρX,maternal−uncle−niece = 1/4ρTm,f = 1/4 ∗ 1/
√
2.

For females we denote genotypes 0, 1, and 2, and genotypes of males are coded as
0 and 2 by treating males as homozygous females. The expectation of the genotype
X is the same in both sexes, while the genotypic variance due to the marker on X
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chromosome in males (σ 2
m) is twice that in females (σ 2

f ). Expected covariances for
X-linked are 3/4σ 2

f for sister pairs, and

1/4ρTm,f = 1/4 ∗ 1/
√
2 ∗ σm ∗ σf = 1/4σ 2

f

for maternal uncle–niece pair.
The score statistic and its variance can be extended to test recessive effects and for

X-linked SNPs using the corresponding correlation matrices.

2.5 Testing for Association at Imputed SNPs

To deal with the uncertainty caused by imputation, we followed the same line of
reasoning as in Uh et al. [42] for modifying the score test. Based on the statistical
theory for missing data, the genotype data can be partitioned into two parts: Xcomp =
[Xobs, Xmis] [13,27]. The log likelihoods for the complete data (�comp) and observed
(incomplete) data (�obs) are given by

�comp(θ) = log P(Xobs, Xmis | θ),

�obs(θ) = log
∫

P(Xobs, Xmis | θ)dXmis.

LetU (θ) be the complete data score, ∂�comp(θ)/∂θ , and I (θ) the complete data infor-
mation,−∂�2comp(θ)/∂2θ , respectively. Instead of observing X , for imputed genotypes
the posterior probability, 
i = (
i0,
i1,
i2), is given for subject i = 1, . . . , n. Let
the expected dosage for the genotype counts of the i th individual be

X̃i = EXi = 
i1 + 2
i2. (6)

Then we replace the genotype counts X by

UX̃ = (Y − Ȳ )� X̃ (7)

in the score statistic (1). As before the score statistic UX̃ is asymptotically normally
distributed under H0 with zero mean. Its variance can be determined as in Louis [27]:
Var(U ) = E(J )−[E(UU�)−UU�],where J is the negative of the second derivative
matrix for the complete data andwhere E(J ) is the expected complete data information
over the posterior distribution. The first term of Var(U ) is the variance if there were
no “missing data,” and the second term is the penalty for using imputed genotypes.
We apply this variance computation to our score UX̃ .

Let� = σ 2
X11

� be n×n matrix with the genotypic variance σ 2
X where 1 represents

a vector of ones of length n. And, the n×nmatrix�loss denotes the loss of information.
Then, the score and information for the observed data likelihood are given by

Uobs(θ) = EXmis | XobsU (θ),

Iobs(θ) = EXmis | Xobs I (θ) − VarXmis | XobsU (θ) = � − �loss.
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Here, the term VarXmis | Xobs(·) represents the loss of information due to imputation
uncertainty.

The elements of�loss are definedby the outer product of the square root of individual
loss li ,

li = 
i1(1 − 
i1) + 4
i2(1 − 
i2) − 4
i1πi2.

Thus, on the diagonal we have �loss;i i = li and off the diagonal we have �loss;i j =√
li l j for i, j = 1, . . . , n. Then the variance of the score can be expressed as

VarXobsUX̃ = n−1(Y − Ȳ )�
[
K ◦ (� − �loss)

]
(Y − Ȳ ), (8)

where ◦ denotes the (Hadamard) termwise product. The relative efficiency measure
for case control design of Uh et al. [42] can be used as a quality control measure for
accuracy with respect to the association parameter:

R2
T = (Y − Ȳ )�[K ◦ (� − �loss)](Y − Ȳ )

(Y − Ȳ )�[K ◦ �]((Y − Ȳ )
. (9)

Consequently with genotyped data �loss = 0, hence R2
T equals to 1. In contrast to the

imputation accuracy such as r2 of MACH [24], which is a pre-analysis measure, this
post-analysis information measure assigns more weights to associated SNPs [41].

2.6 Incorporation of Family History

Suppose that we have n + m individuals with n and m the number of individuals
with non-missing and with missing genotype data at the given marker, respectively.
We consider the case–control status of these individuals, and let Yn and Ym denote
case–control status of genotyped and un-genotyped individuals, respectively. Observe
that the MQLS test [40] also treats the genotype X as a random variable, and that the
phenotype and family relationship are treated as the weight. The cases get a weight
of 1 and population controls get weight of 0. Let K n,m denote n ×m matrix that give
correlations between non-missing and missing individuals. Then we propose the new
weight for the score test as

Y ∗ = Yn + K n,mYm . (10)

For example, when a case has two un-genotyped affected siblings, the weight is

Y ∗ = 1 + (1/2 1/2)

(
1
1

)
= 2
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Note that this weight is based only on phenotype and genetic relationship. Therefore,
we can replace Y with the corresponding new weight Y ∗ in the score statistic

U∗
X = (Y ∗ − Ȳ ∗)�X, (11)

and in its variancs

VarU∗
X = n−1(Y ∗ − Ȳ ∗)�[K ◦ �](Y ∗ − Ȳ ∗).

3 Simulations

To evaluate the performance of the test statistics, the following ascertainment schemes
were considered: one affected and two unaffected (ASP1), two affected and one unaf-
fected (ASP2), and three affected siblings (ASP3). For testing we select 1 genotyped
individual from each family as cases and use the score test, which is the Cochran-
Armitage test for trend in proportions [4,11]. In addition,we explorewhether the power
increases by including phenotypic information of un-genotyped relatives. When the
type of families is uniform in all families—for example in ASP2 each family consists
of 1 affected genotyped sibling and 2 additional phenotype of un-genotyped siblings,
the both score tests with and without family information are equivalent. Therefore, we
mix the three types of datasets (Mixed): 200 cases are selected from each of the 3 types
of ascertainment schemes (ASP1, ASP2, and ASP3). In particular, we implemented
the following simulation procedure:

(a) For case population, parental genotypes are generated assuming random mating
and Hardy–Weinberg equilibrium for minor allele frequencies of 0.01, 0.05, 0.07,
0.10, and 0.30.

(b) Conditional on parental genotypes we generate genotypes of 3 offspring assuming
Mendelian transmission.

(c) Using the logistic model, disease indicators for offspring were generated. The
model we considered was

logit(μi ) = β0 + βgxig, (12)

where xig is the genotypic score for a diallelic gene. The parameter β0 denotes the
intercept and was determined by β0 = logit(Kb), where Kb = 10 %, the baseline
disease risk under H0, is used. For evaluation of type 1 error rate, we simulate data
under the null, so that the odds ratio, exp(βg), was set to 1. For simulating data
under alternative hypothesis the genotype effect in the logistic regressionmodel in
Eq. (12) wasmodeled as follows: exp(βg), the odds ratio, was equal to 1.2 and 1.5.

(d) Since we are dealing with a complex phenotype we also included some residual
familial correlation due to the polygenic or environmental sources in our disease
model. The broad sense heritability can be written as h2 ∼ σ 2

u /(σ 2
u + σ 2

E ), where
the residual error term σ 2

E represents the non-genetic residual familial correla-
tions. This E part quantifies components of variance on the logit scale rather than
on the original scale of the (underlying) phenotype, σ 2

E can be approximated as
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exp(1) ≈ 3 assuming E ∼ N (0, 1). Consequently following the error distribution
N (0, σ 2

u ) and by setting σ 2
u equal to 1, we obtained the broad sense heritability

h2 equal to 25 %. Similarly, by setting σ 2
u = 0.5 , we obtained h2 equal to 14 %.

(e) For control population the steps (a) and (b) are performed with exception that in
the step (b) only the genotypes of one individual are generated.

(f) Each sampling experiment under additive and recessive genetic model and vari-
ous ascertainment schemes consisted of 1000 independent replicates: 500 cases
500 controls for the ascertainment schemes ASP1, ASP2, ASP3, and 600 cases
and 600 controls for the Mixed ascertainment.

(g) For each replicate, we tested for an association using (i) the score test (ST) and
(ii) where appropriate the score test that includes phenotypic information of un-
genotyped relatives (STfam).

For generating X-linked genotypes in the step 1, maternal genotypes are generated
as above. For paternal genotypes, only one allele is generated, which follows the
Bernoulli distribution; the other allele is fixed as Y, which contributes to determine
the gender of offspring in the step 2.

3.1 Simulation Results

Type I error rates are reported for each statistic, where the type I error rate is the
proportion of significant replicates at the nominal level of 5 % out of the total number
of replicates. With 1000 replicates and a true type I error rate of 5 %, 95 % of the
empirical estimates are expected to fall between 0.036 and 0.064. In Table 1 the results
from the simulation are shown. The baseline prevalence rate has been assumed to be
10 %. For the additive model the type I error rate of the score test under the ascer-
tainment schemes ASP1 and ASP2 was within the expected range of (0.036, 0.064),
except the type 1 error rate of 0.35 under the ascertainment scheme of ASP3, 1 selected
from 3 affected siblings. For the Mixed ascertainment, both tests showed appropriate
type 1 error rate. For the recessive model, under each ascertainment scheme the type
1 error rate of the both tests was too conservative to test rare variants with MAF 5 %,
or the corresponding frequency of the homozygotes 0.25 %.

Table 2 presents the results of power analysis: the score test (ST) and the score
test including positive family history (STfam). We simulated the same models as those
found in Table 1, namely the same ascertainment schemes discussed previously. Since
no statistic examined in Table 1 showed the inflated type I error rates, the comparisons
of the estimated power for all simulated models are valid. The power was calculated
as the proportion of significant replicates at the nominal level of 5 % out of the total
number of replicates. From Table 2, in general selecting cases with positive family
history is advantageous; power increased by selecting cases from multiple affected
siblings. For the additive model, with weaker association (OR = 1.2) the gain in
power was greater when residual variance was small (h2 = 14 %). For the recessive
model for rare variants (frequency of homozygote ≤0.01) there was little power to
detect association, whereas the gain in power was remarkable under the ascertainment
schemes that required a minimum of two affected individuals in each family. Table 2
also presents power results from the Mixed ascertainment scheme of 600 cases and
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Table 1 Empirical type I error rates: calculated by the proportion of significant replicates at the nominal
level of 5 % out of 1000 simulations

Model Ascertainment Tests Case/control Under H0
Additive Minor allele frequency (MAF)

0.01 0.05 0.07 0.1 0.3

ASP1 STa 500/500 0.050 0.050 0.046 0.046 0.053

ASP2 0.050 0.052 0.04 0.056 0.048

ASP3 0.049 0.035 0.049 0.036 0.035

Mixed ST 600/600 0.050 0.046 0.052 0.049 0.049

STfamb 0.044 0.044 0.047 0.049 0.045

Recessive Frequency of homozygotec

0.0025 0.0049 0.010 0.090

ASP1 ST 500/500 0.029 0.054 0.048 0.049

ASP2 0.020 0.045 0.052 0.050

ASP3 0.018 0.038 0.036 0.038

Mixed ST 600/600 0.027 0.051 0.049 0.048

STfam 0.028 0.040 0.054 0.048

a Score test
b Score test including phenotypic information of un-genotyped relatives
c Equal to square of MAF

600 controls, in which each 1/3 of cases were selected from ASP1, ASP2, and ASP3
families. For the rare homozygotes, type 1 error rate was too conservative to test the
recessive effects. Overall the STfam test was more powerful than the ST test.

Table 3 shows the results of power analysis for X-linked SNPs. Overall the results
show the similar findings as for autosomal SNPs. While in case of rare variants (MAF
= 0.01) our proposed tests (ST and STfam) have little power; for more common variants
the gain in power can be observed.

4 Applications to Real Data

4.1 The Leiden Longevity Study (LLS)

For association of X-linked SNPs and illustration of using imputed probabilities of
the genotypes, we apply the proposed test to data from the Leiden Longevity Study
(LLS) [17,41].

In the Leiden Longevity Study (LLS), long-lived families are investigated for para-
meters contributing to the longevity phenotype. Families were included if at least two
long-lived siblings were alive and fulfilled the age criterion of 89 years or older for
men and 91 years or older for women. In total, 944 long-lived proband siblings were
included with a mean age of 94 years (range 89–104), 1671 offspring (mean age 61,
range 39–81), and 744 partners (mean age 60, 36–79). Nonagenarian siblings were
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Table 4 Results of association testing for the X-linked SNPs

Marker Position al1 al2 N0
a N1

a EAF0b EAF1b STc STfamd

rs12840872 X:4942237 T C 741 930 0.458 0.510 8.08E−06 1.51E−07

rs11094824 X 22212620 A G 741 925 0.452 0.491 1.64E−02 2.86E−04

rs10855652 X:86416874 G A 741 933 0.443 0.488 1.18E−02 5.51E−04

Bold numbers indicate approximate genome-wide significance
a Number of controls and cases
b Allele frequency of al2 in controls and cases
c Score test
d Score test including positive family history

genotyped using Illumina660W (Rotterdam, Netherlands) and their partners were
genotyped using Illumina660W or OmniExpress (Estonina Biocentre, Genotyping
Core Facilty, Estonina). GenomeStudio was used for genotyping calling algorithm.
Sample call rate was>95%, and SNP exclusions criteria were Hardy–Weinberg equi-
librium p value <10−4, SNP call rate <95 %, and minor allele frequency <1 %.
The number of the overlapping SNPs that passed quality controls in both samples was
296K. To increase the overall coverage of the genome to 2.5million SNPs, we imputed
autosomal SNPswith HapMap (HaplotypeMapping Project, http://www.hapmap.org)
release 22, build 36 of the CEU sample. The imputation program IMPUTE2 (http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html) was used.

For association of X-linked SNPs, we consider an affected sibling pair (ASP) and
control design: 933 long-lived subjects from 420 nonagenarian sibling pairs are served
as cases and 741 partners of offspring as controls. Additional phenotypic information
(current age or age at death) for un-genotyped (or deceased) family members (par-
ents or additional siblings) was included: 404 long-lived relatives. Here, to take into
account different expectancies in the different birth cohorts, we used life tables for
the Dutch population to define the longevity phenotype, the top 10 % of the spe-
cific birth cohorts [17]. In Table 4 the results are shown using an arbitrary threshold
of p value <0.0001. From ca. 5900 SNPs on X chromosome tested, no SNP was
found to be genome-wide significant. To determine approximate genome-wide signif-
icance thresholds as described in [16], the ratio of effective and actual number of tests
(0.2) was used to estimate the number of the tests and to correct for multiple testing,
namely p value = 1E−05. Only rs12840872 exceeded the corrected significance level
(p value = 8.47E−06). Further STfam test that incorporates positive family history
gave smaller p values, than the ST test.

Imputing SNPs that are not directly genotyped but are present on a reference panel
such as the HapMap usually results in not one imputed value but three probabilities
of the possible genotype value, 0, 1, or 2 for each individual. To deal with genotype
uncertainty, one can choose the “best” genotype—genotype with the largest posterior
probability, or one can use expected genotype counts (genotype dosages) as in (6).
By calculating the variance of the score, there are again two options: incorporating
uncertainty as in our method, or ignoring uncertainty, which is equivalent to setting
�loss = 0 in (8). We consider three scenarios: (i) “best” guess of genotype and�loss =
0, (ii) genotype dosage and �loss = 0, and (iii) genotype dosage and incorporating
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Table 5 Comparison of methods to deal with uncertainty caused by genotype imputation

U X̃
a VarXobsU X̃

b ST R2
T
c

(i) “best” guess & �loss = 0d 3.24 219.71 4.66E−01 1.00

(ii) genotype dosage & �loss = 0d 20.64 18.6 1.71E−06 1.00

(iii) genotype dosage & �loss ≥ 0 20.64 16.53 3.87E−07 0.78

a Equation (7)
b Equation (8)
c Post-analysis information measure as in Eq. (9)
d Ignoring uncertainty

imputation uncertainty, �loss ≥ 0 (8). For extensive simulation studies comparing
these three approaches that deal with uncertainty in analysis of imputed genotypes,
we refer to [20,47].

For illustration purpose, we chose an extreme case: a SNP, rs17183864 (chromo-
some 6), with MAF 1 % and the post-imputation measure r2 = 0.3 of MACH [24] or
info of IMPUTE, which is the default threshold for ensuring imputation quality. As
shown in Table 5, selecting the most likely genotype performs poorly, even though
this specific SNP passed the pre-set imputation accuracy threshold, r2 = 0.3. The
results also shows that incorporating imputation uncertainty can be a more powerful
method for testing imputed SNPs with corresponding post-analysis quality measure
R2
T = 0.78 in (9).

4.2 The Genetics, Arthrosis, and Progression (GARP) Study

The Genetics osteoARthritis and progression (GARP) study consists of 187 Cau-
casian sibling pairs and four trios of Dutch origin affected by symptomatic and radi-
ographic OA at multiple sites [31]. Osteoarthritis (OA) is a common degenerative dis-
ease of the articulating joints with a considerable, but complex, genetic component.
By performing a genome-wide linkage scan and combined linkage and association,
the iodothyronine-deiodinase enzyme type 2 (D2) gene (DIO2) was identified as an
osteoarthritis susceptibility gene. The common coding variant (rs225014; Thr92Ala)
in the DIO2 gene showed significant association. Information about the number of
siblings and parents with similar symptoms was available: 30 % of the genotyped
affected siblings have no missing (un-genotyped) affected siblings, 30 % have one
missing affected sibling. The maximum number of missing affected siblings is 8 (one
family). Regarding affected parents, 16 and 60% of the ASPs had two and one affected
un-genotyped parents, respectively. Using this extra information, Callegaro et al. pro-
posed the allele-sharing statistics for genetic linkage analysis to account for the family
history, and this considerably increased the evidence of linkage in the surrounding of
the DIO2 susceptibility locus [7].

The question arises whether this strategy could successfully be adapted to a genetic
association study.We consider a case–control association study: the 380 cases from the
GARP study and the control population from the Leiden Longevity Study described
in the previous section [17]. The controls consist of 1671 offspring of nonagenarian
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Fig. 1 Weights in STfam for all GARP ASPs compared to ASPs with 2 IBD (Color figure online)

siblings (in 420 families) and 744 partners of the offspring. After exclusion of patients
with OA and unknown status, 1947 subjects were served as controls.

Suggestive evidence for linkage was observed on chromosome 14q32.11 (75–95
cM; mean informativity = 0.50, [31]), wherein the genes DIO2 (78 cM), FLRT2 (82
cM), and CALM1 (89 cM) were located. First, the linkage region of 75–95 cM was
converted to the physicalmap, 79147631–95189589 bp, using a buildGRCh37 genetic
map (ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/). The
GWAS data for both the GARP and LLS study were available, and the genotype impu-
tation was performed using IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/impute_
v2.html) based on the reference panel from the February 2012 release of the 1000
Genomes project (ftp://ftp.1000genomes.ebi.ac.uk/) and genome build 37. For the
respective linkage region ca. 200KSNPswere available.We performed the association
analysis, and the following filtering was employed: MAF in controls >1 %, IMPUTE
info> 0.4, and RT

2 > 40 %. After filtering out insertions and deletions (indels), the
resulting number of the SNPs tested was 57557. For the two study designs—(1) GARP
cases (n = 380) versus controls and (2) GARP cases with 2 IBD (n = 152) versus
controls—we compared the score test (ST) to the test that includes positive family
history (STfam). The weights in STfam in the expression (11) of the two samples are
compared in Fig. 1. For the population with 2 IBD, larger weights are given corre-
sponding to the increasing family size of affectedmembers (Fig. 1).Using approximate
genome-wide significance threshold of p value = 1E−05 as in the previous analysis
[16], the p values in boldface are the significant SNPs with corresponding test that
passed this threshold in Table 6. The SNPs with significant testing were reported, and
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Table 6 Results of association testing for the linkage region (75–95 cM)

Marker chr Position al1 al2 EAFa Infob GARP vs. controls

Cases Controls STc R2
T
d STfame R2

T,fam

rs72688979 14 79826540 C T 0.023 0.012 0.989 7.97E−03 59.9 6.72E−08 42.8

rs148126909 14 79826567 C T 0.023 0.012 0.989 7.97E−03 59.9 6.73E−08 42.8

rs73337429 14 92866956 T G 0.067 0.032 0.979 3.31E−05 75.3 4.28E−06 79.2

rs113235844 14 92876680 T C 0.060 0.026 0.987 8.53E−06 79.3 1.03E−05 79.0

rs113272510 14 92894256 A G 0.057 0.024 0.985 3.97E−06 73.6 3.52E−06 69.9

Bold numbers indicate approximate genome-wide significance
a Frequency of allele 2 (al2)
b Imputation quality measure by IMPUTE
c Score test of affected siblings and control design
d Relative efficiency measure (9) that reflects imputation uncertainty with respect to the association para-
meter
e Score test that incorporates positive family history

in this dataset except one SNP, testing that incorporates positive family history gave
smaller p values.

Next we revisited the common coding variant, rs225014, in theDIO2 gene. In [31],
joint linkage and association analysis using GARP ASPs was performed to identify
SNPs that explain the observed linkage signal by linkage and association modeling in
pedigrees (LAMP, http://csg.sph.umich.edu/LAMP) [23]. A significant predisposing
association with the C allele of DIO2 SNP rs225014 was obtained (p value = 0.006).
Moreover, allele frequencies in sibling pairs sharing two alleles identical by descent
(IBD) at the DIO2 locus (indicating those subjects that contribute to the linkage) were
compared with allele frequencies of random controls—a random sample of unrelated
subjects aged 55–65 years of the Rotterdam study [15]; the C allele of rs225014 was
found significantly associated (p value = 0.025). For confirmation and replication in
independent UK, Dutch, and Japanese OA studies, significant recessive association
of the C-C haplotype of the DIO2 SNPs rs12885300 and rs225014 with women with
advanced symptomatic hip OA was found.

In the current association study as shown in Table 7, the minor allele frequency
(MAF) of the cases (0.368) was almost the same as the MAF in the controls (0.364);
observe that we have here a different control population, namely from LLS. Addition-
ally, allele frequencies in sibling pairs sharing two alleles identical by descent (IBD)
at the DIO2 locus (n = 152 in 85 families)—indicating those subjects that contribute
to the linkage—were compared to those in controls, and MAF in cases increased to
0.428, which led to a smaller p value. For this specific SNP the magnitude of the p
values of the two tests was comparable, which might indicate that a larger number of
cases are needed to detect association.

5 Discussion

When testing for weak genetic effects, besides the efforts to increase sample size, it
is desirable to develop statistical methods that more effectively detect an association.
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Table 7 Results of association study for rs225014

Design N cases N controls MAF cases MAF controls STa STfamb

(1) GARP vs. controls 380 1947 0.368 0.364 9.96E−01 9.08E−01

(2) GARP (IBD = 2) vs. controls 152 1947 0.428 0.364 1.08E−01 9.90E−02

a Score test of affected siblings and control design
b Score test that incorporates positive family history

Through simulation we showed that sampling genotyped cases from the high-risk
families increases the power, even if only one case was sampled. To further increase
the efficiency of the study, the multiplex-case and control design was considered, in
which genotype frequencies between cases, each of whom was sampled from multi-
ple affected families, and unrelated controls were compared. The primary reason for
choosing this design would be that familial cases are enriched for genetic factors and
therefore may be more informative for genetic research, particularly in the presence
of genetic heterogeneity and phenocopies. For genetic linkage analysis Callegaro et
al. proposed allele-sharing statistics using information on family history [7]. In the
same spirit, we investigated the use of readily available family information for genetic
association within a framework of a score test.

The first issue related to the proposed test is the ascertainment of the cases. The
retrospective likelihood is considered to adjust for ascertainment by conditioning on
the phenotypes of family members. For a general phenotype, a score statistic to test
for an additive effect of a diallelic locus on phenotype is the genotype–phenotype
covariance; the score statistic can be conveniently applied in both prospective and
retrospectivemanners [10,28]. The score test has a flexible structure that allows testing
of multiplicative, dominant, and recessive effects of specific genotype features on
(disease) phenotype. Testing recessive effect is straightforward in a score test by using
different dosage score (0, 0, 1)� opposed to (0, 1, 2)� for testing an additive model.

Secondly, themethods should allow for familial correlations due to sampling-related
individuals. The variance of the score statistic can be readily modified to account for
familial relationships based on kinship coefficients. To detect recessive effects of a
SNP, however, the calculation of correlation coefficient depends on kinship coefficients
as well as allele frequency. Another important extension is to construct a test for X-
linked SNPs in mixed-sex-related samples. Combining the two statistics obtained by
applying an allele-based test to males and females separately is not a valid test for
family data. In this work we adapted the score test using X-linked correlationmatrices.

Thirdly, to incorporate the extra phenotypic information, the weighting scheme
similar to allele-sharing statistics for genetic linkage analysis of [7] is applied to the
association testing. When the type of families is uniform in all families—for example
each family consists of 2 sibling pairs and 2 additional phenotype information of un-
genotyped parents, the weight is uniform and is equivalent to that of the (ordinary)
score test. Using various weights other than the value 0 or 1, the proposed score test
tends to the continuous weights in that for the quantitative trait.

As shown inSect. 3 incorporatingpositive family history in the test statistic appeared
to be a powerful strategy. Just by selecting one case from each family with positive
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family history the power can be increased. This strategy of selecting caseswith positive
family history might be advantageous, when disease variant allele is rare and residual
variance is small. In particular, for detection of recessive effects of rare variants, the
increase in the power was remarkable under the ascertainment schemes that required
a minimum of two affected individuals in each family. This finding supports previous
results that greater power was achieved by sampling cases from multiplex pedigrees
[34]. We also have shown improvement of the association results by including the
number of affected relatives who were not genotyped in the score statistic through
a real data example. Especially, the power of association using rare SNPs can be
much improved by adding phenotypic information of un-genotyped family members.
Currently the quality of genotype imputation using family data and its impact on the
actual analysis is not yet clear [8]. When possible, utilizing additional information of
extensive familymembers from the previous linkage studies is a viable option opposed
to imputing un-genotyped family members.

Another benefit of employing our methods would be the use of the weight to pin-
point the extreme families for further investigation. The weights y implemented in
the (ordinary) score statistic depend only on the individual’s case–control status, 0 or
1, whereas the weights now can vary depending on the relationship configurations as
well as on the phenotype of individuals. Applying these weights to GARP data showed
that larger weights were assigned to ASPs with 2 IBD (Fig. 1). Extrapolating this idea,
more efficient weights can be constructed as in [17]. For families selected for exces-
sive survival, they computed the family-specific standard mortality ratio’s (SMRs) to
describe lifespan distributions of each generation within a family. Instead of discrim-
inating between cases and controls based on these values they can be directly used as
weights, which will induce more variabilities in the test statistic. Another extension
would be the joint testing of multiple SNPs as described in [18]. Although our test
is intended mainly for the multiplex cases, we have shown that this can equally be
applied for related controls. A concern regarding the use of family-based samples for
conducting case–control association analysis is the potential for population stratifica-
tion effects. For well-designed studies this should be of minor concern; this effect can
be controlled using genomic controls [14]. In addition, it is possible to use principal
component analysis to correct for population stratification [32]. Top PCs can be mod-
eled as covariates with the original outcome, and the residual, the result of removing
any stratification effect on the outcome under the null, can be used for further analy-
sis. When family structure is more complicated than siblings or parents such as in an
isolated founder population, instead of using naive estimator of genotype frequency
the best linear unbiased estimator [30] can be used in our score test, and the weight
incorporating positive family history can be modified in the similar manner [40].

In the Genome-Wide Association Studies (GWAS) era, genotype imputation has
become an essential tool. The imputation of genotypes allows investigators to test
association at un-genotyped genetic markers and to combine results across studies
that rely on different genotyping platforms. Combining the GWAS results for meta-
analysis, using family data under strong ascertainment and using case–control data, can
be inefficient and difficult. Here, our test can be of great use, since the score statistics
from the individual studies can be easily combined. Another aspect of popularity
of imputation is that more and more SNPs are imputed using external information
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of reference haplotypes from the HapMap and 1000 Genomes Project. The ever-
increasing number of tests to be performed calls for a tractable flexible approach such
as score test.

In conclusion, incorporating positive family history in the test statistic appeared to
be a powerful strategy. Especially, the power of association using rare SNPs can be
much improved by adding phenotypic information of un-genotyped family members.
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