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Abstract Identification of differentially expressed (DE) genes across two conditions
is a common task with microarray. Most existing approaches accomplish this goal by
examining each gene separately based on a model and then control the false discov-
ery rate over all genes. We took a different approach that employs a uniform platform
to simultaneously depict the dynamics of the gene trajectories for all genes and select
differently expressed genes. A new Functional Principal Component (FPC) approach
is developed for time-course microarray data to borrow strength across genes. The
approach is flexible as the temporal trajectory of the gene expressions is modeled
nonparametrically through a set of orthogonal basis functions, and often fewer ba-
sis functions are needed to capture the shape of the gene expression trajectory than
existing nonparametric methods. These basis functions are estimated from the data
reflecting major modes of variation in the data. The correlation structure of the gene
expressions over time is also incorporated without any parametric assumptions and
estimated from all genes such that the information across other genes can be shared to
infer one individual gene. Estimation of the parameters is carried out by an efficient
hybrid EM algorithm. The performance of the proposed method across different sce-
narios was compared favorably in simulation to two-way mixed-effects ANOVA and
the EDGE method using B-spline basis function. Application to the real data on C. el-
egans developmental stages also suggested that FPC analysis combined with hybrid
EM algorithm provides a computationally fast and efficient method for identifying
DE genes based on time-course microarray data.
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1 Introduction

One of the fundamental problems in biological studies is to identify genes that are
responsive to environmental changes, or responsible for phenotypic differences. This
can be carried out by examining gene expression levels of samples in groups exposed
to different environments using microarray technology. Time-course experiment de-
sign allows the monitor of dynamic process of gene expression. Transient change or
random fluctuation can be discerned if the gene expressions are observed frequently
over time. Besides, certain biological problems, such as identification of genes ac-
tive at different development stages, require time-course data. The advantages of the
time-course design motivate the wide use of time-course microarray data [8, 17, 22].

A key feature of time-course data is that the repeated measurements of one gene
at different time points are likely to be correlated since they are taken from the same
subject. Furthermore, the cellular mRNA concentration can serve as a feedback reg-
ulatory mechanism, thus influencing future gene expression. This correlation can be
called “within-gene correlation.” Various statistical methodologies, such as ANOVA
test [5], moderated t-test [21], empirical Bayes method [6] and mixture modeling [13]
etc., have been developed for the cross-sectional design based on independent sam-
ples. These methods are not applicable to time-course microarray study due to the
aforementioned “within-gene correlation” present in the longitudinal samples, and
also because the time trend of the gene expression profile is not considered in these
models.

Several approaches have been proposed to identify differentially expressed genes
for time-course microarray data. In general, the goal is accomplished by testing for
each gene the null hypothesis of equivalent expression against the alternative hypoth-
esis of differential expression, based on a model depicting the observed time-course
data. The multiple test correction method, such as Bonferroni or false discovery rate
(FDR), is usually followed to adjust the p-value. A commonly used model, two-way
ANOVA model, is employed by treating different time points as multiple levels of
time factor [14]. There are two limitations of adapting the ANOVA approach to lon-
gitudinal data. First, the timing information of when the measurements are taken is
not utilized. Second, it does not take into account the within-gene correlation.

The first problem can be solved by delineating the temporal expression profile as
a function of time. The temporal expression profile is modeled in [23] as a func-
tion of lower-order polynomials in time. Rather than the lower-order polynomials,
some use a more flexible representation of time-course gene expression profiles by
B-splines [3, 7, 19] or functional principal components (FPCs) [12], techniques of-
ten used in the statistical literature of functional data analysis (FDA) [15, 16, 24].
Compared to the ANOVA model, use of the basis functions reduces the number of
parameters needed for describing an expression profile, thus saving the degree of
freedom and increase the efficiency. The other benefit to use basis representations,
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besides model efficiency, is that this method can be applied to missing data without
imputation.

The second issue can be resolved practically by incorporating random effects ex-
plaining the temporal correlation like a two-way mixed-effects ANOVA model [22].
Analogously, the random effects can also be added into the basis function-based
model. The model with a random intercept in [19] assumes the expression levels
sampled at every pair of time points have the same correlation no matter how far
or close these time points are. A more flexible correlation structure is allowed by
modeling individual profiles as B-spline functions [7] or FPCs [12] with random
coefficients. Some other existing methods model the covariance structure of the ex-
pression process without utilizing the time trend. For example, the temporal profiles
are treated as multivariate normal vector in [20] with a hierarchical distribution im-
posed on the covariance matrix of the multivariate normal vector. A Hidden Markov
model [25] is proposed by considering the observed profile as being influenced by
an underlying Markov process, where the within-gene correlation is implied in the
presence of first-order dependence structure of the underlying process. B-spline and
FPC models require least assumptions on the covariance structure. However, for B-
spline model, many basis functions might be required to capture the variation of the
temporal expression, and the selection of proper knots number and their locations is
critical, which increases the computational burden.

In these methods, the test statistics are constructed either for each gene sepa-
rately [2, 12, 14, 19, 23], or part of the statistics involves information from all genes,
for example, shrinkage variance estimates [7, 20] and maximum a posteriori (MAP)
estimates [25], which are in the same spirit as moderated t-tests [21] and empirical
Bayes methods [6] for independent microarray samples. In the former case, a sepa-
rate model is fitted for each gene and often a large number of parameters are involved
for a relatively modest sample size, leaving few degrees of freedom for the inference
procedure. Also, gene-specific variance estimates are not precise due to small number
of replications in usual microarray studies. For instance, in [12], FPC model is fitted
for one gene at a time to estimate the gene-specific group means and the covariance
structure nonparametrically, and to construct the statistics subsequently. The small
sample size in both groups, 6 cases and 12 controls in [12] example, may result in an
overfitting of the model. The test statistics with shrinkage alleviate these problems to
some extent.

In this work, we propose a unified approach to model all gene profiles using the
techniques in functional principal component analysis (FPCA), which allows flex-
ible representation of the gene expression trajectories and the temporal covariance
structure. In our model, each gene can be considered as a random realization from
the gene pool, in contrast to [12, 19], where each gene is considered as an isolated
case. Thus, fewer parameters per gene are needed and the information across genes
can be borrowed to enhance the variance estimation. The proposed model reflects the
commonality of all gene expressions, yet allows for subject-specific variation of indi-
vidual genes. We aimed to measure the magnitude of differential expression based on
the gene specific variation. In [19] and [12], bootstrap method is used to obtain the p-
value for each gene. This is a computationally expensive strategy, especially in [12],
as each bootstrap sample requires a repeat of the FPCA procedure. An appealing ap-
proach is proposed in [7], where the posterior probability of differential expression
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for each individual gene is estimated and then used to select significant genes. We
adopt such an approach to impose a mixture distribution on the gene specific varia-
tion and using an indicator to reflect whether the gene is differentially expressed.

The proposed method is compared with existing methods in the literature via both
simulated and real data. The real data set is taken from the aforementioned study [22],
where 2430 genes are candidates, showing significant change of expression during
the dauer exit compared to a reference group. Because some of the genes may change
their expression solely by food induction, a known mechanism causing dauer exit, in
order to identify the true genes responsive to dauer exit, we have to compare the gene
expression profiles during this course to those during the reintroduction of food for
starved worms in L1 stage, a stage before entering the dauer stage. In the following,
we will use the terms dauer and L1 to denote the corresponding two groups.

This paper is organized as follows: in Sect. 2 we describe the development of
FPCA model for detection of differentially expressed genes, in Sect. 3 we apply the
proposed approach to the gene expression data collected during the dauer exit process
of C. elegans [22], in Sect. 4 we demonstrate the performance of the proposed ap-
proach by simulation studies, and in Sect. 5 we discuss possible extensions of the
methodology.

2 Model Development

We first elaborate on FPCA approach for time-course microarray data. Our method
consists of two steps. In the first step, the individual expression trajectory over time
is reduced to a finite number of FPC scores, which are then used in the second step
to construct the criterion to identify differentially expressed genes. This approach
accommodates replications through a multi-level mixed-effects model and is broadly
applicable to detect differentially expressed genes.

2.1 FPCA Model for Grouped Microarray Data

We adopt the point of view in functional data analysis to view time-course expres-
sion levels of each gene as one realization of a random curve out of the gene pool,
consisting of genes in the whole genome. The true expression profile of each gene is
determined at the level of gene, but can be regarded as a random outcome at the level
of the gene population. More specifically, a single expression profile X(t), assumed
to be a smooth function in the time interval [a, b], can be modeled as the sum of the
population mean expression profile μ(t) and a random deviation from μ(t). The ran-
dom deviation is further expanded through a set of orthogonal basis functions {φl(t)}
yielding

X(t) = μ(t) +
∞∑

l=1

blφl(t), a ≤ t ≤ b. (1)

The randomness of the process X(t) is now represented by the sequence of random
variables bl . In FPCA model, the basis functions φl(t) are chosen to be eigenfunc-
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tions, satisfying
∫ b

a

GX(s, t)φl(s) ds = λlφl(t).

Here GX(s, t) is the covariance function of X(t), defined by

GX(s, t) = Cov
(
X(s),X(t)

) = E
(
X(s) − μ(s)

)(
X(t) − μ(t)

)
.

Such a decomposition in (1) is known as the Karhunen–Loève expansion [1] for
functional data.

The eigenfunctions, φl(t), analogous to the eigenvector in multivariate analysis,
maximize the variability of

∫ b

a
φl(t)X(t) dt subject to

∫ b

a
φ2

l (t) dt = 1. Besides this
interpretation, the eigenfunctions reflect the direction of major shape deviation from
the mean function. The random coefficient, bl , associated with the corresponding
eigenfunction φl(t), explains how much a gene deviates from the mean function in
the direction of that eigenfunction.

The aforementioned principal component approach is suitable for situations when
all the gene expression profiles have the same mean structure. When expression pro-
files are sampled from different groups, such as a control and a treatment group, we
need to make some adjustment to allow for different mean structures for different
groups before we pool all the gene expression profiles. To see this, consider two pop-
ulations with respective mean functions, μ0(t) and μ1(t), covariance functions, G0

and G1, and mixed together with proportion p and 1 −p. The covariance function of
the mixed (pooled) population becomes

GX(s, t) = pG0(s, t)+ (1 −p)G1(s, t)+p(1 −p)
(
μ0(s)−μ1(s)

)(
μ0(t)−μ1(t)

)
,

which not only contains the mixture of two covariance functions but also a third term
attributed to the difference between the two group means. To avoid the distortion
of covariance function due to different population means, we first subtract the cor-
responding group mean function from each gene profile before we perform further
analysis. This operation can be performed by estimating the mean expression pro-
files separately through the nonparametric approach in [24], among others. A nice
consequence is that the covariance GX of the mixed population becomes

GX(s, t) = pG0(s, t) + (1 − p)G1(s, t), (2)

which collapses to GX = G0 = G1 when G0 = G1. In more general cases, the co-
variance structure from different groups, G0 and G1, may not be the same. They can
be estimated separately through nonparametric approach for each group and plugged
in back to (2) to get the pooled estimate for GX .

In real experiments, the gene expression profiles are typically measured on differ-
ent experimental subjects (or replicates). We denote the expression profile curve of
gene i, i = 1, . . . , n, from experimental subject (or replicate) j = 1, . . . , J , by Xij (t).
These J subjects can be from several groups, but for simplicity of presentation we
assume that there are only two groups, a control and a treatment group, and note that
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our approach can be extended to multiple groups as well. We use the notation zj to
indicate the group membership of the j th experimental subject,

zj =
{

0, if the j th subject is from a control group,

1, if the j th subject is from a treatment group.

Let J0 and J1 be the number of subjects in a control and a treatment group, respec-
tively. For the C. elegans data in [22], J0 = J1 = 4 for both groups. The individual
gene expression profile can thus be represented as:

Xij (t) = μzj
(t) +

∞∑

l=1

bijlφl(t), (3)

where μzj
(t) is the population mean profile for a control group if zj = 0 or a treat-

ment group if zj = 1, and bijl are the principal scores which are uncorrelated random
variables representing the between-subject variations. Typically, only a few scores
suffice to summarize the information in the gene trajectories and we will modeled
these scores in the next subsection.

2.2 Decomposition of the Random Coefficients

Since the purpose of the study is to identify the differentially expressed genes and dif-
ferences between individual trajectory are carried in the principal component scores,
we set up another model for bijl . The random coefficients bijl in (3) can be further
decomposed into a gene effect uil , accommodating gene-specific shape, an effect wil

that particularly accounts for the effect of differential expression, a replicate effect vjl

for the whole array, and the gene-specific replicate effect eij l . Thus our final model
of trajectory function Xij (t) becomes

Xij (t) = μzj
(t) +

∞∑

l=1

(uil + zjwil + vjl + eij l)φl(t). (4)

In model (4), zj indicates the group of j th experimental subject and μzj
(t) the corre-

sponding group mean function as described previously. The random effects above all
have zero means with variance var(uil) = σ 2

u,l , var(wil) = diσ
2
w,l, di ∼ Bernoulli(π),

var(vjl) = σ 2
v,l and var(eij l) = σ 2

e,l , l = 1,2, . . . . The random term vjl can be
dropped if the array replicate effect is very weak and not needed, as in the C. elegans
data in Sect. 3. When di = 0, random variable wil has a degenerate distribution such
that the ith gene will not have differential effect. All the random variables considered
in the model are independent across the subscripts.

Although the number of basis in (4) is infinite in theory, in reality only a few bases
are needed. Standard protocol is to choose the first L eigenfunctions that explain a
sizable fraction of total variation in the data. This selection criterion based on the
fraction of total variation explained (FVE) is rather subjective and may be assisted by
a scree plot. Alternatively, AIC and BIC criteria are often used to select L. A good
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strategy is to assess the results from AIC, BIC and FVE, and then subjectively de-
cide the number of basis functions. There is a risk in using a small number of basis
functions to model potentially highly variable expression as some highly variable DE
genes may be left out. One remedy is to increase the number of bases until the size
of the identified set does not seem to change substantially. The approach based on
the FPCs has the advantage that it lists all components of variations in descending
order along with the corresponding eigenfunctions, so the final decision could be
data-adaptive.

2.3 Model for the Observed Time-course Data

Equation (4) describes the true gene expression profiles. However, in reality, the true
gene expressions may not be observed directly or completely, instead they may be
observed at finite time points and further disrupted by the noisy signal ε with mean 0
and variance σ 2

ε . Denote by yijk the observed mRNA expression of the ith gene from
the j th experimental subject (or replicates) at the kth time point, tijk ; the model for
the observation can be written as

yijk = Xij (tijk) + εijk, for all i = 1, . . . , n, j = 1, . . . , J, k = 1, . . .Kj , (5)

where n is the number of genes in the microarray study, J is the number of experi-
mental subjects or replicates, and Kj is the number of sampling time points and may
be the same for n genes in the j th subject.

The parameters to be estimated in the proposed model (see (4) and (5)) include
population mean functions of control and treatment groups, covariance matrix, vari-
ance components for the random terms (σ 2

u,l, σ 2
w,l, σ 2

v,l, σ 2
e,l, l = 1, . . . ,L), pro-

portion of differentially expressed genes (π ) and an error term (σ 2
ε ). The popula-

tion mean functions and the covariance matrix are estimated nonparametrically via
smoothing methods, so only the remaining parameters are being estimated and there
are 4L + 2 of them, where L is the number of bases selected. In our example of the
nematode data, L = 2, so a total of 10 parameters are used for all 2430 genes.

Details for the estimation of the population mean function μ(t), the eigenfunctions
φl(t) and eigenvalues λl of GX(s, t), and the FPC scores bijl can be found in Appen-
dix A.1 and [24]. To obtain the estimates for variance components σ 2

u,l , σ 2
w,l , σ 2

v,l and

σ 2
e,l , a hybrid EM algorithm was developed, which uses Least Squares Method to ef-

ficiently get the estimates σ̂ 2
u,l , π̂σ 2

w,l , σ̂ 2
v,l and σ̂ 2

e,l and EM algorithm to disentangle

the π and σ 2
w,l . We impose the normal distribution on FPC scores for EM to apply,

as the normal distribution fits the scores with satisfactory result, observed from the
quantile plot of FPC scores versus the theoretical normal quantiles (not shown here).
Details of the algorithm can be seen in Appendices A.2 and A.3.

2.4 The Connection Between FPCA Model and Two-way Mixed ANOVA Model

The two-way mixed ANOVA model for the ith gene at time tk in j th replication can
be written as

yijk = μi + αizj
+ βik + γizj k + rij + eijk, (6)
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with the constraints αi0 = 0, βi1 = 0 and γi0k = γi11 = 0 for all i, k. Here μ is the
expected baseline expression level in control group, αzj

and βk are the main effects
of group and time on the gene expression level respectively, γzj k represents the in-
teraction effect between group and time, and eijk is the independent measurement
error with mean 0 and gene-dependent variance σ 2

i . There is only one random term,
rij ∼ N(0, τ 2

i ), the replicate effect of individual gene, explaining the correlation be-
tween repeated measurements from one gene. If subjects in control and treatment
groups are matched, the replicate effect rij can be modified to reflect the fact that the
matched subjects share one random effect.

We combine some terms in model (6) and let μi + βik = μ′
ik and αizj

+ γizj k =
α′

izj k . Then the new term μ′
ik has the interpretation of average temporal expression

profile of ith gene at time tk in the control group, and it is equivalent to μ0(tk) +∑∞
l=1 uilφl(tk) in model (4). Similarly, α′

izj k can be interpreted as the difference of
the mean expression profile between treatment and control groups at time tk , and is
equivalent to μ1(tk) − μ0(tk) + ∑∞

l=1 wilφl(tk) in model (4). The replicate effect rij
in model (6) is comparable to

∑∞
l=1(vjl + eij l)φl(t) in model (4). However, rij is

constant over time in a two-way mixed ANOVA model, while FPCA model allows
for a time-varying replicate effect.

2.5 Selection of Differentially Expressed Genes

Three methods can be used to identify differentially expressed genes based on the
estimate d̂i . First, we can select the genes with d̂i > 0.5 based on the literal meaning
of posterior probability. Alternatively, a cut-off value κ instead of 0.5 is used to con-
trol the false discovery rate (FDR). Earlier work about controlling the FDR instead of
family-wise error can be seen in the landmark papers [4] and [18]. The latter defined
the positive false discovery rate (pFDR) and described examples in which the pFDR
can be written in the from of posterior error rate [18]. In this sense, the posterior error
rate could be used to estimate the pFDR given a cut-off critical value

ˆpFDR(κ) =
∑

i: d̂i>κ
(1 − d̂i )

number of {i : d̂i > κ} ,

where d̂i is previously defined posterior probability that the positive finding i is in
reality negative. This data-based FDR control procedure is proposed in [13]. Finally,
when the scientists have in mind the number of candidate genes for downstream work,
we could just select top N genes based on the d̂i .

3 Application to C. elegans Data

We applied our method to the C. elegans data set [22], in which there are n = 2430
genes of interest across two conditions, L1 starvation and dauer exit. Under L1 star-
vation condition, the gene expression levels are supposed to be at the control level.
Genes that show differential expressions during the dauer exit are of interest. Gene
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Fig. 1 (a) Mean functions of L1 and dauer groups. The bandwidths for the two mean functions are h1 = 2
and h2 = 2 respectively chosen by generalized cross-validation (GCV). (b) First two eigenfunctions ex-
tracted from the pooled covariance functions of two groups. (c) Estimated covariance function Ĝ(s, t)

by pooling all genes in both L1 and dauer groups. The bandwidths for the covariance function are (1, 1)
chosen by GCV. (d) Scree plot of the variance component percentage sizes

expression levels were measured at hours 0,1,2,3,4,5,6,7,8,10,12 with 4 repli-
cations under each condition.

The FPCA method was applied to the combined data from both groups after the
respective mean function is subtracted from each group. The mean functions for the
two groups and the first two PCs are shown in Fig. 1, (a) and (b). Here, aided by the
scree plot (Fig. 1(d)), we chose the first L eigenfunctions that cover at least 90% of
the total variation in gene expression values. Two bases were extracted from ĜX(s, t)

that together cover about 92% of the variation in the data (Fig. 1(b)). It is interesting
to observe from Fig. 1(b) that the first eigenfunction, which accounts for 69.3% of
the total variation, is almost constant in the center portion of the time interval (3 to
8 hours) but shows a decline at both ends of the time interval. Thus, the highest
variation of the gene trajectories occurs in the mid time zone with a vertical shift.
While it is tempting to declare a constant vertical shift for the entire time duration,
such a conclusion is not supported by the fact that all time-course data have been
shifted to start from the origin. Moreover, there is a second PC which is linear in time
and passes through the origin. This second PC explains about 22.7% of the variations,
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Table 1 Estimates for variance components assuming the data with or without replicate effects. The
bootstrap estimates (see Appendix A.4) for the standard deviations are shown in the parentheses

with replicate effects without replicate effects

l = 1 l = 2 l = 1 l = 2

σ 2
u,l

4.4572 (0.2339) 1.0344 (0.0395) 4.4572 (0.2600) 1.0344 (0.0395)

σ 2
w,l

2.9550 (0.4544) 2.5994 (0.1016) 2.9543 (0.4268) 2.5987 (0.1063)

σ 2
v,l

0.0113 (0.0282) 0.0027 (0.0086) – –

σ 2
e,l

2.1830 (0.1381) 0 (0.0168) 2.1944 (0.1309) 0 (0.0178)

π 0.8161 (0.0172) 0.8163 (0.0194)

meaning that the slope of the linear random effect over time is another major source of
variation for this time-course gene expression data. Another flexible random-effects
model is studied in [7] along the directions of B-spline basis functions, but it needs
more basis functions than the FPCA method to explain the same amount of variation
and there is no clear biological meaning for these basis functions.

Figure 1(c) displays the estimated covariance surface for the observed expression
profile over time, obtained by procedures in [24]. Clearly, the further apart the two
time points are, the less correlated the measurements at these two points are. Al-
though decaying over time, the correlation maintains positive even between points
moderately far apart.

For this data set, we performed two separate analyses, one with and one without
the replicate effects vjl in the model. The rationale for the latter to exclude the repli-
cate effects is because the replicated experiments were not conducted longitudinally,
so the conventional “replicate” effect may not be applicable here. The result in Ta-
ble 1 confirms that the replicate effects can be neglected since the within-replicate
variation is larger than the between-replicate variation. In contrast, the models em-
ployed in [22] and [19] both contain only one constant random effect that is additive
and assigned to the replicate effect. Our analysis suggests that such models may not
be suitable for the C. elegans data.

The hybrid EM algorithm described in Appendices A.2 and A.3 is used to estimate
the variance components associated with the first two PCs (reported in Table 1). The
estimated variance of the measurement error for εijk is 0.2247, and the estimate for
the proportion of genes that are differentially expressed is about π̂ = 0.816, no matter
the replicate effect vil is included or not.

For this data set, Wang and Kim [22] identified 1984 out of the 2430 genes, which
is about 81.64% of the genes and close to our estimate of 81.61%. However, there is
a substantial difference between the two methods in terms of the selected genes (see
Table 2) and this is further elaborated later. The genes identified by both methods as
differential expression constitute the majority of the initial list with 2430 genes. This
is high but could be explained by the fact that the initial 2430 genes already show
significant change over time during the dauer exit process so we only need to exclude
those with expression changes induced by food, which might be a small portion of
the genes. After we adjust for an FDR = 0.01 and 0.05, corresponding to a critical
value of 0.9192 and 0.6667 respectively for d̂i , the FPCA approach selected 1380 and
1767 genes.
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Table 2 Identified gene numbers by the proposed method, two-way mixed ANOVA, EDGE and Liu and
Yang’s method, adjusted at FDR levels of 0.01 and 0.05. For the proposed method, the FDR is controlled
using the procedure in Newton et al. [13]. The FDR procedure used in ANOVA, EDGE and Liu and Yang’s
method is based on Benjamini and Hochberg [4]. The number of genes overlapped with the proposed
method are listed in the parentheses

Identified Gene Number

FDR = 0.05 FDR = 0.01

Proposed Method 1767 1380

ANOVA 1949 (1602) 1681 (1199)

EDGE 1747 (1464) 1551 (1100)

Liu and Yang’s Method 366 (362) 0 (0)

It is also of interest to compare the proposed method with the gene-specific B-
spline method, EDGE [9, 19], and the gene-specific FPCA method in [12]. In Ta-
ble 2, we check the overlap of our results with these two methods, together with
the ANOVA approach in [22] when adjusting at FDR levels 0.01 and 0.05. Figure 2
shows the gene expression profiles chosen as differentially expressed by our method
but not by the others, while Fig. 3 reflects the opposite scenario showing the pro-
files of genes chosen by our method only. The conventional mixed-effects approach
tends to select genes with little between-replicate variation within groups, since this
between-replicate variation is estimated only by the information from the gene itself.
With large variation present, the real difference between the groups might be ob-
scured by the variation of replications. EDGE seems to fail in some of the cases with
big difference in the two groups. The method in [12] by Liu and Yang has substan-
tially different selection from the other methods, which only claimed 366 DE genes
with an FDR of 0.05 and 0 with an FDR of 0.01. In most of cases in Fig. 3, the expres-
sion profiles in L1 and dauer groups cross with each other, which suggests that this
pattern is probably not easily identified by Liu and Yang’s method. The comparison
confirmed that the proposed method can pick up patterns the other methods failed to
identify.

4 Simulation Studies

Initially, we aimed at comparing the performance of our approach to EDGE, a two-
way mixed ANOVA model based on B-splines, and the gene-specific FPCA method
in [12] via simulation. Because the method in [12] took too much computing time, we
were not able to include its results. The rest of this section focuses on the comparison
of the three remaining methods. The simulated data are generated either under the
FPCA model described in (4) or under a two-way mixed ANOVA model in (6). Under
either model, the data were simulated to mimic the C. elegans data set. For each
of the simulation, a sample of J = 8 replicates (four replicates for each one of the
two groups), and each replicate with a comparable number of n = 2500 genes as in
C. elegans data set, was generated.
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Fig. 2 Genes in C. elegans data selected by the proposed method but not by two-way mixed-effects
ANOVA (left column), EDGE (middle column) and Liu and Yang’s method (right column) when adjusting
at FDR = 0.05. Solid line: estimated mean expression trajectories for dauer group; cross mark: observed
expression values for dauer group; dashed line: estimated mean expression trajectories for L1 group; circle:
observed expression values for L1 group. The x-axis is time in hours and the y-axis is the normalized gene
expression intensity

4.1 Simulation under the FPCA Model

We first generated the expression trajectories according to the FPCA model (see (4))
under a range of settings, for K = 5,20 measurement time points and DE proportion
π = 0.1,0.4,0.8. The time grid is placed with equal distances from 0 to 1. The pop-
ulation mean expression functions for the two groups are simulated to mimic those
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Fig. 3 Genes in C. elegans data NOT selected by the proposed method but by two-way mixed-effects
ANOVA (left column), EDGE (middle column) and Liu and Yang’s method (right column) when adjusting
at FDR = 0.05. Solid line: estimated mean expression trajectories for dauer group; cross mark: observed
expression values for dauer group; dashed line: estimated mean expression trajectories for L1 group; circle:
observed expression values for L1 group. The x-axis is time in hours and the y-axis is the normalized gene
expression intensity

estimated from the C. elegans data,

μ1(t) = 0.07
(
t + 0.15 sin(2πt)

)

and

μ2(t) = 0.04
(
t + 0.15 sin(2πt)

)
, t ∈ [0,1].
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Only two principal component functions are considered. They are orthonormalized
Legendre polynomials of degrees 1 and 2:

φ1(t) = √
3(2t − 1) (7)

and

φ2(t) = √
5
(
6t2 − 6t + 1

)
, (8)

with similar shapes as in C. elegans data. The random effects we considered in the
simulated model include gene effects uil , differential effects wil and gene-specific
replicate effects eijk , as well following the structure of (4). We set the variance of
the random noise imposed on the expression function as σ 2

ε = 0.25, and the variance
components as listed in the second column of Table 3.

We perform 100 simulations and summarize the results of parameter estimation in
Table 3. The FPCA approach successfully identified two major principal components

Table 3 Biases and rooted
mean square errors (RMSEs) for
the proposed method under
different scenarios. The results
are based on 100 simulations for
n = 2500 genes each with 4
replicates in both control and
treatment groups. The number
of time points in the simulation
is set to K = 5 and K = 20, and
the probability of differential
expression takes value of
π = 0.1, π = 0.4 and π = 0.8
respectively

Parameter True Value K = 5 K = 20

Bias RMSE Bias RMSE

π 0.1 0.001 0.010 0.002 0.010

σ 2
u1 5.0 −0.015 0.155 −0.013 0.147

σ 2
u2 1.0 −0.003 0.033 0.000 0.032

σ 2
w1 3.5 0.044 1.010 −0.011 0.963

σ 2
w2 2.5 −0.020 0.348 −0.009 0.374

σ 2
e1 2.0 0.003 0.036 0.003 0.034

σ 2
e2 0.1 0.032 0.033 −0.005 0.008

π 0.4 0.000 0.015 0.001 0.016

σ 2
u1 5.0 −0.009 0.155 0.009 0.150

σ 2
u2 1.0 −0.004 0.034 0.000 0.033

σ 2
w1 3.5 −0.014 0.341 0.019 0.340

σ 2
w2 2.5 −0.001 0.150 −0.004 0.156

σ 2
e1 2.0 0.008 0.041 0.000 0.039

σ 2
e2 0.1 0.032 0.033 −0.005 0.010

π 0.8 0.001 0.015 0.000 0.014

σ 2
u1 5.0 0.003 0.157 −0.014 0.168

σ 2
u2 1.0 −0.002 0.037 −0.001 0.037

σ 2
w1 3.5 −0.010 0.224 −0.009 0.220

σ 2
w2 2.5 −0.006 0.104 −0.007 0.105

σ 2
e1 2.0 0.003 0.047 0.002 0.046

σ 2
e2 0.1 0.033 0.035 −0.003 0.013
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Table 4 Comparison of the proposed method, two-way mixed-effects ANOVA and EDGE by achieved
false positive rates (FPR, proportion of true negatives identified as positives) and false negative rates (FNR,
proportion of true positives identified as negatives) at chosen cut-offs (κ’s). For the proposed method, two
practical cut-offs described in Sect. 2.3 were used. For ANOVA and EDGE, the algorithm, illustrated in
Benjamini and Hochberg [4], was used to control FDR at 0.01. The data are simulated from the FPCA
model in (4) and (5)

K = 5 K = 20

π = 0.1 π = 0.4 π = 0.8 π = 0.1 π = 0.4 π = 0.8

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

Proposed Methoda 0.006 0.405 0.049 0.274 0.397 0.098 0.007 0.417 0.052 0.280 0.413 0.097

Proposed Methodb 0.001 0.530 0.004 0.436 0.027 0.318 0.001 0.548 0.004 0.452 0.026 0.333

ANOVA 0.067 0.497 0.087 0.445 0.103 0.413 0.158 0.379 0.178 0.359 0.198 0.343

EDGE 0.025 0.644 0.040 0.576 0.052 0.536 0.411 0.197 0.408 0.201 0.418 0.196

aκ = 0.5

bκ is chosen to control FDR at level 0.01 by method described in [13]

as we used to simulate the data. The estimates of all variance components and the
differential probability π appear to be virtually unbiased. There is some variance
increase for the estimators of σ 2

w,l, l = 1,2 as the differential probability π decreases.

This is presumably because a lesser number of genes can be used to estimate the σ 2
w,l

when the proportion of differentially expressed genes, π , shrinks. As evident form
this table, our approach achieves the same level of accuracy and precision even when
the measurements were taken at as few as 5 time points. Our explanation is that
the underlying expression trajectories we simulated are fairly smooth (polynomials
of degree 2) and the time points are evenly spaced in the entire interval, and thus
five points can capture most of the curve dynamics, suggesting that under certain
situations FPCA method may work as well as when measurement points are only a
few for each gene.

Next, we compare the performance of our FPCA method in detecting differentially
expressed genes with the two-way mixed ANOVA method and the EDGE method,
based on the practical false positive rate (FPR) and false negative rate (FNR) in Ta-
ble 4, and on the Receiver Operating Characteristic (ROC) curves in Fig. 4 under
the same six different settings above. Here the ROC curve of a test shows its per-
formance as a trade-off between specificity (true negative rate) and sensitivity (true
positive rate). Typically a curve of sensitivity versus (1—specificity) is plotted while
a false positive rate or threshold parameter is varied. The tests with better perfor-
mance are those closer to the zero false positive axis or with a higher true positive
rate. The proposed FPCA method clearly outperforms the two-way mixed ANOVA
method and EDGE in all settings tried here.

4.2 Simulation under Two-way Mixed-effects ANOVA Model

In the previous section, the data were generated from model (4) with added noises,
and this would seem to favor the proposed FPCA approach. In this section, we com-
pare the three approaches based on the two-way mixed ANOVA model in (6), giving
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Fig. 4 Receiver Operating Characteristic curves (or ROC curves) of proposed FPCA model (solid lines),
two-way mixed ANOVA model (dashed lines) and EDGE (dotted lines) under the six settings listed in
Table 3. The x-axis is (1—specificity) and the y-axis is the sensitivity
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the ANOVA approach an advantage over other procedures. Because of space limita-
tion, we investigate only one of the six cases in Sect 4.1, when n = 2500, K = 5 and
π = 0.1. This setting contains fewer time points and smaller proportion of DE genes,
both seem to favor the ANOVA approach. We also use this setting to further explore
the robustness performance of all three approaches.

We randomly picked 10% of 2500 genes as differentially expressed, and then
generated the combined terms in ANOVA model ((6) in Sect. 2.4) for each gene
by μi + βik = ∑2

l=1 ailφl(tk), αizj
+ γizj k = ∑2

l=1 cilφl(tk), where ail ∼ N(0, σ 2
al),

cil ∼ N(0, σ 2
cl), and φl(t) is the orthonormalized Legendre polynomial of degree l as

in (7) and (8). If gene i is chosen as a non-DE gene, we let cil = 0. The variances for
random variables ail and ril , l = 1,2, are (σ 2

a1, σ
2
a2) = (2,0.5) and (σ 2

c1, σ
2
c2) = (3,1).

The random effect rij is generated from N(0,0.25) and the error term eijk from
N(0,0.25).

To check the robustness of our method and other methods when the normality as-
sumption for the expression values is violated, we simulated an additional 100 non-
normal data sets by first generating normal variables which were then taken to the
power of (4/3). This power was chosen as the power transformation (0.75) found to
be best for C. elegans data to fit normal distribution. We also tested the proposed
method in the presence of outliers by generating another set of data containing 1%
outliers. The outliers were generated by first randomly picked 1% of expression val-
ues and then increasing the selected values by twice standard deviation with their sign
preserved (i.e., a value of 2 ∗ sign(yijk)sd(yijk) was added to the selected yijk).

The false positive and false negative rates with FDR controlled at 0.01 are reported
in Table 5. As expected, the ANOVA model has the best overall performance, while
the proposed method does not suffer a great deal of loss in terms of FPR and FNR.
The non-normal setting triggers the most increase in FPR and affects all the methods,
but the FNR does not seem to be affected. The outliers have a greater influence on
the proposed method than the ANOVA approach (when compared to the normal data
without outliers) in terms of FPR, but the opposite holds for FNR. All the increases

Table 5 Comparison of the proposed method, two-way mixed-effects ANOVA and EDGE by achieved
FPR and FNR using 100 simulations under two-way mixed-effects ANOVA model. We considered the
scenarios of whether expression values satisfy normality assumption, and whether the outliers or the miss-
ing values in specific genes exist. Two practical cut-offs described in Sect. 2.3 were used for the proposed
method. The cut-offs for ANOVA and EDGE were chosen to control FDR at 0.01 using method in Ben-
jamini and Hochberg [4]. All data are simulated from the ANOVA model in (6)

π = 0.1 normal non-normal outlier 1%

FPR FNR FPR FNR FPR FNR

Proposed Methoda 0.0008 0.156 0.185 0.145 0.066 0.168

Proposed Methodb 0.0003 0.174 0.127 0.198 0.0054 0.210

ANOVA 0.006 0.088 0.148 0.099 0.004 0.160

EDGE 0.057 0.663 0.091 0.620 0.121 0.651

aκ = 0.5

bκ is chosen to control FDR at level 0.01 by method described in [13]
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in FPR and FNR are within an acceptable tolerance range and both the ANOVA and
the proposed approach generally outperform EDGE. We thus conclude that the FPCA
approach is suitable for the C. elegans data and more generally for other time-course
data as well.

5 Discussion

We proposed a new FPCA approach to analyze time-course gene expression data,
with two important ingredients: first, it is data-adaptive and allows a flexible and
natural way to model the data; second, it combines information across all genes to
compensate for the small number of replicates per gene, and provides a powerful test
for identification of DE genes.

FPCA is a nonparametric method well suited for continuous trajectory data that are
increasingly common [10, 11]. Extending the current FPCA method [24] that extracts
dominant dynamics of the temporal process first and then the FPC scores, we have
developed a method to identify a subset of genes as differentially expressed, based on
the FPC scores. In the study presented here, we propose a mixture of normal distribu-
tions on the FPC scores, to explain the extra dispersion of FPC scores associated with
the treatment group caused by a subset of DE genes. Further extension of the model
includes a nonparametric approach, rather than relying on the normal assumption, to
model the different distributions of FPC scores in the control and treatment groups.

The idea of information borrowing has been exploited for a long time in microar-
ray studies of cross-sectional design [6, 21]. Currently, there are several effective
methods to implement this general idea. Some explicitly fulfill the aim, e.g., by im-
posing a hierarchical Bayesian model on the basis-induced coefficients [7] or on the
original multivariate observations [20], and others do so implicitly, e.g. through a
Hidden Markov model as in [25]. A key difference between our approach and these
existing methods is that we use a flexible statistical models without specifying any
prior structures on the shape of the gene trajectories and correlations between time
points. We estimate the correlation structure from the data directly by nonparametric
method.

Our model accommodates the correlations among genes from the same repli-
cate through shared random effects. But because the correlations do not come from
whether they are differentially expressed, d̂i does not use the expression profiles from
the other genes to decide whether the ith gene is differentially expressed. We can ex-
tend our model to such that if we know how the di ’s are correlated then we can use
this information to improve the estimate.

The designation of a gene as differential expression depends on the variance of
trajectories as well as the difference of trajectories between the two groups. Two-way
ANOVA model estimates gene-specific variance, while the FPCA model estimates
the variance by pooling all the trajectories and smoothing over time points, thus bor-
rowing the information across genes and time points. Due to the small sample size,
the gene-specific variance is usually not estimated very well and the test statistic can
perform poorly. The influence of different variance estimates can be seen from their
respective tendency of picking genes as differentially expressed. The benefit of bor-
rowing information across all genes as compared to other gene-specific approaches,
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such as EDGE and the gene-specific FPCA approach in [12], have been amply illus-
trated.

Through the simulations, we found that the violation of normality assumption re-
sulted in a greater increase of false positive rate for the proposed method as well
as other methods. Our suggestion is to check the normality assumption first and to
transform the data appropriately to resemble a normal distribution. The traditional
Box–Cox family of transformation, defined by (yθ −1)/θ , can be applied to the data,
with the parameter θ selected to achieve normality.

To obtain a benchmark on computing (i.e., CPU) time, we ran the proposed
method, two-way mixed ANOVA, the EDGE method and Liu and Yang’s method
for C. elegans data on a dual quad core processor 2.27 GHz Windows 7 64-bit system
with 12 GB RAM. Approximately 75 seconds for the proposed method, 5 minutes
for ANOVA, 25 minutes for EDGE and over 60 hours for Liu and Yang’s method
were required for completion. Our algorithm is computationally fast and thus allows
the analysis of very large genome wide data sets with thousands of genes. Perhaps
the most important advantage is that the temporal variation in the data is biolog-
ically meaningful and can be captured by only a few data-adaptive bases. All the
other methods used predetermined basis function which may not have a biological
interpretation and may increase the number of basis functions needed if the gene ex-
pression profiles over time are not smooth enough. For the C. elegans data studied
in this paper, the expression profiles are fairly smooth, so the FPCA method needs
only two eigenfunctions to explain over 90% of the temporal variation. We expect the
FPCA method to be broadly useful in more general settings.

In summary, we have developed a fast algorithm for the selection of genes whose
expression differentiates in two groups. After extracting meaningful dimensions from
a time-course data set using FPCA, we pick a subset of genes that retain the infor-
mation carried in the full data set. We expect that FPCA-based algorithms will be an
invaluable tool for the analysis of ever-increasing genome-wide data.
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Appendix

A.1 Parameter Estimation

To apply current FPCA approaches, we first take the average of the observed profiles
over the Jg replications within group g, g = 0,1. This yields the mean expression
values in group g, ȳigk = 1

Jg

∑
{zj =g} yijk , where zj is the indicator of group mem-

bership of the j th replicate. This averaging requires each replicate be sampled at the
same time points. In case of missing measurements in any of the Jg replicates we can
impute the missing values, or in case the time-course data are sampled at different
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times for the replicates we can estimate the mean profiles through a nonparametric
scatter plot smoother similarly to the one described below for the mean expression
profile μg(t) for each group. Then model (5) becomes

ȳigk = X̄ig(tik) + ε̄igk,

where X̄ig(t) = 1
Jg

∑
{zj =g} Xijk(t) is the mean expression process, and ε̄igk =

1
Jg

∑
{zj =g} εijk . The mean expression function based on model (1) can thus be writ-

ten as

X̄ig(t) = μg(t) +
∞∑

l=1

b̄iglφl(t), a ≤ t ≤ b, (9)

where b̄igl = 1
Jg

∑
{zj =g} bijl .

The following shows that the mean expression process over replicates pos-
sesses the same eigenfunctions as individual expression process. The covariance
function of the average observed profile, by definition, is cov{ȳigk1, ȳigk2} =
cov{X̄ig(tigk1), X̄ig(tigk2)} + σ 2

ε

Jg
δk1k2 , where δk1k2 is the Kronecker delta function

taking value 1 if k1 = k2 or value 0 if k1 	= k2. It is easy to see that the covariance
function of mean expression function is cov{X̄ig(t), X̄ig(s)} = ∑∞

l=1
λl

Jg
φl(t)φl(s).

The eigenvectors of covariance function for the original expression function Xij (t)

and for the averaged expression function X̄ig(t) are the same. They only differ at
the variation size of random coefficients as a result of averaging the profiles. Thus
consistent estimators for eigenvectors {φl(t)} based on averaged expression profiles
will also be consistent estimators for eigenvectors of original profiles. The percent-
age of variation explained by each principal component also remains the same. This
shows that we can use the averaged profiles to estimate eigenvectors in model (1) and
choose appropriate number of components.

By local weighted least squares (LWLS) smoothing method, which minimizes

∑

i,g,k

K

(
t − tigk

h

)[
ȳigk − (

β0 + β1(t − tigk)
)]2

over β0, β1, we obtain estimator for the mean function μ̂(t) = β̂0. In the above for-
mula, tigk is the time point with at least one observation for all replications in group g,
ȳigk is the average curve, h is the bandwidth for smoothing and K(·) is the kernel
function which weights neighboring points. Subsequently, the individual deviation
from the mean function is estimated by subtracting μ̂g(tigk) from ȳigk . With raw co-
variance Gig(tigk1, tigk2) = (ȳigk1 − μ̂(tigk1))(ȳigk2 − μ̂(tigk2)), k1 	= k2, the covari-
ance function Ĝ(s, t) is estimated by two-dimensional linear LWLS, minimizing

∑

i,g,k1 	=k2

K

(
s − tigk1

h
,
t − tigk2

h

)[
Gig(tigk1, tigk2)

− (
β0 + β1(s − tigk1) + β2(t − tigk2)

)]2
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over β0, β1, β2, with Ĝ(s, t) = β̂0. The technical details can be seen in Yao et al.
[24]. The bandwidths used to smooth the mean and covariance functions are cho-
sen by generalized cross-validation (GCV) method, which minimizes the generalized
leave-one-out prediction error. The covariance function Ĝ(s, t) is then evaluated at
a fine grid and the eigenvectors of the resulting matrix, φ̂l(t), can then be computed
numerically. In practice, a finite number of principal components are used. There are
several ways to select the appropriate number of principal components, such as AIC,
BIC or use the scree plots to decide the suitable number of L so that a high percent-
age of the variation in the data can be explained by these L components. Here we
recommend against the use of cross-validation method for such a method selection
purpose, because cross-validation tends to overfit the data with more random effects
resulting in a larger L than practically needed. The L eigenvectors truncated therein
form an orthonormal basis to represent the true gene expression trajectories.

After removing the smoothed group mean and projecting the centered observed
gene trajectories onto the corresponding eigenvector, we obtain the prediction of ran-
dom coefficient, b̂ij l , on lth eigenfunction. Since bijl = ∫ b

a
(Xij (t) − μzj

(t))φl(t) dt ,
the estimate of bijl can be obtained by substitute the respective estimators into the
above formula,

b̂ij l =
∫ b

a

(
Xij (t) − μ̂zj

(t)
)
φ̂l(t) dt,

where μ̂zj
(t) and φ̂l(t) are the estimated functions described previously. But the tra-

jectory Xij (t) is not completely observed for all t . Therefore, this inner product is
approximated by trapezoid rule. For sparse data, the scores can be estimated by func-
tional principal component analysis through conditional expectation (PACE) [24].
Using the PC scores, we can then predict the entire expression profile for each gene.

Then we estimate the variances of each random component, σ 2
u,l , σ 2

w,l , σ 2
e,l based

on b̂ij l by the least squares method, minimizing

CLS =
∑

(i,j,l),(i′,j ′,l)

(
b̂ij l b̂i′j ′l − Cov(b̂ij l , b̂i′j ′l )

)2
, (10)

since the target Cov(b̂ij l , b̂i′j ′l ) is a function of σ 2
u,l , πσ 2

w,l , σ 2
e,l and σ 2

ε (see Appen-
dix A.2). However, the indicator of whether a gene is differentially expressed, di ,
has to be known in order to estimate variance σ 2

w,l . For this reason, we treat di as
the missing data and use EM algorithm to estimate the variance explained by differ-
ential expression, σ 2

w,l , after we estimate all the other variance components through
least squares method. The details can be seen in Appendix A.3. Given the estimated
variance components, we then estimate the probability of gene i being differentially
expressed given observed expression profiles

d̂i = Ê[di |y] = P̂rob[di = 1|y],

where y denotes all the observed expression data. This provides a criterion to select
a list of most significantly differentially expressed genes.
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A.2 Least Squares Method

Suppose we have truncated the number of principal components to a finite number L

in practice. Denote bT
il = (bi1l , . . . , biJ l) as the vector containing all the principal

component scores on lth eigenfunction associated with ith gene. Write the model for
bil in the matrix form

bil = uil1J + wilz + vl + eil , (11)

where 1J is a J × 1 vector of all ones, vT
l = (v1l , . . . , vJ l), zT = (z1, . . . , zJ ) and

eT
il = (ei1l , . . . , eiJ l). The coefficients of all n genes corresponding to lth eigenfunc-

tion are vectorized such that bT
l = (bT

1l , . . . ,bT
nl) is a vector of dimension nJ × 1.

Then

bl = ul ⊗ 1J + wl ⊗ z + 1n ⊗ vl + el , (12)

where ⊗ is the Kronecker product, uT
l = (u1l , . . . , unl), wT

l = (w1l , . . . ,wnl), and
eT
l = (eT

1l , . . . , e
T
nl). Let Bl = blbT

l , then

E(Bl) = Var(bl ) = σ 2
u,lIn ⊗ 1J×J + πσ 2

w,lIn ⊗ zzT + σ 2
v,l1n×n ⊗ IJ + σ 2

e,lIn ⊗ IJ .

(13)
Here, 1m×n denotes an m × n all-ones matrix.

Similarly, we vectorize the estimated coefficients on lth eigenfunction b̂ij l =∫
(yij (t) − μ̂zj

(t))φ̂l(t) dt , for i = 1, . . . , n and j = 1, . . . , J , and denote the vector

by b̂l . If φ̂l(t) is a consistent estimator for φl(t), then b̂ij l = bijl + ∫
ε(t)φl(t) dt +

o(1) and E(b̂2
ij l) = E(b2

ij l) + σ 2
ε + o(1). Thus, the expectation of B̂l = b̂l b̂T

l is

E(B̂l) = Var(b̂l ) = Var(bl ) + σ 2
ε In ⊗ IJ + o(1). (14)

The term o(1) in (14) is negligible. We will ignore the influence of this term in the fol-
lowing computation. Now the minimization criterion in (10) in Appendix A.1 could
be rewritten as

CLS = tr
{(

B̂l − E(B̂l)
)(

B̂l − E(B̂l)
)T }

= tr
{
B̂lB̂

T
l − 2E(B̂l)B̂

T
l + E(B̂l)E(B̂l)

T
}
. (15)

Note that under the least squares approach, only πσ 2
w,l is identifiable, but not π and

σ 2
w,l . We thus first proceed to estimate πσ 2

w,l and then use the EM-algorithm in Ap-
pendix A.3.

Taking derivative with respect to the σ 2
u,l , πσ 2

w,l , σ
2
v,l , σ

2
e,l and setting them to be 0,

we have linear system to solve

∂CLS

∂σ 2
u,l

= −2
[
tr
{
In ⊗ 1J×J B̂T

l

} − tr
{
In ⊗ 1J×J E(B̂l)

T
}]



Stat Biosci (2010) 2: 95–119 117

= −2

[
n∑

i=1

(
J∑

j=1

b̂ij l

)2

− n
(
J 2σ 2

u + J 2
2

(
πσ 2

w,l

) + Jσ 2
v,l + Jσ 2

e,l + Jσ 2
ε

)
]

= 0, (16a)

∂CLS

∂(πσ 2
w,l)

= −2
[
tr
{
In ⊗ ZZT B̂T

l

} − tr
{
In ⊗ ZZT E(B̂l)

T
}]

= −2

[
n∑

i=1

( ∑

{j :zj =1}
b̂ij l

)2

− n
(
J 2

2 σ 2
u,l + J 2

2

(
πσ 2

w,l

) + J2σ
2
v,l + J2σ

2
e,l + J2σ

2
ε

)
]

= 0, (16b)

∂CLS

σ 2
v,l

= −2
[
tr
{
1n×n ⊗ IJ B̂T

l

} − tr
{
1n×n ⊗ IJ E(B̂l)

T
}]

= −2

[(
n∑

i=1

J∑

j=1

b̂ij l

)2

− n
(
Jσ 2

u,l + J2
(
πσ 2

w,l

) + nJσ 2
v,l + Jσ 2

e,l + Jσ 2
ε

)
]

= 0, (16c)

∂CLS

σ 2
e,l

= −2
[
tr
{
In ⊗ IJ B̂T

l − In ⊗ IJ E(B̂l)
T
}]

= −2

[
n∑

i=1

J∑

j=1

b̂2
ij l − n

(
Jσ 2

u,l + J2
(
πσ 2

w,l

) + Jσ 2
v,l + Jσ 2

ε

)
]

= 0, (16d)

subject to σ 2
u,l, σ 2

w,l, σ 2
v,l, σ 2

e,l > 0. Note that π and σ 2
w,l are not identifiable by

the least squares method alone. We will use EM algorithm to solve them in the next
section.

A.3 EM Algorithm

The least squares method yields the estimates σ̂ 2
u,l ,

̂πσ 2
w,l , σ̂ 2

v,l and σ̂ 2
e,l , l = 1, . . . ,L.

The EM algorithm here is used to disentangle the π and σ 2
w,l . Denote the vector of all

random coefficients by b = (bi , i = 1, . . . , n), where bi = (bil , l = 1, . . . ,L) with bil

defined in (11). We assume a normal distribution for bil conditional on di , bil |di ∼
N(0, (σ 2

u,l +diσ
2
w,l)1J×J +(σ 2

v,l +σ 2
e,l)IJ ). In this step, we will work on the principal

component scores b̂ = (b̂i , i = 1, . . . , n) obtained from the FPCA step, instead of b
directly. The distribution of b̂il is approximated by N(0, (σ 2

u,l +diσ
2
w,l)1J×J +(σ 2

v,l +
σ 2

e,l + σ 2
ε )IJ ).
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With σ̂ 2
u,l ,

̂πσ 2
w,l , σ̂ 2

v,l and σ̂ 2
e,l , l = 1, . . . ,L, held fixed, we initialize π(0) by a

random value between 0 and 1, and σ 2(0)

w,l = ̂πσ 2
w,l/π

(0). At the E-step of (m + 1)-th
iteration, the missing di is filled by

d̂
(m+1)
i = E(di |b̂)

= f (b̂|di = 1)π

f (b̂|di = 1)π(m) + f (b̂|di = 0)(1 − π(m))

= f (b̂−i |b̂i , di = 1)f (b̂i |di = 1)π(m)

f (b̂−i |b̂i , di = 1)f (b̂i |di = 1)π(m) + f (b̂−i |b̂i , di = 0)f (b̂i |di = 0)(1 − π(m))

= f (b̂i |di = 1)π(m)

f (b̂i |di = 1)π(m) + f (b̂i |di = 0)(1 − π(m))
(17)

=
∏L

l=1 f (b̂il |di = 1)π(m)

∏L
l=1 f (b̂il |di = 1)π(m) + ∏L

l=1 f (b̂il |di = 0)(1 − π(m))
, (18)

where b̂−i contains all the estimated coefficients except those for the ith gene b̂i .
Note that the density function f of the gene expression values depends on vari-
ance estimates σ

2(m)
w,l from last iteration. Equation (17) holds because the dependence

of b−i on bi is only through the replicate effects vj such that f (m)(b̂−i |b̂i , di) =
f (m)(b̂−i |b̂i ). Denote by Σil1 the covariance matrix for (̂bil |di = 1) and by
Σil0 the covariance matrix for (̂bil |di = 0). Then we have f (b̂il |di = 1) =
( 1√

2π |Σil1| )
J exp{− 1

2 b̂ilΣ
−1
il1 b̂il} and f (b̂il |di = 0) = ( 1√

2π |Σil0| )
J exp{− 1

2 b̂ilΣ
−1
il0 b̂il}.

At the (m+1)-th M-step, π̂ (m+1) can be estimated as
∑n

i=1 d̂
(m+1)
i /n and σ̂

2(m+1)
w,l =

̂πσ 2
w,l/π̂

(m+1). The iteration converges if ‖σ 2(m) − σ 2(m−1)‖2
2 < 1e − 07.

A.4 Bootstrap Variance Estimates of Parameters

Denote all the parameters by θ = {π,σ 2
ε , σ 2

u,l, σ
2
w,l, σ

2
v,l, σ

2
e,l, l = 1, . . . ,L}. We use

bootstrap method on estimated principal component scores to estimate the variance
of θ . Draw a resample

b̂∗ = (
b̂∗

1, . . . , b̂∗
n

)
,

by resampling with replacement from b̂ = (b̂1, . . . , b̂n). Repeat the process for B

times. For each resample b̂∗
m, we can have an estimate θ̂∗

m for θ . Thus, the variance
estimate for θ̂ is

V̂ar(θ̂ ) = 1

B

B∑

m=1

(
θ̂∗
m − θ̂∗)2

,

where θ̂∗ is the average of the θ̂∗
m’s.
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