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Abstract Taking households having at least one infective as standard units and con-
sidering both a within-household infection rate and a global infection rate, we pro-
pose a Bayesian two level mixing S-I-R (susceptible-infective-removed) counting
process model in which the transmission parameters may change over time and the
parameters of interest are the within-household infection rate and the removal rate.
Customized Markov chain Monte Carlo methods are developed for generating sam-
ples from the posterior distribution for inference purpose, based only on the removal
times. The numerical performance of this method is examined in a simulation study.
Applying this method to 2003 Taiwan SARS data, we find that the within-household
infection rate decreases, the removal rate increases and their ratio is less than one
and decreases significantly during the epidemic. This method allows the estimation
of these parameters during the epidemic. For a rapidly transmitted disease, it provides
a method to nearly real-time tracking of infection measures.
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1 Introduction

One of the focuses in recent studies of stochastic epidemic models is on models
which feature a structured population. For example, when the disease transmission
is from person to person and hence somewhat local in nature, cases will typically
cluster according to some local community structure. The local community structure
that deserves most attention has been the presence of small social groups such as
households, schools and work places; the reason being not only that members of the
same social group have a higher level of mixing, but also that household epidemic
data are often easier to model and collect. Important contributions to the theory and
applications using these models include [4, 7, 8, 10, 17, 20]. Works on outbreaks
within households, in the presence of community infections, include [1, 4, 9, 24],
among others.

A popular epidemic model for a community of households is the so-called two-
level mixing model, discussed by Ball et al. [4]. This model assumes that, in a closed
population partitioned into groups, an individual, during his infectious period, makes
infectious contacts at population level at times given by the points of a Poisson
process of rate λG, and hence those at individual level with a Poisson rate λG/N ,
where N is the population size; additionally, each infective individual makes an in-
fectious contact with each individual in the same group with Poisson rate λL. We
note that Becker and Hopper [9] considered a counting process model in which both
between-households and within-household infection rates are explicitly described.

A mathematically simpler two-level mixing model was considered by Addy
et al. [1]. Instead of using the aforementioned explicit global infection process for
each infective, Addy et al. [1] utilize a single fixed probability that an individual
avoids global infection.

In view of the population structure and the fact that control measures and their
effects on transmission parameters may change over time, we propose in this paper
a two-level mixing stochastic epidemic model in which the transmission parameters
may change over time.

This work is motivated partly by the epidemiological study of SARS (severe acute
respiratory syndrome) in Taiwan; see [29] and references therein. It was clear in the
early period of the epidemic that it transmits from person to person through close
contacts and that cases often cluster in households. As with other infectious diseases,
it is of great interest to estimate the transmission parameters not only when the epi-
demic is over but also during the epidemic so as to assess the effects of various control
measures and make suitable changes accordingly.

For an epidemic like SARS, cases are admitted to hospitals and are under quaran-
tine or isolation there. For this reason, we assume that the removal times are available,
but not the infection times.

We assume the population consists of disjoint households and we know the num-
ber of people in each household. The former assumption may be too restrictive, be-
cause some individuals cannot be uniquely assigned to a single household. To al-
leviate this problem, our analysis will be based on households having at least one
infective. Although excluding households without any infective causes bias in the
estimation of global infection rate, it is still useful in the study of within-household
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infection and removal rate. Effects of control measures can then be studied in house-
hold setting.

Real-time tracking of control measures for emerging infections is gaining atten-
tion recently; see the commentary by Liopsitch and Bergstrom [22], for example.
Wallinga and Teunis [28] proposed an elegant method for the estimation of instan-
taneous reproductive number Rt as it evolves over time in an epidemic. Later devel-
opments in this line include [12, 13]. Generally speaking, these methods require the
knowledge of generation time, which is assumed to be invariant over calendar time,
or need contact tracing data, in addition to daily case counts. Another method for the
real-time estimation of the basic reproduction number R0 was proposed by White
and Paganno [30], which makes use of certain parametric model assumptions. Our
method provides real-time estimation of the within-household infection rate and re-
moval rate in a two-level mixing model; it seems to be useful in the real-time tracking
of control measures within households.

In this paper, the dynamics of the transmission will be modeled by counting
processes, as explained in [3, 6], for example. We construct a two-level mixing S-I-R
(susceptible-infective-removed) counting process model for each household. There
are two infectivity terms in the model: the global one is described by a deterministic
intensity function in the spirit of Addy et al. [1], and the local one has not only a
deterministic factor but also a random factor depending on the number of infectives
in the same household. Both the global intensity and deterministic factor of the local
term are allowed to change over time.

The inference is carried out within a Bayesian framework using carefully designed
model-specific MCMC methods. In particular, concepts from both Gibbs sampler and
Metropolis–Hastings reversible jump algorithms are used in designing the algorithm
for sampling from the posterior distribution.

This paper is organized as follows. The model and the likelihoods are presented
in Sect. 2. The details of the MCMC algorithm are in Sect. 3. Section 4 contains
a simulation study to assess the numerical performance of our method. Section 5
applies our method to Taiwan SARS data, which shows that the within-household
infectivity decreases, the removal rate increases and their ratio is less than 1 and
decreases significantly throughout the period starting on March 18. Finally, Sect. 6 is
a discussion on future investigations.

2 The Model and the Complete Data Likelihood

2.1 The Model

We consider a population consisting of households and suffering a transmissible dis-
ease. At any time point, each individual is assumed to be in one of the following three
states: susceptible (S), infectious (I), or removed (R). Models using this assumption
are called S-I-R models. A susceptible individual is healthy, may contract the dis-
ease in question and become an infective. An infectious individual or an infective
is one who has become infected and can transmit the disease to others. A removed
individual is one who plays no part in further disease spread; this could occur either



Stat Biosci (2009) 1: 80–94 83

by actual immunity or by isolation following the appearance of symptoms. During
the infectious period, an infective makes random contacts with others; if a contacted
individual is susceptible, then he or she becomes infectious and is immediately able
to infect other individuals.

We assume that individuals are homogeneous and mixed uniformly within each
household, and no individual belongs to two different households. Suppose there are
M households for which there is at least one infected member in each of these house-
holds. For m = 1, . . . ,M , let T m

0 denote the earliest time that an infective appears
in the mth household, let Sm(t), Im(t) and Rm(t) respectively denote the number of
susceptible, infectious and removed individuals at time t ≥ T m

0 in the mth household,
where the time is calendar time. Let Nm(t) = Sm(T m

0 ) − Sm(t), denoting the number
of individuals in the m-th household infected in the time interval (T m

0 , t]. For the
sake of mathematical convenience, we assume T m

0 ≥ 0 and Sm(.), Im(.) and Rm(.)

all have right-continuous sample paths on [0,∞), which implies the total number of
individuals in the m-th household is Sm(T m

0 ) + 1. We assume Sm(T m
0 ) is known, and

no two individuals are infected at the same time, as is usually assumed in counting
process models.

Let Gm
t denote the σ -field generated by {Sm(u), Im(u) | T m

0 ≤ u ≤ t}; it is equal
to that generated by {Nm(u),Rm(u) | T m

0 ≤ u ≤ t}, since Sm(t) + Im(t) + Rm(t) =
Sm(T m

0 )+1 for every t ≥ T m
0 . Let Gt = σ {Gm

t | m = 1, . . . ,M}, the σ -field generated
by all Gm

t . We assume {Nm,Rm | m = 1, . . . ,M} is a multivariate counting process
and has the following intensities:

Pr
(
Nm(t + h) − Nm(t) = 1,Rm(t + h) − Rm(t) = 0 | Gt

)

= hα(t)Sm(t−) + hβ(t)Im(t−)S̄m(t−) + o(h), (1)

Pr
(
Nm(t + h) − Nm(t) = 0,Rm(t + h) − Rm(t) = 1 | Gt

)

= hγ (t)Im(t−) + o(h), (2)

Pr
(
Nm(t + h) − Nm(t) = 0,Rm(t + h) − Rm(t) = 0 | Gt

)

= 1 − hα(t)Sm(t−) − hβ(t)Im(t−)S̄m(t−) − hγ (t)Im(t−) + o(h). (3)

Here S̄m(t) = Sm(t)
Sm(T m

0 )
, and

α(t) = α1

1 + α2 exp(−α3t)
,

β(t) = β1

1 + β2 exp(−β3t)
,

γ (t) = γ1

1 + γ2 exp(−γ3t)
,

for some positive real numbers α1, α2, β1, β2, γ1 and γ2 and real numbers α3,
β3 and γ3. Concepts of multivariate counting processes and their intensities can be
found, for example, in [2, 11]. It is for the sake of convenience that we use logistic
functions α, β and γ in the above modeling; other choices are possible.
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The assumptions (1), (2) and (3) provide an epidemic model that allows two levels
of mixing. Specifically, the first term on the right-hand side of (1) describes the global
infection exerted on a susceptible by a deterministic intensity α(t); the second term
there describes the infectivity an infective makes on the susceptible individuals in
the same household. We remark that expressing infection by contact rate, the second
term keeps the rate at which a given infective makes contact with other individuals in
the same household unchanged relative to the household size.

Typically, we expect β(t) to be larger than α(t), because of more frequent contacts
in a household. In our model, infection rates and removal rates may vary from house-
hold to household, but if the epidemics in different households occur at the same
time, they have the same rates. Since the total period of the epidemic in each house-
hold may be much shorter than the span of the epidemic in a region like a country or
a large city, our model provides a way to describe the effect of control measures of
the health authority during the epidemic in the region.

Because we define local infection in terms of S̄, instead of S, which is differ-
ent from that in [4], it is scaled by household size and hence the quantity η(t) =
β(t)/γ (t) may be regarded as the household reproduction number at time t and can
be used to measure the seriousness of an infectious disease in households. For a ho-
mogeneous and uniformly mixed large community, a parameter of primary concern
is the so-called basic reproduction number R0, which is the average number of new
infections caused by a “typical” infective during the early period of the epidemic; the
threshold limit theorem roughly states that for an epidemic in this community, either
only few individuals will ever become infected, or a positive proportion of the sus-
ceptibles will have been infected by the end of the epidemic; see, for example, [3].
Although it is risky to conclude anything like the threshold limit theorem in our sit-
uation from η(t), it nonetheless seems appropriate to view it as a measure of the
seriousness of the epidemic.

2.2 The Likelihood

Let τ denote a time point, possibly the time of observation. It follows from the like-
lihood formula for counting process (see, for example, [11, p. 187]) that, conditional
on (T 1

0 , . . . , T M
0 ), the log-likelihood of {Nm(t),Rm(t) | t ≤ τ,m = 1, . . . ,M} is

M∑

m=1

[∫ τ

T m
0

log
(
α(t)Sm(t−) + β(t)Im(t−)S̄m(t−)

)
dNm(t)

+
∫ τ

T m
0

log
(
γ (t)Im(t−)

)
dRm(t) −

∫ τ

T m
0

α(t)Sm(t−) dt

−
∫ τ

T m
0

β(t)Im(t−)S̄m(t−) dt −
∫ τ

T m
0

γ (t)Im(t−) dt

]
. (4)

This paragraph introduces some notation useful in the following Bayesian in-
ference. Let T m

1 < T m
2 < · · · < T m

Nm(τ)
denote all the infection times in the mth

household in (T m
0 , τ ] and let T m = (T m

1 , . . . , T m
Nm(τ)). Similarly, let Qm

1 < Qm
2 <
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· · · < Qm
Rm(τ) denote all the removal times in the mth household in (T m

0 , τ ], and let

Qm = (Qm
1 , . . . ,Qm

Rm(τ)). We note that T m and Qm jointly satisfy the compatibil-

ity condition that Nm(τ) + 1 ≥ Rm(τ) and T m
i−1 < Qm

i for every i = 1, . . . ,Rm(τ).
We note that, given (T 1

0 , . . . , T M
0 ), the data {Nm(t),Rm(t) | t ≤ τ,m = 1, . . . ,M} are

equivalent to the data {T m,Qm | m = 1, . . . ,M}. Thus, the conditional log-likelihood
(4) can be expressed in terms of the data {T m,Qm | m = 1, . . . ,M} and is de-
noted by

∑M
m=1 lcm(T m,Qm | T m

0 , θ), where θ = (α1, α2, α3, β1, β2, β3, γ1, γ2, γ3)

is in Θ = (R+ × R+ × R)3, with R+ being the set of positive real numbers.
Let T = {T 1, . . . , T M}, T0 = {T 1

0 , . . . , T M
0 }, Q = {Q1, . . . ,QM}, Lc

m = elcm . Let

Lc(T ,Q | T0, θ) = ∏M
m=1 Lc

m(T m,Qm | T m
0 , θ), which is the complete data condi-

tional likelihood given T0.

3 Bayesian Inference Based on Removal Times

We propose to make Bayesian inference on the transmission parameters using the
likelihood (4), assuming a prior density μm on T m

0 for m = 1, . . . ,M , and treating
the other infection times as missing values. We assume that the inference is conducted
during the epidemic and hence we do not know if the epidemic is over at the time τ .
We say the epidemic is over at t if

∑M
m=1 Im(t) = 0.

Given a prior π on the parameter space Θ , our task is to sample from V (θ | Q),
the posterior density of θ given Q. We assume π is a product measure; namely,
π = πα1 × · · · × πγ3 , with παi

the prior of αi , πβi
the prior of βi and πγi

the prior of
γi , for i = 1,2,3.

Since both the joint density of (Q, θ ) and the conditional density of Q given θ

are hard to simulate, we propose to generate samples from V (θ | Q) by the follow-
ing hybrid MCMC, also known as Metropolis-within-Gibbs algorithm. Our approach
takes advantage of the fact that the complete data conditional likelihood given T0 is
computationally tractable.

Let V1(θ | T0, T ,Q), V2(T0 | θ,T ,Q) and V3(T | θ,T0,Q) denote respectively
the conditional density of θ given {T0, T ,Q}, of T0 given {θ,T ,Q} and of T given
{θ,T0,Q}. Let (θ(n), T

(n)
0 , T (n)) be the current state of the Markov chain, where θ(n)

is in Θ , T
(n)
0 = {. . . , T m(n)

0 , . . .} with T
m(n)
0 representing the first infection time in

the mth household, and T (n) = {. . . , T m(n), . . .} with T m(n) representing all the in-
fection times in the mth household other than the first one. The Gibbs sampler (see,
for example, [27, p. 372]) suggests that we iteratively first generate θ(n+1) according
to V1(θ | T

(n)
0 , T (n),Q), then generate T

(n+1)
0 according to V2(T0 | θ(n+1), T (n),Q),

and finally generate T (n+1) according to V3(T | θ(n+1), T
(n+1)
0 ,Q); when n is large

enough, θ(n) would be an approximate sample of V (θ | Q). For generating data from
V1(θ | T0, T ,Q), V2(T0 | θ,T ,Q) and V3(T | θ,T0,Q), we make use of Metropolis–
Hastings algorithms. This is the basic idea of Metropolizing the Gibbs sampler, whose
merits are discussed in [27, pp. 392–394]. See also [16] for more details.

Making use of

V1(θ | T0, T ,Q) ∝ Lc(T ,Q | T0, θ)π(θ), (5)
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V2(T0 | θ,T ,Q) ∝ Lc(T ,Q | T0, θ)μ(T0), (6)

V3(T | θ,T0,Q) ∝ Lc(T ,Q | T0, θ), (7)

we update the Markov chain by the following steps. Here μ is the product measure
μ1 ×· · ·×μM . Care is taken so that the compatibility condition described in Sect. 2.2
is always satisfied.
(a) Metropolizing (5). Let θ(n) = (α

(n)
1 , α

(n)
2 , α

(n)
3 , β

(n)
1 , β

(n)
2 , β

(n)
3 , γ

(n)
1 , γ

(n)
2 , γ

(n)
3 )

denote the current values of the parameters; we update these nine parameters one
by one in the order of the coordinates. For example, when α

(n)
1 , α

(n)
2 and α

(n)
3 have

been updated to α
(n+1)
1 , α

(n+1)
2 and α

(n+1)
3 , the current value β

(n)
1 is updated by the

following Metropolis–Hastings algorithm.

(i) Generate β
(n+1)′
1 according to πβ1 .

(ii) Let

ρ = min

{
Lc(T (n),Q | T (n)

0 , α
(n+1)
1 , α

(n+1)
2 , α

(n+1)
3 , β

(n+1)′
1 , β

(n)
2 , β

(n)
3 , γ

(n)
1 , γ

(n)
2 , γ

(n)
3 )

Lc(T (n),Q | T (n)
0 , α

(n+1)
1 , α

(n+1)
2 , α

(n+1)
3 , β

(n)
1 , β

(n)
2 , β

(n)
3 , γ

(n)
1 , γ

(n)
2 , γ

(n)
3 )

,1

}
;

we set β
(n+1)
1 to be β

(n+1)′
1 with probability ρ, and to be β

(n)
1 with probability 1 − ρ.

Similar algorithms are used to update other parameters.
(b) Metropolizing (6). Let T

1(n)
0 , . . . , T

M(n)
0 be the current state of the initial infection

times in these households. For m = 1, . . . ,M, we update T
m(n)
0 as follows.

(i) Generate T
m(n+1)′
0 according to the prior distribution μm.

(ii) Let

ρ = min

{
Lc

m(T m(n),Qm | T m(n+1)′
0 , θ(n+1))

Lc
m(T m(n),Qm | T m(n)

0 , θ(n+1))
,1

}
;

we set T
m(n+1)
0 to be T

m(n+1)′
0 with probability ρ, and to be T

m(n)
0 with probability

1 − ρ.
(c) Metropolizing (7). Because we do not know if the epidemic is over in a household,
the number of infected at any given time point is only known to be no less than the
number of removals up to that time point. This compatibility condition implies that
we have a variable dimension situation; the reversible jump algorithm [19] is adapted
to this part, which is similar to the algorithm in [26].

Some more notation is in order. Let δ be a real number in T m, a finite increasing
sequence of real numbers; we denote by T m − δ the subset of T m with δ excluded.
Let ζ be a real number not in T m; we denote by T m +ζ the finite increasing sequence
of real numbers consisting of T m and ζ . Let d(m(n)) denote the number of infection
times in T m(n) and call it its length. For each m = 1, . . . ,M , the transition from T m(n)

to T m(n+1) is described in the following.
Our algorithm allows only three possible types of transitions: H , H+ and H−

from T m(n) to T m(n+1). Here H is a transition satisfying d(m(n + 1)) = d(m(n)),
H+ satisfying d(m(n + 1)) = d(m(n)) + 1, and H− satisfying d(m(n + 1)) =
d(m(n)) − 1. Let ϕd1,d2 denote the probability of selecting T m(n+1) having length
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d2 given T m(n) having length d1. Thus we consider ϕd1,d2 that satisfies ϕd1,d2 = 0 if
|d2 − d1| > 1. We note that there are two constraints on the possible transition types:
one is the compatibility condition and the other is the household size. In case all
three types of transitions are possible, let ϕd1,d1 = ϕd1,d1−1 = ϕd1,d1+1 = 1

3 ; in case
only two are possible, then each has probability 1

2 . For example, if d1 = 1 and there
are two removed individuals in this household then compatibility condition implies
d2 = 1 or 2 and hence ϕ1,1 = 1

2 , ϕ1,2 = 1
2 .

If the transition type H is selected, then a randomly chosen infection time in T m(n)

is replaced by a number chosen randomly from Uniform(T
m(n+1)
0 , τ ). Denote the

removed number by r and the added number by a. Let T m(n+1) = T m(n) − r + a. If
T m(n+1) and Qm together satisfy the compatibility condition, we set

ρ = min

{
Lc

m(T m(n) − r + a,Qm | T m(n+1)
0 , θ(n+1))ϕd(m(n+1)),d(m(n))

Lc
m(T m(n),Qm | T m(n+1)

0 , θ(n+1))ϕd(m(n)),d(m(n+1))

,1

}
.

Otherwise, ρ = 0.
We let T m(n+1) = T m(n) − r + a with probability ρ, and T m(n+1) = T m(n) with

probability 1 − ρ.
If the transition type H− is chosen, we randomly remove one of the infection times

in T m(n) and denote it by r . Let T m(n+1) = T m(n) − r. If T m(n+1) and Qm together
satisfy the compatibility condition, we set

ρ = min

{
Lc

m(T m(n) − r,Qm | T m(n+1)
0 , θ(n+1))ϕd(m(n+1)),d(m(n))d(m(n))

Lc
m(T m(n),Qm | T m(n+1)

0 , θ(n+1))ϕd(m(n)),d(m(n+1))(τ − T
m(n+1)
0 )

,1

}
.

Otherwise, ρ = 0.
Let T m(n+1) = T m(n) − r with probability ρ, and T m(n+1) = T m(n) with probabil-

ity 1 − ρ.
If the transition type H+ is chosen, we generate a according to

Uniform(T
m(n+1)

0 , τ ). We define T m(n+1) = T m(n) + a with probability

ρ = min

{
Lc

m(T m(n) + a,Qm | T m(n+1)
0 , θ(n+1))ϕd(m(n+1)),d(m(n))(τ − T

m(n+1)
0 )

Lc
m(T m(n),Qm | T m(n+1)

0 , θ(n+1))ϕd(m(n)),d(m(n+1))(d(m(n)) + 1)
,1

}
,

and T m(n+1) = T m(n) with probability 1 − ρ.

4 A Simulation Study

This section examines the numerical performance of the method in Sect. 3. Sec-
tion 4.1 describes the way the data are generated and Sect. 4.2 reports the simulation
results.
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4.1 Data Generation for Point Processes

We describe a method to generate data from one household satisfying (1), (2), and
(3); we omit the subscript m to simplify the notation.

Let Y0 denote the first infection time in the household. For n = 1,2, . . . , let

Yn = inf
{
t > Y0 | N(t) + R(t) = n

}
,

Zn =
{

1 if N(Yn) − N(Yn−) = 1,

2 if R(Yn) − R(Yn−) = 1,

Xn+1 =
{

Yn+1 − Yn if Yn < ∞,

∞ if Yn = ∞.

Without loss of generality, we assume Y0 = 0 and Z0 = 1. We note that Yn is
called the nth event time, Zn the mark associated to the event time Yn, and Xn an
inter-occurrence time.

For n = 1,2, . . . , we generate the sequence (Yn,Zn) iteratively by first generating
Xn+1 and then Zn+1. Given Y1,Z1, . . . , Yn,Zn, we generate Xn+1 by utilizing the
fact that the conditional cumulative hazard of Xn+1 at t > Yn is

∫ t

Yn
[α(u)S(Yn) +

β(u)I (Yn)S̄(Yn) + γ (u)I (Yn)]du. Let G(n+1) denote the conditional cumulative
distribution of Xn+1, given Yn. Then given Y1,Z1, . . . , Yn,Zn, the probability of
Zn+1 = 2 is equal to

∫ ∞
Yn

γ (t)I (Yn)(1 − G(n+1)(t − Yn)) dt . Derivations of these
formulas can be found in [11, p. 61].

4.2 Bayesian Inference

The parameters in this simulation study resemble those from the analysis of Taiwan
SARS data. We assume there are M = 400 households, each household has six peo-
ple, and the time of the first infection in each of these households is chosen randomly
from Uniform[0,100]. The analysis is based on the removal times observed in the
interval [0,100] and we do not assume the epidemic is over.

We carry out the inference by the MCMC algorithm outlined in Sect. 3. The pri-
ors are given by α1, α2, β1, β2, γ1, γ2 ∼ Exp(10), α3, β3, γ3 ∼ N(0,0.25). We note
that these priors are meant to be more or less noninformative with large variances;
although the prior variance of α3 is 0.25, the corresponding variance of α(t) is more
than 50 for t larger than 20. Table 1 gives means, medians, standard deviations of
the prior distributions of α(t), β(t) and γ (t) for some time points t . The true para-
meter values for data generation are in the second row of Table 2. In the analysis of
SARS data in Sect. 5, we introduce the prior of the first infection time in a household
by means of the first fever date in that household. In this simulation study, the prior
of the first infection time in a household is similarly assumed to be t + 1 − Exp(1)

distributed on the interval (−∞, t +1], where t is the first infection time in the house-
hold, and t + 1 is the assumed fever date.

We followed the suggestions in [18, pp. 296–297], closely to implement the
MCMC algorithm for a given randomly generated data set. Namely, we ran five
Markov chains with randomly chosen initial values, updated each of the chains
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Table 1 Means, medians and
standard deviations of the prior
distributions of α(t), β(t)

and γ (t)

Time (t) 20 40 60 80 100

prior mean 4.27 4.60 4.71 4.78 4.81

prior median 0.56 0.37 0.30 0.26 0.22

prior s.d. 7.64 8.05 8.19 8.26 8.30

Table 2 Estimation of parameters in simulation study based on 100 data sets

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3

true values 1 15 −0.5 1 13 −0.03 1 20 0.03

posterior mean 2.54 17.25 −0.69 1.36 17.78 −0.022 1.05 23.65 0.034

posterior median 1.56 14.33 −0.66 1.09 14.72 −0.032 0.92 21.23 0.033

posterior s.d. 2.99 12.59 0.29 1.05 13.09 0.036 0.51 9.93 0.006

800,000 times and calculated the Gelman–Rubin statistics R̂ for each of the nine
parameters with the initial 400,000 updates as burn-ins. We found all the R̂s are less
than 1.1. Based on this experiment, we analyze each of the following 100 data sets by
running only one chain with 800,000 updates and 400,000 burn-ins; the posterior dis-
tributions are based on the latter 400,000 updates. By the way, our program is coded
in C, it takes about 4 hours to finish the analysis of one data set and we conducted
parallel computing to finish this simulation study.

Tables 2 and 3 contain the results for 100 simulated data sets. The third row of
Table 2 reports the average of the 100 posterior means of the coefficients; the fourth
row reports the average of the 100 posterior medians; the fifth row reports the average
of the 100 posterior standard deviations. The results for some of the values of the
functions α, β , γ and η = β/γ are contained in Table 3. Rows in these tables carry
similar means as those in Table 2. For example, the third row in Table 3 provides the
average of the 100 posterior means of the values of α at 20, 40, 60, 80 and 100. These
tables indicate that although estimates regarding the function α are less accurate,
those regarding functions β , γ and η are generally excellent, which are parameters of
interest. We note that these values of α are larger than their true values, as expected,
because only households having infectives are included. We also note that especially
for the function values, the posterior standard deviations are much smaller than the
corresponding prior standard deviations.

5 Application to Taiwan SARS Data

We now illustrate the method of this paper by analyzing Taiwan SARS data. Early in
the global outbreak of the 2003 SARS, modes of transmission were unclear; control
measures were implemented to contain this highly contagious emerging disease; in
Taiwan, for example, quarantine started on March 18 and extensive fever screening
started in April. On July 5, 2003, Taiwan was removed from the World Health Organi-
zation (WHO) list of SARS-affected countries. More detailed information regarding
Taiwan SARS can be found in [29] and references therein.
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Table 3 Estimation of α(t), β(t), γ (t) and η(t) in simulation study based on 100 data sets

Time (t) 20 40 60 80 100

α true value 3.02 × 10−6 1.37 × 10−10 6.24 × 10−15 2.83 × 10−19 1.29 × 10−23

posterior mean 5.55 × 10−5 2.59 × 10−6 3.25 × 10−7 6.70 × 10−8 2.01 × 10−8

posterior median 4.34 × 10−6 6.90 × 10−9 1.45 × 10−11 3.18 × 10−14 6.85 × 10−17

posterior s.d. 1.92 × 10−4 2.11 × 10−5 4.41 × 10−6 1.39 × 10−6 6.46 × 10−7

β true value 0.041 0.023 0.013 0.007 0.004

posterior mean 0.038 0.021 0.012 0.007 0.004

posterior median 0.038 0.021 0.011 0.006 0.004

posterior s.d. 0.006 0.003 0.003 0.003 0.003

γ true value 0.083 0.142 0.232 0.355 0.501

posterior mean 0.077 0.136 0.226 0.342 0.472

posterior median 0.077 0.136 0.225 0.342 0.472

posterior s.d. 0.007 0.008 0.015 0.026 0.056

η true value 0.485 0.159 0.054 0.020 0.008

posterior mean 0.499 0.152 0.052 0.020 0.009

prior mean 1.57 × 1011 8.01 × 1024 4.39 × 1039 3.24 × 1054 2.40 × 1069

posterior median 0.495 0.151 0.051 0.019 0.008

prior median 1.02 1.02 0.99 1.03 1.00

posterior s.d. 0.085 0.026 0.015 0.010 0.007

prior s.d. 7.56 × 1012 5.87 × 1026 4.31 × 1041 3.24 × 1056 2.40 × 1071

Table 4 (SARS) The household sizes of the 399 households

Household size 1 2 3 4 5 6 7 8 9 10 11 15

number of households 50 66 59 107 58 30 15 6 3 2 2 1

As an illustration of the method of this paper, we analyze the data whose disease
onset times are no earlier than March 18, because of the data tractability. For the
period from February 24 to July 5, there are 664 reported probable cases of SARS
in Taiwan. Among them, 440 cases appeared after March 18, have recorded date
of admission to SARS-designated hospitals, and can be assigned unambiguously to
399 households with known size. Table 4 gives the frequencies of the sizes of these
399 households. Table 5 gives the frequencies of the final sizes of the outbreaks in
these 399 households. For each case, we have available not only the time he/she is
admitted to a SARS-designated hospital but also the time he/she starts to have fever;
the former is used as the removal time and the latter is used to define the prior on the
first infection time in each household. The following analysis is based on the data of
these 440 patients.

We analyze the data using the same method in Sect. 4. The first infection time in
a household is assumed to be t − Exp(1) distributed on the interval (−∞, t], where t
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Table 5 (SARS) The final sizes
of the outbreaks in the 399
households

Final size 1 2 3 4

number of households 370 20 6 3

Table 6 (SARS) Estimation of parameters

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3

posterior mean 1.68 17.80 −0.60 1.55 15.85 0.020 1.55 23.77 0.035

posterior median 0.85 14.73 −0.56 1.14 12.72 −0.029 1.35 21.30 0.033

posterior s.d. 2.33 13.08 0.30 1.52 12.57 0.18 0.88 11.17 0.012

Table 7 (SARS) Estimation of α(t), β(t), γ (t), and η(t)

Time (t) 20(4/6) 40(4/26) 60(5/16) 80(6/5) 100(6/25)

α posterior mean 1.02 × 10−4 4.61 × 10−6 4.81 × 10−7 7.60 × 10−8 1.59 × 10−8

posterior median 7.47 × 10−7 9.42 × 10−12 1.16 × 10−16 1.49 × 10−21 1.87 × 10−26

posterior s.d. 4.46 × 10−4 3.58 × 10−5 6.01 × 10−6 1.40 × 10−6 4.03 × 10−7

β posterior mean 0.051 0.029 0.018 0.012 0.008

posterior median 0.050 0.029 0.017 0.010 0.005

posterior s.d. 0.016 0.005 0.005 0.007 0.008

γ posterior mean 0.115 0.206 0.345 0.523 0.724

posterior median 0.114 0.206 0.344 0.524 0.726

posterior s.d. 0.019 0.014 0.022 0.063 0.141

η posterior mean 0.451 0.142 0.052 0.022 0.012

posterior median 0.438 0.140 0.049 0.019 0.008

posterior s.d. 0.163 0.027 0.016 0.014 0.012

is the first fever date of the cases in the household. We have analyzed the data using
several sets of priors and obtained similar results. We report here the results using
the priors in Sect. 4. We run five chains with 800,000 updates and 400,000 burn-ins
for each of them, find that the Gelman–Rubin statistics for all the nine coefficients
of the logistic functions α,β, γ are less than 1.1, and use the latter half of the five
chains as samples from the posterior. The results are in Tables 6 and 7. Table 6 gives
the posterior means, medians and standard deviations of the nine coefficients. Ta-
ble 7 reports the posterior means, medians and standard deviations of the values of
α,β, γ, η = β/γ at several time points; the scale of time is day and the time points
are measured from March 18; note that the period from March 18 to July 5 is 110
days. Our analysis is based on all the data available at the 100th day, not assuming
the epidemic is over.

Similarly to the results in the simulation study, these tables show that the standard
deviations of the posterior distributions of α1, α3, β1, β3, γ1, γ3 are smaller than those
of their prior distributions respectively and that the posterior standard deviations of
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the function values are much smaller than their corresponding prior standard devia-
tions. These seem to suggest that the results regarding the values of these functions
are reliable. We note that it is these function values that are relevant in assessing the
effect of control measures. We also note that similar remarks can be made for the
analyses using different sets of priors; in addition, we find that although the posterior
means and medians of some of the coefficients of the logistic functions α, β and γ

may vary somewhat with the priors, those of the values of these functions make very
little change with different priors. Our analysis shows that the within-household in-
fection rate β decreases, the removal rate γ increases and their ratio η is less than 1
and decreases steadily and significantly during this period.

6 Discussion

We have presented a two-level mixing counting process S-I-R epidemic model for
households that have at least one infective; this model allows the transmission para-
meters to vary over time; the parameters of interest in the model are within-household
infectivity rate and removal rate. Bayesian methods for estimating these parameters,
based on removal times, have been successfully illustrated in the simulation study.
The simulation study indicates that estimates of within-household infectivity rate and
removal rate are excellent, although the global infection rate is overestimated, as ex-
pected. We apply this method to study the Taiwan SARS data, which shows that the
within-household infection rate decreases, the removal rate increases and their ra-
tio is less than one and decreases significantly. This model allows the estimation of
these parameters during the epidemic. For a rapidly transmitted disease, it provides a
method to nearly real-time tracking of control measures within households.

We assume the global infection rate α(t), the local infection rate β(t) and the re-
moval rate γ (t) are all monotone functions. While these are popular functions to use
and may be reasonable in many practical situations, there are situations demanding
other features. One desirable extension would allow α(t), β(t) and γ (t) to be any
bounded positive deterministic functions, or bounded positive functions satisfying
certain shape restrictions like monotonicity, convexity, unimodality, etc. In this con-
text, we may make use of Bernstein polynomials; see, for example, [14, 15] for the
use of Bernstein polynomials in shape-restricted regressions.

Our analysis is based on data from households having at least one infective. While
this approach is useful in the study of within-household infection and removal rate, it
overestimates the global infection rate and does not provide an estimate of the basic
reproduction number. It is of interest to conduct a study that includes also households
without any infective. With these data, it seems desirable and possible to study the
basic reproduction number or effective reproduction number using both theoretical
methods and simulation methods. It seems that while the simulation study may be
carried in the way described in this paper, analyzing real data set requires judicious
decision on which of the households having no infective are to be included in the
study.

Suppose that the durations of outbreaks in households are much shorter than that
in the whole community, then our model assumptions (1), (2) and (3) amount to con-
sidering classical general epidemic models, having the transmission parameters being
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constant. These put certain restrictions on the transmission functions. We would like
to relax the model to allow infectivity functions a general parametric form, with or
without latent period. In fact, the more realistic SEIR (susceptible-exposed-infected-
removed) model developed by [21] in the study of SARS deserves further investiga-
tion in the line of this paper. References regarding SEIR model in this context include
[5, 23] and references therein. It seems that marked point process, which extends
counting process, might be useful in this context. Another useful extension would be
to incorporate observable covariates, like age, sex, health status, immune status, etc.,
in the model.

As we mentioned in the simulation study, it seems desirable to obtain a more effi-
cient algorithm. In view of the fact that our algorithm requires the updates satisfying
the compatibility condition so as to compute the likelihood, it seems a good idea to
explore approximate Bayesian computation for the sampling of the posterior distribu-
tion; see [25], among others. Since the success of approximate Bayesian computation
depends on the speed of generating data from the model and appropriate choice of
summary statistics that capture information about the parameters, careful study is
needed to design a more efficient algorithm. We note that generating data using the
method of Sect. 4.1 is not fast enough.

Some of the above problems are under investigation; others will be taken up in the
future.
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