Skip to main content
Log in

Effect of Human Adenovirus Type 35 Concentration on Its Inactivation and Sorption on Titanium Dioxide Nanoparticles

  • Research
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Removal of pathogenic viruses from water resources is critically important for sanitation and public health. Nanotechnology is a promising technology for virus inactivation. In this paper, the effects of titanium dioxide (TiO2) anatase nanoparticles (NPs) on human adenovirus type 35 (HAdV-35) removal under static and dynamic (with agitation) batch conditions were comprehensively studied. Batch experiments were performed at room temperature (25 °C) with and without ambient light using three different initial virus concentrations. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first-order expression with a time-dependent rate coefficient. The experimental results demonstrated that HAdV-35 sorption onto TiO2 NPs was favored with agitation under both ambient light and dark conditions. However, no distinct relationships between virus initial concentration and removal efficiency could be established from the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., Hoang, A. T. & Shafiullah, G. M. (2022). Nanomaterials as a sustainable choice for treating wastewater. Environmental Research, 214. https://doi.org/10.1016/J.ENVRES.2022.113807

  • Alegbeleye, O. O. & Sant’Ana, A. S. (2020). Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. International Journal of Hygiene and Environmental Health, 227. https://doi.org/10.1016/J.IJHEH.2020.113524

  • Anders, R., & Chrysikopoulos, C. V. (2006). Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1. Environmental Science & Technology, 40(10), 3237–3242. https://doi.org/10.1021/ES051604B

    Article  ADS  CAS  Google Scholar 

  • Araud, E., Shisler, J. L., & Nguyen, T. H. (2018). Inactivation mechanisms of human and animal rotaviruses by solar UVA and visible light. Environmental Science & Technology, 52(10), 5682–5690. https://doi.org/10.1021/ACS.EST.7B06562

    Article  ADS  CAS  Google Scholar 

  • Attarilar, S., Yang, J., Ebrahimi, M., Wang, Q., Liu, J., Tang, Y., & Yang, J. (2020). the toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: A brief review from the biomedical perspective. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/FBIOE.2020.00822/PDF

  • Battin, T. J., Kammer, F. V. D., Weilhartner, A., Ottofuelling, S., & Hofmann, T. (2009). Nanostructured TiO2: Transport behavior and effects on aquatic microbial communities under environmental conditions. Environmental Science & Technology, 43(21), 8098–8104. https://doi.org/10.1021/ES9017046

    Article  ADS  CAS  Google Scholar 

  • Bellou, M. I., Syngouna, V. I., Tselepi, M. A., Kokkinos, P. A., Paparrodopoulos, S. C., Vantarakis, A., & Chrysikopoulos, C. V. (2015). Interaction of human adenoviruses and coliphages with kaolinite and bentonite. Science of the Total Environment, 517, 86–95. https://doi.org/10.1016/J.SCITOTENV.2015.02.036

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bofill-Mas, S., Albinana-Gimenez, N., Clemente-Casares, P., Hundesa, A., Rodriguez-Manzano, J., Allard, A., Calvo, M., & Girones, R. (2006). Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Applied and Environmental Microbiology, 72(12), 7894. https://doi.org/10.1128/AEM.00965-06

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunkard, J., Ailes, E., Roberts, V. A., Hill, V., Hilborn, E., Craun, G., Rajasingham, A., Kahler, A., Garrison, L., Hicks, L., Carpenter, J., Wade, T., Beach, M. & Msw, J. S. Y. (2011). Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2007–2008. Morbidity and Mortality Weekly Report. Surveillance Summaries.

  • Burge, W. D., & Enkiri, N. K. (1978). Adsorption Kinetics of Bacteriophage ΦX-174 on Soil. Journal of Environmental Quality, 7(4), 536–541. https://doi.org/10.2134/JEQ1978.00472425000700040014X

    Article  CAS  Google Scholar 

  • Carducci, A., & Verani, M. (2013). Effects of bacterial, chemical, physical and meteorological variables on virus removal by a wastewater treatment plant. Food and Environmental Virology, 5(1), 69–76. https://doi.org/10.1007/s12560-013-9105-5

    Article  CAS  PubMed  Google Scholar 

  • Carol, M., Guadalupe-Fernández, V., Rius, C., Soldevila, N., Razquin, E., Guix, S., & Dominguez, A. (2021). A waterborne gastroenteritis outbreak caused by a GII norovirus in a holiday camp in Catalonia (Spain), 2017. Viruses 2021, 13(9), 1792. https://doi.org/10.3390/V13091792

  • Carratalà, A., Rodriguez-Manzano, J., Hundesa, A., Rusiñol, M., Fresno, S., Cook, N., & Girones, R. (2013). Effect of temperature and sunlight on the stability of human adenoviruses and MS2 as fecal contaminants on fresh produce surfaces. International Journal of Food Microbiology, 164(2–3), 128–134. https://doi.org/10.1016/J.IJFOODMICRO.2013.04.007

    Article  PubMed  Google Scholar 

  • Cheng, R., Kang, M., Shen, Z. P., Shi, L. & Zheng, X. (2019). Visible-light-driven photocatalytic inactivation of bacteriophage f2 by Cu-TiO2 nanofibers in the presence of humic acid. Journal of Environmental Sciences, 77, 383–391. https://doi.org/10.1016/J.JES.2018.09.017

    Article  CAS  Google Scholar 

  • Chrysikopoulos, C. V., & Vogler, E. T. (2004). Estimation of time dependent virus inactivation rates by geostatistical and resampling techniques: Application to virus transport in porous media. Stochastic Environmental Research and Risk Assessment, 18(2), 67–78. https://doi.org/10.1007/S00477-003-0130-Z/METRICS

    Article  Google Scholar 

  • Chrysikopoulos, C. V., & Aravantinou, A. F. (2014). Virus attachment onto quartz sand: Role of grain size and temperature. Journal of Environmental Chemical Engineering, 2(2), 796–801. https://doi.org/10.1016/J.JECE.2014.01.025

    Article  CAS  Google Scholar 

  • Chrysikopoulos, C. V., Manariotis, I. D., & Syngouna, V. I. (2013). Virus inactivation by high frequency ultrasound in combination with visible light. Colloids and Surfaces B, Biointerfaces, 107, 174–179. https://doi.org/10.1016/J.COLSURFB.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  • Dalai, S., Pakrashi, S., Kumar, R. S. S., Chandrasekaran, N., & Mukherjee, A. (2012). A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicology Research, 1(2), 116–130. https://doi.org/10.1039/C2TX00012A

    Article  CAS  Google Scholar 

  • De Graaf, M., Van Beek, J., & Koopmans, M. P. G. (2016). Human norovirus transmission and evolution in a changing world. Nature Reviews. Microbiology, 14(7), 421–433. https://doi.org/10.1038/NRMICRO.2016.48

    Article  PubMed  Google Scholar 

  • Epelle, E. I., Okoye, P. U., Roddy, S., Gunes, B., & Okolie, J. A. (2022). Advances in the applications of nanomaterials for wastewater treatment. Environments, 9(11), 141. https://doi.org/10.3390/ENVIRONMENTS9110141

  • Fenoglio, I., Greco, G., Livraghi, S., & Fubini, B. (2009). Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry (weinheim an Der Bergstrasse, Germany), 15(18), 4614–4621. https://doi.org/10.1002/CHEM.200802542

    Article  CAS  PubMed  Google Scholar 

  • Fong, T. T., Phanikumar, M. S., Xagoraraki, I., & Rose, J. B. (2010). Quantitative detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan River. Applied and Environmental Microbiology, 76(3), 715. https://doi.org/10.1128/AEM.01316-09

    Article  ADS  CAS  PubMed  Google Scholar 

  • Freundlich, H. (1926). Colloid & capillary chemistry. Translated from the third German edition by H. Stafford Hatfield, etc. London.

  • Galdiero, F. (1979). Adenovirus aggregation and preservation in extracellular environment. Archives of Virology, 59(1–2), 99–105. https://doi.org/10.1007/BF01317899/METRICS

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulou, M. P., & Chrysikopoulos, C. V. (2018). Evaluation of carbon nanotubes and quartz sand for the removal of formaldehyde–(2,4-Dinitrophenylhydrazine) from aqueous solutions. Industrial and Engineering Chemistry Research, 57(49), 17003–17012. https://doi.org/10.1021/ACS.IECR.8B03996

    Article  CAS  Google Scholar 

  • Georgopoulou, M. P., Syngouna, V. I., & Chrysikopoulos, C. V. (2020). Influence of graphene oxide nanoparticles on the transport and cotransport of biocolloids in saturated porous media. Colloids and Surfaces. B, Biointerfaces, 189. https://doi.org/10.1016/J.COLSURFB.2020.110841

  • Gerba, C. P., & Betancourt, W. Q. (2017). Viral aggregation: Impact on virus behavior in the environment. Environmental Science & Technology, 51(13), 7318–7325. https://doi.org/10.1021/ACS.EST.6B05835

    Article  ADS  CAS  Google Scholar 

  • Gonzales-Gustavson, E., Cárdenas-Youngs, Y., Calvo, M., da Silva, M. F. M., Hundesa, A., Amorós, I., Moreno, Y., Moreno-Mesonero, L., Rosell, R., Ganges, L., Araujo, R., & Girones, R. (2017). Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa. Journal of Microbiological Methods, 134, 46–53. https://doi.org/10.1016/J.MIMET.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  • Grant, S. B., List, E. J., & Lidstrom, M. E. (1993). Kinetic analysis of virus adsorption and inactivation in batch experiments. Water Resources Research, 29(7), 2067–2085. https://doi.org/10.1029/93WR00757

    Article  ADS  Google Scholar 

  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 44(12), 8269–8285. https://doi.org/10.1143/JJAP.44.8269/XML

  • Hernroth, B. E., Conden-Hansson, A. C., Rehnstam-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology, 68(9), 4523–4533. https://doi.org/10.1128/AEM.68.9.4523-4533.2002

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjelmsø, M. H., Hellmér, M., Fernandez-Cassi, X., Timoneda, N., Lukjancenko, O., Seidel, M., Elsässer, D., Aarestrup, F. M., Löfström, C., Bofill-Mas, S., Abril, J. F., Girones, R., & Schultz, A. C. (2017). Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PloS One, 12(1). https://doi.org/10.1371/JOURNAL.PONE.0170199

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. https://doi.org/10.1016/J.JHAZMAT.2005.12.043

    Article  CAS  PubMed  Google Scholar 

  • Horwitz, M. S. (2001). Adenovirus immunoregulatory genes and their cellular targets. Virology, 279(1), 1–8. https://doi.org/10.1006/VIRO.2000.0738

    Article  CAS  PubMed  Google Scholar 

  • Hughes, B., Beale, D., Dennis, P., Cook, S., & Ahmed, W. (2018). Cross-comparison of human wastewater-associated molecular markers in relation to fecal indicator bacteria and enteric viruses in recreational beach waters. Applied Environment Microbiology, 83(8). https://doi.org/10.1128/AEM.00028

  • Iaconelli, M., Muscillo, M., della Libera, S., Fratini, M., Meucci, L., de Ceglia, M., Giacosa, D., & la Rosa, G. (2017). One-year surveillance of human enteric viruses in raw and treated wastewaters, downstream river waters, and drinking waters. Food and Environmental Virology, 9(1), 79–88.https://doi.org/10.1007/S12560-016-9263-3

  • Janahi, E. M., Mustafa, S., Parkar, S. F. D., Naser, H. A., & Eisa, Z. M. (2020). Detection of enteric viruses and bacterial indicators in a sewage treatment center and shallow water bay. International Journal of Environmental Research and Public Health, 17(18), 1–13. https://doi.org/10.3390/IJERPH17186483

    Article  Google Scholar 

  • Kahler, A. M., Cromeans, T. L., Metcalfe, M. G., Humphrey, C. D., & Hill, V. R. (2016). Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine. Food and Environmental Virology, 8(2), 148–155. https://doi.org/10.1007/S12560-016-9232-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzourakis, V. E., & Chrysikopoulos, C. V. (2017). Fitting the transport and attachment of dense biocolloids in one-dimensional porous media: ColloidFit. Groundwater, 55(2), 156–159. https://doi.org/10.1111/GWAT.12501

    Article  CAS  Google Scholar 

  • Kaushik, N., Mitra, S., Baek, E. J., Nguyen, L. N., Bhartiya, P., Kim, J. H., Choi, E. H., & Kaushik, N. K. (2023). The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. Journal of Advanced Research, 43, 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M., & Ehsani, A. (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis, 123, 505–526. https://doi.org/10.1016/J.MICPATH.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  • Kokkinos, P., Syngouna, V. I., Tselepi, M. A., Bellou, M., Chrysikopoulos, C. V., & Vantarakis, A. (2015). Transport of human adenoviruses in water saturated laboratory columns. Food and Environmental Virology, 7(2), 122–131. https://doi.org/10.1007/S12560-014-9179-8

    Article  Google Scholar 

  • Kumar, R., Nayak, M., Sahoo, G. C., Pandey, K., Sarkar, M. C., Ansari, Y., Das, V. N. R., Topno, R. K., Bhawna, Madhukar, M., & Das, P. (2019). Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. Journal of Infection and Chemotherapy : Official Journal of the Japan Society of Chemotherapy, 25(5), 325–329.https://doi.org/10.1016/J.JIAC.2018.12.006

  • Kuo, D. H. W., Simmons, F. J., Blair, S., Hart, E., Rose, J. B., & Xagoraraki, I. (2010). Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater. Water Research, 44(5), 1520–1530. https://doi.org/10.1016/J.WATRES.2009.10.039

    Article  CAS  PubMed  Google Scholar 

  • Liga, M. V., Maguire-Boyle, S. J., Jafry, H. R., Barron, A. R., & Li, Q. (2013). Silica decorated TiO2 for virus inactivation in drinking water–simple synthesis method and mechanisms of enhanced inactivation kinetics. Environmental Science & Technology, 47(12), 6463–6470. https://doi.org/10.1021/ES400196P

    Article  ADS  CAS  Google Scholar 

  • Liu, D., Mao, Y., & Ding, L. (2018). Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. Journal of Water and Health, 16(2), 171–180. https://doi.org/10.2166/WH.2018.228

    Article  PubMed  Google Scholar 

  • Mattle, M. J., Crouzy, B., Brennecke, M., R. Wigginton, K., Perona, P., & Kohn, T. (2011). Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants. Environmental Science & Technology, 45(18), 7710–7717.https://doi.org/10.1021/ES201633S

  • Merryman, A. E., Sabaraya, I. V., Rowles, L. S., Toteja, A., Carrillo, S. I., Sabo-Attwood, T., & Saleh, N. B. (2019). Interaction between functionalized multiwalled carbon nanotubes and MS2 bacteriophages in water. The Science of the Total Environment, 670, 1140–1145. https://doi.org/10.1016/J.SCITOTENV.2019.03.311

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Naghavi, M., Abajobir, A. A., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abera, S. F., Aboyans, V., Adetokunboh, O., Ärnlöv, J., Afshin, A., Agrawal, A., Kiadaliri, A. A., Ahmadi, A., Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Aiyar, S., Al-Eyadhy, A., … Murray, C. J. L. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England), 390(10100), 1151–1210. https://doi.org/10.1016/S0140-6736(17)32152-9

  • Nakano, R., Ishiguro, H., Yao, Y., Kajioka, J., Fujishima, A., Sunada, K., Minoshima, M., Hashimoto, K., & Kubota, Y. (2012). Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 11(8), 1293–1298. https://doi.org/10.1039/C2PP05414K

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Mädler, L. & Li, N. (2006). Toxic potential of materials at the nanolevel. Science (New York, N.Y.), 311(5761), 622–627. https://doi.org/10.1126/SCIENCE.1114397

  • Németh, Z., Szekeres, G. P., Schabikowski, M., Schrantz, K., Traber, J., Pronk, W., Hernádi, K. & Graule, T. (2019). Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. Royal Society Open Science, 6(1). https://doi.org/10.1098/RSOS.181294

  • Ojha, A. (2020). Nanomaterials for removal of waterborne pathogens: opportunities and challenges. Waterborne Pathogens, 385–432. https://doi.org/10.1016/B978-0-12-818783-8.00019-0

  • Onodera, T., Sugiura, K., Haritani, M., Suzuki, T., Imamura, M., Iwamaru, Y., Ano, Y., Nakayama, H., & Sakudo, A. (2022). Photocatalytic inactivation of viruses and prions: Multilevel approach with other disinfectants. Applied Microbiology, 2(4), 701–715. https://doi.org/10.3390/APPLMICROBIOL2040054

    Article  Google Scholar 

  • Park, J. A., Lee, C. G., & Kim, S. B. (2015). Influence of As(V) on bacteriophage MS2 removal by hematite in aqueous solutions. Desalination and Water Treatment, 56(3), 760–769. https://doi.org/10.1080/19443994.2014.953593

    Article  CAS  Google Scholar 

  • Pasquale, I. De, Porto, C. Lo, Dell’Edera, M., Petronella, F., Agostiano, A., Curri, M. L., & Comparelli, R. (2020). Photocatalytic TiO2-based nanostructured materials for microbial inactivation. Catalysts 2020, 10(12), 1382. https://doi.org/10.3390/CATAL10121382

  • Penrod, S. L., Olson, T. M., & Grant, S. B. (1996). Deposition kinetics of two viruses in packed beds of Quartz granular media. Langmuir, 12(23), 5576–5587. https://doi.org/10.1021/LA950884D

    Article  CAS  Google Scholar 

  • Pina, S., Puig, M., Lucena, F., Jofre, J., & Girones, R. (1998). Viral pollution in the environment and in shellfish: Human adenovirus detection by PCR as an index of human viruses. Applied and Environmental Microbiology, 64(9), 3376–3382. https://doi.org/10.1128/AEM.64.9.3376-3382.1998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, S., Varsani, A., Leff, C., Swanson, C. J. & Hariadi, R. F. (2022). Viral aggregation: The knowns and unknowns. Viruses, 14(2). https://doi.org/10.3390/V14020438

  • Prevost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environment International, 79, 42–50. https://doi.org/10.1016/J.ENVINT.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, M. A., Cruz, J. M., Montagnolli, R. N., Bidoia, E. D., & Lopes, P. R. M. (2015). Photocatalytic and photoelectrochemical inactivation of Escherichia coli and Staphylococcus aureus. Water Science and Technology: Water Supply, 15(1), 107–113. https://doi.org/10.2166/ws.2014.084

    Article  CAS  Google Scholar 

  • Saguti, F., Churqui, M. P., Kjellberg, I., Wang, H., Ottoson, J., Paul, C., Bergstedt, O., Norder, H. & Nyström, K. (2022). The UV dose used for disinfection of drinking water in Sweden inadequately inactivates enteric virus with double-stranded genomes. International Journal of Environmental Research and Public Health 2022, 19(14), 8669. https://doi.org/10.3390/IJERPH19148669

  • Shi, C., Wei, J., Jin, Y., Kniel, K. E., & Chiu, P. C. (2012). Removal of viruses and bacteriophages from drinking water using zero-valent iron. Separation and Purification Technology, 84, 72–78. https://doi.org/10.1016/J.SEPPUR.2011.06.036

    Article  CAS  Google Scholar 

  • Sim, Y., & Chrysikopoulos, C. V. (1996). One-dimensional virus transport in porous media with time-dependent inactivation rate coefficients. Water Resources Research, 32(8), 2607–2611. https://doi.org/10.1029/96WR01496

    Article  ADS  CAS  Google Scholar 

  • Sim, Y., & Chrysikopoulos, C. V. (1999). Analytical models for virus adsorption and inactivation in unsaturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 155(2–3), 189–197. https://doi.org/10.1016/S0927-7757(99)00073-4

    Article  CAS  Google Scholar 

  • Sim, Y., & Chrysikopoulos, C. V. (2000). Virus transport in unsaturated porous media. Water Resources Research, 36(1), 173–179. https://doi.org/10.1029/1999WR900302

    Article  ADS  CAS  Google Scholar 

  • Simmons, F. J., & Xagoraraki, I. (2011). Release of infectious human enteric viruses by full-scale wastewater utilities. Water Research, 45(12), 3590–3598. https://doi.org/10.1016/J.WATRES.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., & Dubey, A. K. (2018). Various biomaterials and techniques for improving antibacterial response. ACS Applied Bio Materials, 1(1), 3–20. https://doi.org/10.1021/ACSABM.8B00033

    Article  CAS  Google Scholar 

  • Singh, S. P., Ramanan, S., Kaufman, Y., & Arnusch, C. J. (2018). Laser-induced graphene biofilm inhibition: Texture does matter. ACS Applied Nano Materials, 1(4), 1713–1720. https://doi.org/10.1021/ACSANM.8B00175

    Article  CAS  Google Scholar 

  • Song, J. E., Phenrat, T., Marinakos, S., Xiao, Y., Liu, J., Wiesner, M. R., Tilton, R. D. & Lowry, G. V. (2011). Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environmental Science and Technology, 45(14), 5988–5995. https://doi.org/10.1021/ES200547C/SUPPL_FILE/ES200547C_SI_001.PDF

  • Strubbia, S., Phan, M. V. T., Schaeffer, J., Koopmans, M., Cotten, M., & le Guyader, F. S. (2019). Characterization of norovirus and other human enteric viruses in sewage and stool samples through next-generation sequencing. Food and Environmental Virology, 11(4), 400–409. https://doi.org/10.1007/S12560-019-09402-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syngouna, V. I. & Chrysikopoulos, C. V. (2010). Interaction between viruses and clays in static and dynamic batch systems. Environmental Science & Technology, 44(12), 4539–4544. https://doi.org/10.1021/ES100107A

  • Syngouna, V. I. & Chrysikopoulos, C. V. (2013). Cotransport of clay colloids and viruses in water saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416(1), 56–65. https://doi.org/10.1016/J.COLSURFA.2012.10.018

  • Syngouna, V. I., & Chrysikopoulos, C. V. (2017). Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. Journal of Colloid and Interface Science, 497, 117–125. https://doi.org/10.1016/J.JCIS.2017.02.059

    Article  ADS  CAS  PubMed  Google Scholar 

  • Syngouna, V. I., & Chrysikopoulos, C. V. (2019). Bacteriophage MS2 and titanium dioxide heteroaggregation: Effects of ambient light and the presence of quartz sand. Colloids and Surfaces B, Biointerfaces, 180, 281–288. https://doi.org/10.1016/J.COLSURFB.2019.04.052

    Article  CAS  PubMed  Google Scholar 

  • Syngouna, V. I., Chrysikopoulos, C. V., Kokkinos, P., Tselepi, M. A., & Vantarakis, A. (2017). Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media: Effect of flow velocity. The Science of the Total Environment, 598, 160–167. https://doi.org/10.1016/J.SCITOTENV.2017.04.082

    Article  ADS  CAS  PubMed  Google Scholar 

  • Syngouna, V. I., Giannadakis, G. I., Chrysikopoulos, C. V. (2018). Interaction of graphene oxide nanoparticles with quartz sand and montmorillonite colloids. Environmental Technology, 41(9), 1127–1138. https://doi.org/10.1080/09593330.2018.1521876

    Article  CAS  PubMed  Google Scholar 

  • Syngouna, V. I., Kourtaki, K. I., Georgopoulou, M. P., & Chrysikopoulos, C. V. (2022). The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. Environmental Science and Pollution Research International, 29(13), 19199–19211. https://doi.org/10.1007/S11356-021-17086-1

    Article  CAS  PubMed  Google Scholar 

  • Troeger, C., Blacker, B., Khalil, I. A., Rao, P. C., Cao, J., Zimsen, S. R. M., Albertson, S. B., Deshpande, A., Farag, T., Abebe, Z., Adetifa, I. M. O., Adhikari, T. B., Akibu, M., al Lami, F. H., Al-Eyadhy, A., Alvis-Guzman, N., Amare, A. T., Amoako, Y. A., Antonio, C. A. T., … Reiner, R. C. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Infectious Diseases, 18(11), 1191–1210. https://doi.org/10.1016/S1473-3099(18)30310-4

  • Verheyen, J., Timmen-Wego, M., Laudien, R., Boussaad, I., Sen, S., Koc, A., Uesbeck, A., Mazou, F., & Pfister, H. (2009). Detection of adenoviruses and rotaviruses in drinking water sources used in rural areas of Benin West Africa. Applied and Environmental Microbiology, 75(9), 2798. https://doi.org/10.1128/AEM.01807-08

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, K., Bouchard, D., & Molina, M. (2014). Relative transport of human adenovirus and MS2 in porous media. Colloids and Surfaces B, Biointerfaces, 122, 778–784. https://doi.org/10.1016/J.COLSURFB.2014.08.020

    Article  CAS  PubMed  Google Scholar 

  • Wong, K., Mukherjee, B., Kahler, A. M., Zepp, R., & Molina, M. (2012). Influence of inorganic ions on aggregation and adsorption behaviors of human adenovirus. Environmental Science & Technology, 46(20), 11145–11153. https://doi.org/10.1021/ES3028764

    Article  ADS  CAS  Google Scholar 

  • Xue, L., Cai, W., Gao, J., Zhang, L., Dong, R., Li, Y., Wu, H., Chen, M., Zhang, J., Wang, J. & Wu, Q. (2019). The resurgence of the norovirus GII.4 variant associated with sporadic gastroenteritis in the post-GII.17 period in South China, 2015 to 2017. BMC Infectious Diseases, 19(1). https://doi.org/10.1186/S12879-019-4331-6

  • Zhang, C., Li, Y., Wang, C. & Zheng, X. (2021). Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C3N4-based metal-free visible-light-enabled photocatalytic disinfection. The Science of the Total Environment, 755. https://doi.org/10.1016/J.SCITOTENV.2020.142588

  • Zhang, W., & Zhang, X. (2015). Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation. Water Research, 69, 59–67. https://doi.org/10.1016/J.WATRES.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B., Zhang, J., & Jiang, Y. (2013). Presence of bacteria in aqueous solution influences virus adsorption on nanoparticles. Environmental Science and Pollution Research, 20(11), 8245–8254. https://doi.org/10.1007/S11356-013-1802-Y/TABLES/3

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Chen, D., Wang, zhiwei, Lei, Y. & Cheng, R. (2013). Nano-TiO2 membrane adsorption reactor (MAR) for virus removal in drinking water. Chemical Engineering Journal, 230, 180–187. https://doi.org/10.1016/J.CEJ.2013.06.069

  • Zheng, X., Shen, Z. P., Cheng, C., Shi, L., Cheng, R., & Dong, J. (2017). Electrospinning Cu–TiO2 nanofibers used for photocatalytic disinfection of bacteriophage f2: Preparation, optimization and characterization. RSC Advances, 7(82), 52172–52179. https://doi.org/10.1039/C7RA07770J

    Article  ADS  CAS  Google Scholar 

  • Zheng, X., Shen, Z. peng, Cheng, C., Shi, L., Cheng, R. & Yuan, D. H. (2018). Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environmental Pollution, 237, 452–459. https://doi.org/10.1016/J.ENVPOL.2018.02.074

  • Zhukova, L. V., Kiwi, J. & Nikandrov, V. V. (2010). Nanoparticles of TiO2 cause aggregation of Escherichia coli cells and suppress their division at pH 4.0–4.5 in the absence of UV irradiation. Doklady Chemistry, 435(1), 279–282. https://doi.org/10.1134/S0012500810110029/METRICS

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.I.S: conceptualization, supervision, and writing –review & editing. M.P.G.: data curation, validation, and investigation. M.I.B.: data curation, validation, and investigation. A.V.: conceptualization, supervision, writing –review & editing, and funding acquisition.

Corresponding author

Correspondence to Vasiliki I. Syngouna.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syngouna, V.I., Georgopoulou, M.P., Bellou, M.I. et al. Effect of Human Adenovirus Type 35 Concentration on Its Inactivation and Sorption on Titanium Dioxide Nanoparticles. Food Environ Virol (2024). https://doi.org/10.1007/s12560-023-09582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12560-023-09582-z

Keywords

Navigation