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Abstract
Human sapovirus (SaV) is an important causative agent of nonbacterial gastroenteritis in humans. However, little is known 
about its circulation in China. To study the prevalence and diversity of human SaV genotypes circulating in eastern China, a 
3-year environmental surveillance combined with next generation sequencing (NGS) technology was conducted. A total of 
36 raw sewage samples were collected from January 2017 to December 2019 in Jinan and processed. Thirty-five (97.22%) 
samples were positive for human SaV genome in quantitative RT-PCR assay; 33 (91.67%) samples were positive in nested 
RT-PCR assay on partial capsid VP1 sequence and all amplicons were further analyzed separately by NGS. Among those, 
ten genotypes belonging to the genogroups of GI, GII, GIV, and GV were identified by NGS, including 4 major genotypes 
(GI.2, GI.1, GV.1 and GI.3) and 6 uncommon genotypes (GII.5, GII.1, GII.NA1, GII.3, GI.6 and GIV.1). A temporal switch 
of predominant genotype was observed from GI.2 to GI.1 around June 2019. Local and foreign sequences clustered together 
in some branches according to phylogenetic analysis, indicating frequent transmission of various lineages in different regions 
of the world. Environmental surveillance provides a comprehensive picture of human SaV in China. NGS-based environ-
mental surveillance improves our knowledge on human SaV circulating in communities greatly and should be encouraged 
as a sensitive surveillance tool.

Keywords Human sapovirus · Next generation sequencing · Phylogenetics · Environmental surveillance

Introduction

Sapovirus (SaV) is a small nonenveloped virus belonging to 
the family Caliciviridae. The SaV genome has a positive-
sense, single-stranded RNA, which is approximately 7.1–7.7 
kb in size organized into two or three open reading frames 
(ORFs). Human SaV is classified into 4 genogroups (GI, 
GII, GIV and GV) based on the complete VP1 nucleotide 
sequences, which are further subdivided into 18 genotypes 
(GI.1–GI.7, GII.1–GII.8, GIV.1, GV.1 and GV.2) (Oka et al. 
2015; Kagning Tsinda et al. 2017).

Human SaV is an important causative agent of nonbac-
terial gastroenteritis among population (Platts-Mills et al. 
2018). According to recent data, human SaV resulted in 
about 2.2–22.6% of the gastroenteritis worldwide (Mancini 
et al. 2019). All age groups especially infants are susceptible 
to human SaV (Xiaoli L. Pang et al. 2014; Rockx et al. 2002; 
de Wit et al. 2001). Although the severity of SaV-associated 
gastroenteritis is generally milder than norovirus and rotavirus-
associated gastroenteritis (Page et al. 2016; Sakai et al. 2001), 
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human SaV can result in hospitalization (Lee et al. 2012; 
Medici et al. 2012). Human SaV has been identified in both 
sporadic and outbreak cases of the gastroenteritis (Oka et al. 
2015). A Meta-analysis reported that outbreaks were mainly 
caused by GI and GIV worldwide (Yu et al. 2019), although 
there were outbreaks associated with other genogroups (Yu 
et al. 2019; Hergens et al. 2017; Oka et al. 2017). Outbreaks 
caused by human SaV always occurred in closed and semi-
closed settings, such as kindergartens, hospitals, ships, long-
time care facilities, and schools (Yamashita et al. 2010; Pang 
et al. 2009; Usuku et al. 2008; Yan et al. 2005). In China, 2 
gastroenteritis outbreaks associated with human SaV occurred 
in Shenzhen during 2015–2016 (Wang et al. 2018). Human 
SaV poses significant disease burden, which highlights the 
emerging role as a public health issue (Liu et al. 2016).

Due to the relatively low positive rate of human SaV in 
gastroenteritis patients (compared to norovirus and rotavi-
rus), information on its genotype diversity in China is limited. 
Human SaV can be detected in sewage. Environmental sur-
veillance on human SaV have been conducted in Thailand, 
Japan, Italy, Brazil, Tunisia, etc (Khamrin et al. 2020; Mancini 
et al. 2019; Ibrahim et al. 2019; Thongprachum et al. 2018; 
Fioretti et al. 2016; Murray et al. 2013; Kitajima et al. 2010) 
to study its molecular epidemiology, whereas, to the best of 
our knowledge, no studies on human SaV in sewage in China 
have been reported yet.

Generally, PCR amplicons of human SaV genomes from 
sewage contain multiple genotypes and variants. Cloning and 
Sanger sequencing offers a labor-consuming and inefficient 
approach in previous studies (Kumthip et al. 2020; Ibrahim 
et al. 2019; Thongprachum et al. 2018; Fioretti et al. 2016; 
Murray et al. 2013; Kitajima et al. 2010). Recently, next gen-
eration sequencing (NGS)-based amplicon sequencing has 
been carried out successfully for detection of viruses in sew-
age, such as SARS-CoV-2 (Ahmed et al. 2020), enterovirus 
(Majumdar and Martin 2018; Montmayeur et al. 2017), noro-
virus (Fumian et al. 2019; Suffredini et al. 2018), adenovirus 
(Iaconelli et al. 2017), and human SaV (Mancini et al. 2019). 
NGS has the advantages of high sensitivity and high through-
put for detecting viruses in mixed samples and it can detect 
less prevalent genotypes undetectable comparing to Sanger 
sequencing (Mancini et al. 2019). Here, we collected sewage 
samples monthly during 2017–2019 in Jinan, China and ana-
lyzed human SaV by quantitative PCR and NGS-based ampli-
con sequencing to study its genotypes and genetic diversity.

Materials and Methods

Sampling

Between 2017 to 2019, 36 raw sewage samples were col-
lected monthly by using grab sampling method from the 

influent of a wastewater treatment plant (WWTP) in Jinan, 
the capital city of Shandong Province, China. The WWTP 
collects the domestic sewage from approximately one mil-
lion inhabitants. A total of 1 liter of sewage sample was 
collected into sterile containers each time and stored at a 
low temperature (4 °C) before processing.

Sewage Concentration and RNA Extraction

The sewage samples were concentrated 100-fold by mixed 
cellulose ester (MCE) membrane adsorption and ultrasoni-
cation elution method as described previously (Matsuura 
et al. 1984; Berg et al. 1971). Briefly, 1 liter of sewage was 
centrifugated at 3200×g for 30 min at 4 °C. The superna-
tant was adjusted to a final  Mg2+ concentration of 0.05M 
and a pH value of 3.5 by using  MgCl2 and hydrochloric 
acid. After the solution was filtered through an MCE mem-
brane, the virus absorbed on the membrane was eluted 
with 10 ml of 3.0% beef extract solution (pH 8.5, adjusted 
by NaOH) by 3-min ultrasonication. The eluent was cen-
trifugated again at 3000×g for 30 min, filtered through a 
0.22 μm filter, and was adjusted to the pH value of 7 by 
hydrochloric acid.

Total viral RNA was extracted from 420 μl of con-
centration solution to a final volume of 50 μl by using 
QIAamp Viral RNA Mini Kit (QIAGEN, USA), according 
to the manufacturer’s instructions.

qRT‑PCR

The qRT-PCR assay was carried out using SaV124F, 
SaV1F, SaV5F, and SaV1245R primers and SaV5TP and 
SaV124TP probes, which targeted polymerase-capsid 
junction region (Oka et al. 2006). Five microliters of RNA 
extract were subjected to amplification by using AgPath-
ID One-Step RT-PCR reagents (ABI) with a final volume 
of 25 μl. Each sample was tested in duplicates. The ampli-
fication conditions were reverse transcription at 45 °C for 
10 min, denaturation at 95 °C for 10 min, and followed by 
40 cycles of 95 °C for 15 s and 60 °C for 45 s.

Quantification of Pepper mild mottle virus (PMMoV) 
RNA in sewage was performed via qRT-PCR using 
AgPath-ID One-Step RT-PCR reagents as internal con-
trol (Kitamura et al. 2020). The primers and probes in the 
qRT-PCR assay was accordant with published literatures 
(Haramoto et al. 2013; Zhang et al. 2006). Five microliters 
of RNA extract were amplified in a final volume of 25 μl 
with the cycling conditions of reverse transcription at 50 
°C for 30 min and denaturation at 95 °C for 30 s, followed 
by 45 cycles of 95 °C for 5 s and 60 °C for 60 s.
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Nested RT‑PCR and NGS

A nested RT-PCR-targeting polymerase-capsid junction 
region of all the human SaV was performed according to 
previous reports (Kitajima et al. 2010). The first round PCR 
was performed by using SuperScript™ IV One-Step RT-
PCR System with a final volume of 25 μl. The forward prim-
ers were SaV124F, SaV1F, and SaV5F, while the reverse 
primers were SV-R13 and SV-R14. The amplification con-
ditions were 45 °C for 30 min and 98 °C for 2 min and 
followed by 40 cycles of 98 °C for 10 s, 50 °C for 10 s, and 
72 °C for 1 min with a final extension step of 72 °C for 5 
min. The second round was performed by using Platinum 
Taq DNA Polymerase in a final volume of 100 μl. The for-
ward primer and the reverse primer were SV-1245Rfwd and 
SV-R2, respectively. The amplification conditions were 94 
°C for 2 min and followed by 35 cycles of 94 °C for 30 s, 
50 °C for 30 s, and 72 °C for 30 s with a final extension step 
of 72 °C for 5 min. PCR products were analyzed by agarose 
(1.5%) gels electrophoresis. The lengths of products in the 
first and second round PCR were 800 bp and 430 bp, respec-
tively. The positive products were forward to NGS analysis.

NGS library preparation and Miseq sequencing using 
2×150 bp paired-end reads method were performed by 
Shanghai BioGerm Medical Biotechnology Company. Then 
clean data were assembled de novo to form contigs using 
CLC Genomics Workbench 12.0 (QIAGEN, USA) with 
default parameters. Following trimming, contigs length less 
than 200 bp were removed. Contigs with the average cover-
age > 30 were exported and classified into different geno-
types using BLAST against a local SaV database. Sequences 
with E value less than E-100 were forwarded for further 
analysis.

Nucleotide Diversity and Phylogenetic Analysis

The Simpson’s diversity index based on the numbers of NGS 
reads was calculated to describe the diversity of human SaV. 
The nucleotide sequences were aligned by Bioedit 7.0.9.0. 
The nucleotide substitution model that fitted our data best 
was identified by MegaX. Kimura 2-parameter model 
with gamma-distributed rates (K2+G) was the best-fit 

nucleotide substitution model. Phylogenetic tree includ-
ing the sequences obtained in this study and those from 
GenBank was constructed based on partial VP1 nucleotide 
sequences (nt 5179–5571 corresponding to strain Hu/SaV/
Manchester/1993/UK with accession number X86560) via 
Neighbor-Joining method with K2+G model by MegaX. 
Bootstrap test with 1000 replicates was used to measure of 
the robustness each node (Kumar et al. 2016).

Results

Human SaV Prevalence in Sewage

In the present study, 36 sewage samples were collected 
monthly during January 2017–December 2019. Using qRT-
PCR assay, 35 out of 36 (97.22%) sewage samples were pos-
itive for human SaV nucleic acid and the sample collected in 
February 2019 was negative. Using nested RT-PCR assay, 
33 (91.67%) samples were positive and samples collected 
in September 2018, February 2019, and September 2019 
were negative.

Quantitative RT‑PCR (qRT‑PCR)

According to the qRT-PCR, the peak of human SaV con-
centration in sewage (4.8 ×  105 genome copies per liter) 
was observed in December 2017, whereas the sample from 
August 2018 had the lowest concentration of human SaV 
(2.3 ×  103 genome copies per liter) (Fig. 1a). The human 
SaV copies in spring (March to May), summer (June to 
August), autumn (September to November), and winter 
(December to February) were compared, and no statistically 
significant difference in viral copies concentration among 
four seasons was observed (Kruskal–Wallis test, P > 0.05) 
(Fig. 1b).

Quality Control

In this study, PMMoV RNA in all 36 samples was exam-
ined via qPCR as internal quality control. As shown in Sup-
plementary Table S1, PMMoV was tested positive in all 

Fig. 1  Sapovirus concentra-
tion (copies per liter) in sewage 
monthly from January 2017 to 
December 2019, by month (a) 
and by season (b). The sample 
collected in February 2019 
was negative in SaV qRT-PCR 
assay, and is not included in b 
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samples and the concentration of PMMoV in sewage sam-
ples ranged from 1.26 ×  107 to 7.44 ×  108 genome copies per 
liter, which was relatively stable, suggesting the reliability 
of genome quantification in this study.

NGS‑Based Amplicon Sequencing and Genotypes

Nested RT-PCR and NGS analysis showed that human 
SaV sequences in sewage were classified into 10 genotypes 

belonging to 4 genogroups (GI, GII, GIV and GV). Of the 
total 301,501,545 reads, 195,852,867 reads were aligned to 
GI.2 reference sequences (65.0%), followed by 84,714,998 
reads to GI.1 (28.1%), 16,624,161 reads to GV.1 (5.5%), and 
4,205,026 reads to GI.3 (1.4%) (Fig. 2b). In addition, some 
rare genotypes (<0.05% of monthly identified sequences) 
were detected in this study, including GII.5 (72,332 reads, 
0.024%), GII.1 (19,668 reads, 0.0065%), GII.NA1 (4,239 
reads, 0.0014%), GII.3 (4,196 reads, 0.0014%), GI.6 (3,897 
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Fig. 2  Sapovirus genotype distribution in sewage samples from NGS in three years (a). Monthly distribution of major genotypes (>1% of 
monthly identified sequences) in raw sewage in Jinan, China from 2017 to 2019 (b)
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reads, 0.0013%), and GIV.1 (161 reads, 0.000053%). 
(Table 1, Fig. 2a).

Major and Minor Genotypes

It was found that GI.2 and GI.1 were the most predominant 
genotypes in sewage in Jinan city. Among the 33 samples 
which were forwarded to NGS, GI.2 nucleic acid and GI.1 
nucleic acid were detected in 30 (90.91%) and 20 samples 
(60.61%), respectively. A switch of predominant human SaV 
genotype in sewage was observed during the study period. 
Before May 2019, GI.2 was the predominant genotype of 
most months accounting for 76.28 % of total reads. After 
July 2019, however, the main genotype had been changed 
to GI.1 which accounted for 94.67% of total reads (Fig. 2b). 
Some genotypes appeared only in several months. For exam-
ple, 10 out of 33 samples were positive for both GII.3 and 
GII.5 nucleic acid (30.30%). GII.NA1 nucleic acid was 
found only in 4 samples (12.12%). GI.5 and GIV.1 nucleic 
acid were only found in the samples collected in May 2019 
and June 2019, respectively (3.03%) (Table 1). Compared 
to the common genotypes, the reads of these rare geno-
types were not only detected in fewer months, but also with 
smaller number.

Diversity

Generally, multiple genotypes were coexisting in sewage 
in Jinan during the study period. The Simpson’s diversity 
index was calculated to analyze the richness and evenness 
of human SaV in China. It ranged from 0 to 0.539, which 
implied the variable diversity of genotypes in the popula-
tion during three years. The Simpson’s diversity index was 
generally consistent with the number of genotypes except for 
some samples in several months (Fig. 3).

Homology and Phylogeny

The phylogenetic tree based on SaV partial VP1 sequences 
was constructed to investigate the relationship between 
strains obtained in this study and those detected from human 
feces, wastewater, and shellfishes throughout the world 
(Fig. 4). The nucleotide sequences of strains in the present 
study were close to reference strains around the world. The 
phylogenetic tree was grouped into 10 main clusters. The 
homology of the nucleotide sequences in this study ranged 
from 87.5% to 100% for GI.1 and from 87.9 to 100% for 
GI.2. As to GII.5 nucleotide sequences obtained in this 
study, they had high homology (93–98.5%) with the refer-
ence strain from Guatemala and Germany. For the newly 
detected genotype, GII.NA1, identity ranged from 87.9 to 
94.5% compared with that isolated from Kenya and Cam-
eroon. Moreover, we detected only one GIV.1 sequence in 

this study, and it shared high homology (99.4%) with the 
reference strain from China in 2008 and Japan in 2011.

Discussion

With the development of molecular techniques, human 
SaV could be detected with highly diagnostic efficacy to 
investigate its prevalence among population. Sporadic and 
outbreaks related to human SaV have been reported in Asia 
(Thongprachum et al. 2018; Kitajima et al. 2010), Europe 
(Mancini et al. 2019), North America (Kitajima et al. 2018), 
and South Africa (Ibrahim et al. 2019; Murray et al. 2013). 
However, only a few studies in China have investigated 
human SaV in clinical samples, providing limited informa-
tion on genetic and genotype diversities of human SaV in 
local population (Wang et al. 2014). The results of this study 
are useful in understanding human SaV circulation in China.

Human SaV can be discharged into the environment via 
sewage effluents, where it can remain infective persistently 
(Sinclair et al. 2008). It can be transmitted by fecal-oral 
route, especially feces-contaminated water. There have been 
studies proving that asymptomatic patient shed viruses at 
levels comparable to those shed by gastroenteritis patients 
(Kobayashi et al. 2012; Yoshida et al. 2009). Environmental 
surveillance has the advantages of sensitivity, wide repre-
sentative scopes, and good correlation with the presence of 
viruses in population, which can be used as a strong supple-
ment to clinical surveillance (Iwai et al. 2009; Ozawa et al. 
2019). Our findings show a high detection rate of 97.22% 
with detection of multiple genotypes, reflect continuous cir-
culation of human SaV among local population, and reveal 
high sensitivity and importance of environmental surveil-
lance in monitoring enteric viruses.

Traditionally, environmental surveillance is performed 
using Sanger sequencing technology. However, it has some 
defects in that it can only detect major genotypes in the 
mixed pool. On the contrary, NGS enhances the understand-
ing of genetic diversity for it can recognize rare genotypes 
which were concealed by major ones when using Sanger 
sequencing. For example, a study from Italy showed that 
NGS revealed 3 additional genotypes (GI.6, GII.6 and 
GV.1) beyond the 4 (GI.1 GI.2 GI.3 and GII.1) detected by 
Sanger sequencing (Mancini et al. 2019). In this study, NGS 
was performed with 33 sewage samples which were posi-
tive for nested RT-PCR during the three-year period. Ten 
genotypes were identified, including 4 major genotypes (> 
1% of monthly identified sequences) and 6 rare genotypes 
(< 0.05% of monthly identified sequences), demonstrating 
NGS-based amplicon sequencing is an effective approach in 
analyzing complicated samples. The existence of extremely 
rare genotypes was also observed in similar studies on enter-
ovirus and norovirus (Tao et al. 2020; Fumian et al. 2019). 
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During the process from nested PCR to NGS, there may 
be some factors influencing the proportion of nucleic acids 
from different genotypes. Thus, it is reasonable to conclude 
that constitution of the number of NGS reads cannot fully 
reflect the nucleic acid composition in the original sample.

Previously, several studies in China have investigated 
human SaV genotypes in clinical samples. Wang et  al. 
detected human SaV in 42/1,125 (3.73%) samples col-
lected from adult outpatients with acute gastroenteritis in 
Shanghai, China from April 2011 to March 2013 (Wang 
et al. 2014), and GI.2 was the most predominant genotype 
(78.5%; 33/42). Subsequently, Xue et al. detected SaV in 
11/569 (1.93%) fecal samples from acute diarrhea patients 
in south China from 2013 to 2017, and GI was positive in 9 
samples (Xue et al. 2019). In keeping with previous studies 
(Makhaola et al. 2020), GI was the most prevalent geno-
group, detected in 32 out of 33 samples, and GI.2 was the 
most prevalent genotype, reflecting its high activity in local 
population during the study period.

Previous studies from the USA (Kitajima et al. 2018) and 
Japan (Harada et al. 2013; Harada et al. 2012; Harada et al. 
2009) had observed dynamic changes of human Sav geno-
types. Similarly, a switch of major genotype from GI.2 to 
GI.1 was observed around June 2019 in this study. This phe-
nomenon might result from the changes of population immu-
nity levels or the changes of infectivity, as needs further 
investigation. In addition, GV.1 was a rarely detected geno-
type in China. However, it was the most prevalent genotype 
in two months during the study period (Fig. 2b), suggest-
ing high activity at that time. Moreover, we identified two 
genotypes, GII.NA1 and GII.5, to the best of our knowledge, 
these two genotypes had not been reported before in China, 
demonstrating the high sensitivity of NGS. GII.5 has been 
described in a food-borne gastroenteritis outbreak among 
adults in Japan (Oka et al. 2017), in pediatric patients with 
acute gastroenteritis in Thailand (Kumthip et al. 2020), and 
in children younger than 5 years of age in Guatemala (M. 
Diez-Valcarce et al. 2019a, b). According to the phylogenetic 
analysis, GII.NA1 strains we obtained in this study were 
closely related to the strains detected in human stool sam-
ples in Kenya in 2005 and 2008 (Marta Diez-Valcarce et al. 

2019a, b) and in Cameroon in 2014 (Yinda et al. 2019). Con-
secutive clinical and environmental surveillance is needed to 
provide meaningful information for understanding the preva-
lence and pathogenicity of these two genotypes in China in 
the future.

Although PMMoV belongs to plant viruses, it is one of 
the most abundant virus types in a metagenomic survey of 
RNA viruses from human feces (Zhang et al. 2006). The 
abundance of PMMoV in stool samples does not depend on 
its infection status in human and will not change seasonally 
(Haramoto et al. 2013). Therefore, it is a potential indicator 
of pollution degree of water by human feces (Kuroda et al. 
2015; Malla et al. 2019). PMMoV was used as an indica-
tor to evaluate the accuracy of quantified values of human 
SaV genome in sewage. Significant levels of PMMoV were 
detected in all sewage samples, indicating that the observa-
tion of samples with low or no human SaV detection were 
not due to the presence of PCR inhibitors in the quantifica-
tion process. No statistically significant seasonality of viral 
concentration was observed in the present study, similar with 
a study from the USA which detected no clear seasonality 
pattern over one-year period (Kitajima et al. 2014). How-
ever, studies in Brazil showed the existence of seasonal dif-
ferences in virus concentration. Among four seasons, higher 
rate of human SaV from wastewater was observed in rainy 
seasons (summer and autumn) (Fioretti et al. 2016). The dif-
ference of dynamics of the human SaV may occur due to dif-
ferent continental dimensions. The viral concentration in this 
study ranges from  103 to  105 genome copies per liter, which 
is in accordance with that in Brazil, Japan, and the USA 
(Fioretti et al. 2016; Kitajima et al. 2014; Haramoto et al. 
2007), suggesting Jinan is also an endemic area of human 
SaV. Among GI, GI.1 was likely to be more prevalent during 
cold seasons, in line with studies reporting a higher positive 
proportion of clinical samples in winter (Varela et al. 2019).

There may be some limitations in this study. We only 
detected human SaV in sewage supernate, ignoring the sew-
age sludge, which is needed to be investigated in the future. 
Also, all samples tested in this study were collected from 
raw urban sewage, lacking stool samples from gastroenteri-
tis patients. The actual prevalence of human SaV infection 

Fig. 3  The Simpson’s diversity 
index and the number of geno-
types monthly in three years
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among people could not be estimated exactly. Further stud-
ies are needed to test human SaV from both clinical and 
environmental specimens to acquire a comprehensive under-
standing of human SaV.

In conclusion, this study provided a comprehensive pic-
ture of genotypes and genetic characterization of human 

SaV in sewage in Jinan, China by NGS-based environmen-
tal surveillance, which greatly improves our understanding 
on human SaV circulation in communities. NGS should be 
encouraged as a sensitive surveillance tool in the future.
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Fig. 4  Phylogenetic tree of sapovirus strains based on partial VP1 
nucleotide sequences (nt position 5179–5571 corresponding to strain 
Hu/SaV/Manchester/1993/UK with accession number X86560). The 
tree was generated using the Neighbor-Joining method with Kimura 
2-parameter model and gamma-distributed rates in MegaX, with rep-
resentative strains derived from sewage in Jinan, China, and reference 

strains from GenBank. The time of sequences detected in present 
study is characterized as different shapes: (filled square) for 2017; 
(filled circle) for 2018; and (filled triangle) for 2019. The origin of 
sequences in the tree was presented in other shapes: (filled star) from 
human stool; (open star) from sewage; and (filled inverted triangle) 
from shellfishes
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