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Abstract
Although artificial intelligence has become part of everyone’s real life, a trust crisis against such systems is occurring, thus
increasing the need to explain black-box predictions, especially in the military, medical, and financial domains. Modern
eXplainable Artificial Intelligence (XAI) techniques focus on benchmark datasets, but the cognitive applicability of such
solutions under big data settings is still unclear due to memory or computation constraints. In this paper, we extend a model-
agnostic XAI methodology, named Cluster-Aided Space Transformation for Local Explanation (CASTLE), to be able to deal
with high-volume datasets. CASTLE aims to explain the black-box behavior of predictive models by combining both local
(i.e., based on the input sample) and global (i.e., based on the whole scope for action of the model) information. In particular,
the local explanation provides a rule-based explanation for the prediction of a target instance as well as the directions to
update the likelihood of the predicted class. Our extension leverages modern big data technologies (e.g., Apache Spark) to
handle the high volume, variety, and velocity of huge datasets. We have evaluated the framework on five datasets, in terms
of temporal efficiency, explanation quality, and model significance. Our results indicate that the proposed approach retains
the high-quality explanations associated with CASTLE while efficiently handling large datasets. Importantly, it exhibits a
sub-linear, rather than exponential, dependence on dataset size, making it a scalable solution for massive datasets or in any
big data scenario.
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Introduction

The Artificial Intelligence (AI) advent has radically changed
our daily lives, strongly influencing the business logic of
companies and offering a decisive competitive advantage
to those who first explored this new road. International
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Data Corporation (IDC)1 reports that 37.5 billion have been
invested on AI in 2019, more than 44% with respect to 2018,
and forecasts 97.9 billion spent in 2023. All these invest-
ments have led to what is called AI-driven development
[1–3], whose purpose is to define methods and best prac-
tices for embedding AI into applications; not only does this
enhance AI-powered solutions to be adopted in a wide range
of business domains, but it also enables the democratization
of AI [4, 5].

Consequently, AI is having a significant impact on soci-
ety especially when it accesses to our private data and
makes decisions for ourselves [6–10]. Indeed, AI has already
become ubiquitous, and we got accustomed to it without
even realizing: AI makes decisions for us in our daily lives,
from product and movie recommendations on Amazon and
Netflix, to friends suggestions onFacebook, or tailored adver-

1 https://www.idc.com/getdoc.jsp?containerId=prUS45481219
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tisements on Google search result pages. However, as long
as we refer to movie recommendations or tailored adver-
tisements, companies can rely on classic machine learning
techniques, which learn from the data and provide opaque
predictions. Nevertheless, in life-changing situations, such
as disease diagnosis or military operation, it is important to
know the reasons behind such a critical decision [11, 12].

Regrettably, a significant obstacle hindering the wide-
spread adoption of AI-based systems pertains to their inher-
ent opacity. The black-box characteristic prevalent in these
systems endows themwith formidable predictive capabilities
but renders them inscrutable in terms of direct explication.
Consequently, this predicament has catalyzed a burgeon-
ing discourse surrounding eXplainable Artificial Intelligence
(XAI), an emerging research domain replete with substantial
potential to enhance the trustworthiness and transparency of
AI-based systems [13–16]. XAI is unequivocally regarded
as the indispensable prerequisite for AI to sustain its uninter-
rupted trajectory of progressive development [17]. The main
goal is to find a transparent model, which explains the logic
behind the prediction process, without having to forgo accu-
racy. Unfortunately, in many cases, the most accurate models
are also the most complex ones (like complex neural net-
works, with many hidden layers), while the more intuitive
and transparent models (like decision trees) do not always
provide such high performance.

XAI is an emerging topic whose meaning is sometimes
considered related to the following different concepts, as
shown in [18]: (i) Explainability, concerning the ability of
an AI system to explain its decisions in intelligible terms to
humans (e.g., [17, 19]), and (ii) Interpretability, correspond-
ing to the identification of features set that has contributed to
make a decision [20]. According to the Defence Advanced
Research Project AgencyDARPA, the aims of XAI are essen-
tially two [21]: to create models that are more transparent
while sustaining a strong level of learning performance (e.g.,
predictive accuracy) and empowering human users to com-
prehend, place trust in.

In conclusion, explainability constitutes a valuable instru-
ment for rationalizing decisions made by AI systems. Its
utility extends to several crucial aspects, including the valida-
tion of predictions, refinement of models, and the acquisition
of fresh insights pertaining to the specific problemunder con-
sideration. This results inAI systems that can be trustedmore
readily, and opens up to many more different applications.
XAI has the potential to deliver substantial advantages across
a broad spectrum of domains that depend onAI systems [22].

In this paper, we address the problem of explaining why a
specific decision has been made by the AI system. Usually,
methods that deal with this problem (i.e., local explainers, in
contrast to global explainers which try to explain the overall
workings of the system) assume that the complex decision
function which guides the model’s behavior is approximable

with an interpretable model in the neighborhood of the tar-
get instance we are trying to explain (e.g., [18], [23], [24]).
While the above-mentioned works specifically target the
local explanation problem, our firm conviction is that expla-
nations should not only furnish insights into the model’s
behavior near a target instance but also empower users to
comprehend the broader functioning of the model, encom-
passing scenarios with unknown inputs. In other words, local
and global explanations should bemerged to provide a deeper
understanding of the model’s prediction with respect to the
knowledge themodel has acquiredduring its trainingprocess.

In addition, most previous approaches are evaluated con-
sidering benchmark datasets, but their scalability to big data
is often overlooked penalizing the real-world applicability of
such solutions.

In this paper, we extend a recently introduced XAI
methodology known as “Cluster-Aided Space Transforma-
tion for Local Explanations (CASTLE)” by the same authors,
as presented in [25]. This extension seeks to amalgamate both
global and local information to cater to the demands of han-
dling massive datasets. The interpretation of the AI system’s
global operations is achieved through a clustering phase
which is designed to identify regions within the instance
space where data points not only accurately represent the
underlying data distribution but are also consistently classi-
fied by the decision model. To enhance interpretability, we
furnish the human user with an axis-aligned hyper-rectangle
encompassing the instances within a cluster, presented as a
logical rule, to facilitate comprehensibility. In addition, the
local behavior of the model is leveraged to assist the user in
comprehending the factors that bolster or attenuate a predic-
tion. Specifically,we propose a transformation of the instance
space that enables us to infer how alterations in feature values
would impact the prediction probability.

In marked contrast to the original iteration of CASTLE,
the formidable challenges posed by high-volume, diverse,
and rapidly evolving datasets prompted the development of
a specialized framework, rooted in cutting-edge big data
technologies, specifically tailored for the deployment of
CASTLE. Our experiments on five massive-scale datasets
prove the effectiveness of the proposed framework in terms of
temporal efficiency, cluster quality, and model significance.

To sum up, our contributions are as follows:

• We extend CASTLE [25] (“Cluster-Aided Space Trans-
formation for Local Explanation”), a recently introduced
explainable AI (XAI) methodology, to handle huge
datasets.

• In contrast with CASTLE’s original proposal, our solu-
tion leverages big data technologies (e.g., Apache Spark)
and distributed computing (Hadoop file system) to
approximate and make scalable the computation of the
explanations.
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• We conduct an extensive evaluation on five datasets with
different big data characteristics (i.e., volume, variety,
velocity) aiming at proving the effectiveness of the pro-
posed extension.

The paper is organized as follows. Related works about
eXplainable Artificial Intelligence (XAI) are summarized in
the “Related Work” section while the “Cluster-Aided Space
Transformation for Local Explanations” section describes
the proposedmethodology over big data architecture. Finally,
the “Evaluation” section analyzes experimental results using
different real-world datasets while in the “Conclusion and
Future Work” section, we discuss several conclusions and
future research directions.

RelatedWork

eXplainable Artificial Intelligence (XAI) aims to develop
intelligent systems capable of elucidating their decision-
making processes. Recent years have seen the emergence
of various comprehensive surveys on XAI (e.g., [19, 26,
27]), focusing on the technical and comparative analysis of
multiple methodologies. These studies contribute to the con-
struction ofAI/ML systems that transition frombeing opaque
to transparent, employing a local-to-global framework. The
growing reliance on decision-support systems that operate as
“black boxes,” particularly in critical sectors such as health-
care, security, and defense has underscored the need for XAI
techniques. These techniques enhance user trust by improv-
ing the transparency and predictability of such systems [17].

In the field of healthcare, [28] examines XAI methods
aimed at boosting accountability, transparency, and relia-
bility in medical applications. Lamy et al. [29] proposed
a visual explanation method for breast cancer recognition,
which hinges on the quantitative and qualitative alignment
of user queries with retrieved cases. Viswan et al. [16]
study the application of XAI methods to Alzheimer’s disease
(AD) detection. Similarly, in the financial sector, Moscato
et al. [30] discuss the integration of XAI techniques with
Information and Communication Technologies (ICTs) to
simultaneously mitigate risks and enhance efficiency. Fur-
thermore, Rong et al. [31] present a comprehensive survey
onXAI applications in social sciences, highlighting key find-
ings and ongoing challenges.

Recent advancements in XAI have concentrated on elu-
cidating the inner workings of black-box models, primarily
through feature importance and rule-based methodologies.
Feature importance methods aim to demystify model behav-
iorwithin specific instances. Thesemethods typically employ
intrinsically interpretable models, such as linear models or
decision trees, to assign significance to each feature. Promi-
nent among these is the Local Interpretable Model-agnostic

Explanations (LIME) technique [18], which provides local
model-agnostic explanations, meaning it generates insights
for specific predictions irrespective of the underlying ML
model used. This is achieved by perturbing initial data to
create new samples that help in forming explanations. SHap-
ley Additive exPlanations (SHAP) [32] is another notable
method in this category. It explains individual predictions
using Shapley values, derived from game theory. Shapley
values assess the impact of each feature on the prediction by
considering the presence or absence of features in a coalition
that contributes to the prediction and evaluating how the addi-
tion of a feature alters the prediction outcome. Furthermore,
Pattern Aided Local Explanation (PALEX) [33] provides
instance-level explanations by examining local behavior and
utilizing frequent pattern sets from training data to identify
locally discriminative features near a test instance. On the
other hand, rule-basedmethodologies offer explicit rules that
enhance user understanding of decision boundaries. Inter-
pretable Decision Sets (IDS) [34] exemplify this approach
by generating a set of independent “if-then” rules to optimize
their coverage, precision, and complexity. Ribeiro et al. [24]
introduced a model-agnostic method evolving from LIME,
which combines local explanations with rule-based inter-
pretability, forming anchors that anchor predictions locally.
Additionally, other approaches like those in Guidotti et al.
[35] and Grover et al. [36] employ global information to
generate local explanations, including both supporting and
counterfactual rules.However, thesemethods face challenges
due to the localized nature of their explanations. For example,
LIME’s linear model explanation is only valid within a nar-
row vicinity of the target instance, beyond which its accuracy
diminishes. This limitation is due to the absence of informa-
tion about the neighborhood’s size where the explanation
remains valid. To overcome these challenges, CASTLE [25]
integrates “global information” from the model into the
local explanation process. This is achieved through a clus-
tering phase to create pure clusters, characterized by high
inter-cluster variance and low intra-cluster variance, ensur-
ing homogeneous classification. These enhanced rule-based
explanations include feature importance values and direc-
tional information supporting the prediction. This approach
not only provides rule-based explanations but also defines
supporting and opposing directions for the prediction, offer-
ing a comprehensive understanding of model behavior in
various scenarios. Table 1 provides a comparative summary
of the discussed related work.

In contemporary research on eXplainable Artificial Intel-
ligence (XAI), a notable gap persists in the scalability and
adaptability of prevalent explanation techniques within big
data frameworks. Prevailing methodologies, while robust
in standard settings, encounter significant challenges when
applied to extensive, complex datasets characteristic of big
data environments. This limitation poses a critical constraint,
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particularly given the exponential growth and intricacy of
contemporary datasets across diverse domains. Addressing
this gap, our work contributes to the evolution of XAI
by implementing and experimenting with the CASTLE
approach in a big data context. CASTLE, with its unique
approach of leveraging clustering mechanisms for explana-
tion generation, inherently aligns with the complexities of
large-scale data. This alignment is pivotal, as clustering can
effectively segment vast datasets into manageable subsets,
enabling more precise and computationally efficient expla-
nations.

The application of ourmethod in real-world industrial sce-
narios offers significant potential. In sectors such as finance,
healthcare, and manufacturing, where decisions based on big
data analytics have far-reaching consequences, our approach
can provide clear, localized explanations for model predic-
tions. This clarity is vital for compliance with regulatory
standards, such as the General Data Protection Regulation
(GDPR), which mandates the right to explanation for auto-
mated decisions. Moreover, in industries where predictive
maintenance is crucial, such as manufacturing, our method
can elucidate the reasoning behind predictions, enabling
more informed and proactive decision-making processes.

Supporting this approach, recent research has highlighted
the necessity for scalable XAI solutions in industrial settings.
For instance, studies by Ribeiro et al. [18, 24] and Lundberg
et al. [32] have underscored the importance of model-
agnostic explanations, but also their limitations in terms of
scalability and computational overhead. CASTLE’s inno-
vative application in a big data context not only builds
upon these foundational works but also transcends their
limitations, offering a pragmatic and effective solution for
real-world industrial applications. This advancement in XAI
methodology is poised to significantly enhance the inter-
pretability, trustworthiness, and applicability of machine
learning models in the era of big data.

Cluster-Aided Space Transformation
for Local Explanations

The key idea behind our approach is to design a novel XAI
methodology, named Cluster-Aided Space Transformation
for Local Explanations (CASTLE), capable of working on
the top of a big data architecture. In particular, clusters are
the pillar of this approach, and the description of the clus-
ter incorporating the target instance is the key to obtain a
comprehensive and faithful “global” explanation. Despite
its real shape, the cluster provided with the explanation has
to be described in a way users can easily understand. For
example, when working with tabular data, a good choice for
cluster representations could be the axis-aligned hyperrect-
angles which contain cluster instances. Formally, a cluster
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Fig. 1 Example of CASTLE explanation

C j , j ∈ {1, ..., k} (k being the number of clusters), can be
completely characterized by the following coordinates:

C j = ((l1j , u1
j ), (l

2
j , u2

j ), ..., (l
d
j , ud

j )) (1)

with d being the dimensionality of data (i.e., the number of
features) and (li

j , ui
j ) being the lower and upper bound

respectively for cluster C j along the dimension (i.e., fea-
tures) i .

To show an example of its working, let us consider again
the instance from the vertebral column dataset2 (Fig. 1a). For
simplicity, let us just consider the top two features: Grade of
Spondylolisthesis and Sacral Slope. A possible cluster could
be described in the form:

−11.1 ≤ Grade O f Spondylolisthesis ≤ 418.5

13.4 ≤ Sacral Slope ≤ 121.4

As will be detailed later, clusters’ description can be used
as an explanation only if the properties of purity, cover-
age, and overlap are enforced. Moreover, it is worth noting
that the cluster’s representation as an axis-aligned hyper-
rectangle is a necessary choice to favor the interpretability of
explanations in the trade-off between expressive power and
interpretability. For example, considering data distributed as
a slanted line in a high-dimensional space, our description

2 http://archive.ics.uci.edu/ml/datasets/Vertebral+Column

would be interpretable but it would include unnecessary vol-
ume; on the other hand, an elliptical description would be
more accurate but not interpretable at all.

The cluster alone does not provide much information
about the prediction outcome. That is why you need to com-
bine this piece of global knowledge to the local behavior
of the model around the target instance, to provide a clear
and comprehensive explanation. Figure1b shows the result
of CASTLE applied to the above example. The identified
clusters are represented in the feature values range under
the form of rules, which means the patient is labeled as
“Abnormal” because his Grade of Spondylolisthesis level
lies in the range [−11.1, 418.5] and his Sacral Slope value
lies in [13.4, 121.4]. Furthermore, the green and red areas
show the supporting and opposing directions to the predic-
tion, respectively. This means, should the patient Grade of
Spondylolisthesis level increase, the likelihood of him being
considered “Abnormal” would increase. While an increase
in his Sacral Slope value would weaken the current predic-
tion.

The overall explanation extraction process in CASTLE
consists of two main phases:

1. Preparation: one-timefitting of a clusteringmodelwhich
represents the global knowledge of the predictive model.

2. Explanation: extraction of both global and local behavior
of the classification model. Global behavior is retrieved
by finding the cluster which most likely applied to the
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Fig. 2 Clusters properties

target instance, while local behavior is obtained by ana-
lyzing model’s outputs for instances in the neighborhood
of the target.

Preparation Phase

The goal of the preparation process is to find a set of clus-
ters grouping instances which share a common behavior and
which are homogeneously classified by the predictivemodel.
More in detail, the classification model f (·) is used to obtain
labels for data onwhich themodel has been trained,which are
the basis of its knowledge. Then, a clustering procedure aims
to mine the knowledge acquired by the model, and represen-
tative points for each cluster (named pivots) are eventually
pulled out andwill be exploited by the explanation phase. The
clustering procedure, through the identification of the axis-
aligned hyper-rectangle which includes the cluster instances,
enables the possibility to provide logic rules as a part of the
explanations, which can be easily understood by humans.
For this reason, not only should clusters respect the usual
clustering properties (like low intra-variance and high inter-
variance), as shown in Fig. 2, but they should also have the
following characteristics:

• High purity: The user expects the logic rule to be trust-
worthy and, hence, that every instance lying in the
hyper-rectangle has the label specified by the rule (the
same label as the target instance being explained). Given
a cluster C j , its purity can be defined as the percentage
of instances lying in C j with the majority-class label.

• High coverage: It is simple to obtain completely pure
clusters, even in highly overlapped datasets, if we allow
the clustering algorithm to not cover every instance (refer,
for an example, to Fig. 2a). At the same time, it is simple
to cover every instance if there are no purity restrictions
(refer to Fig. 2a). In real-world scenarios, where there
usually is no well-defined boundary between classes, it
is necessary to handle a trade-off between purity and
coverage: a high purity increases the user trust towards
the explanation system, but the not-covered areas of the
instance-space result in the inability to provide logic rules
when required.

• Low overlap: The area shared by clusters representing
different classes must be as small as possible. As a matter
of fact, the model’s behavior is uncertain in these areas,
and that could jeopardize users’ trust towards the sys-
tem. Figure2c shows an example of overlap. Formally,
overlap is defined as the mean of the Intersections-over-
Unions (IoUs) between the clusters (axis-aligned hyper-
rectangles) representing different classes. So, given a
classification problem with s classes and, consequently,
s cluster sets C0,C1, ...,Cs−1, overlap can be computed
as follows:

overlap = 1
∑s−2

i=0 |Ci || ⋃s−1
j=i+1 C j |

s−2∑

i=0

∑

Cw∈Ci

∑

Cz∈⋃s−1
j=i+1 C j

I oU (Cw, Cz)

(2)

Once the appropriate cluster set is found, the last step of the
preparation phase consists of extracting one or more repre-
sentative points, called pivots, from each cluster. Theywill be
exploited to retrieve the explanation in the following phase.
A simple, yet efficient choice for pivots could be the clusters’
centroids. Note that this phase is totally absent in LIME, as
it lays the foundation for the “global” understanding of the
model, described in the following section. So, if on the one
hand it adds overhead to the methodology, on the other hand,
it allows for a complete and exhaustive explanation.

Explanation Phase

The explanation phase represents the core of the proposed
methodology. Its aim is to extract a comprehensive expla-
nation for the target instance outcome, basing both on the
global and local behavior of the predictive model.

The “global” understanding of the model is achieved by
finding the cluster which is most likely applied to the target
instance. This could be simply implemented by selecting the
cluster whose centroid is closer to the instance. Once the tar-
get has been assigned to a cluster, the extraction of the rule
consists of finding the axis-aligned hyper-rectangle that rep-
resents it (for example, you could select all the instances
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Fig. 3 Explanation phase: local
behavior

belonging to the target cluster and define the boundaries
by computing the minimum and maximum value for each
feature).

The process for understanding the local behavior of the
model is shown in detail in Fig. 3. As a matter of fact, CAS-
TLE and LIME share the same phases in this process, applied
in a slightly different way. So, you can both get information
about the main features contributing to the prediction, and
also estimate how much the prediction is influenced by the
proximity of the target instance to the pivots retrieved from
the clusters.

First of all, the neighbors of the target instance define its
locality. They are commonly generated by random pertur-
bation of the instance to be explained. Every neighboring
instance generated is forecasted by the input black-box
model, with the underlying concept being that we can
reconstruct the model’s specific behavior within the vicin-
ity established by these generated instances.

The novel idea of our approach is an instance-space trans-
formation, named CAST, such that each feature represents
the proximity of the target instance to a pivot. Let us con-
sider a binary two-dimensional problem where instances are
preliminarily divided into two clusters, and their centroid is
the pivots p0, p1. Given a target instance t = (x0, x1), it
can be encoded into a new variable t ′ = (x ′

0, x ′
1), where

x ′
i = proximity(t, pi ) is a measure of similarity between t
and the pivot pi . A simple example of a proximity function
is as follows:

proximity(t, pi ) = 1

1 + d(t, pi )
(3)

where d(t, pi ) is the distance between t and pi . Figure4
shows an example of transformation using Eq.3 as a prox-
imity function. As you can see, red points in the new space
are on the top-left region of the plot because they have a small
proximity to pivot 1 and a big proximity to pivot 2, and vice
versa.

Finally, the transparent model fitting phase consists in
learning a transparent model (e.g., linear regressor, decision
tree) on the neighbors, exploiting the black-box model pre-
dictions. In other words, the proposed model encapsulates
the internal mechanisms of the black-box model within the
proximity of the target instance. More precisely, the inter-
pretable model, trained on modified data, calculates a weight
for each pivot, signifying the extent to which the proximity
of the target instance impacts the prediction. For instance, the
output y(t) of a linear model can be expressed as follows:

y(t) =
∑

p∈P
proximity(t, p) · wp, (4)

where t is the target instance, P the set of pivots, and wp the
learned weight for pivot p which represents its influence to
the prediction.

It is worth noting that the space transformation has no
impact on the behavior of the black-box model, as it was
queried with the neighbors in the original space.

Furthermore, an additional interpretable model can be
trained using the original neighbors, akin to the approach
in the LIME framework. This helps in understanding the
influence of data features on the local prediction. It can be
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Fig. 4 Example of the
pivot-based space
transformation

insightful to view the output of the interpretable model fitted
on CAST data as if it were a combination of gravitational
forces acting on the target instance to guide it towards its
predicted outcome, as depicted in Fig. 5. Each pivot, denoted
as p, exerts an attractive force when its weight wp is posi-
tive (indicating a positive contribution to the prediction), and
conversely, a repulsive force when the weight is negative.
The impact of each pivot is determined by both its weight
and its proximity to the target instance: reducing the dis-
tance between the target instance and a positively weighted
pivot enhances the likelihood of predicting the correspond-
ing class. The resultant force represents a vector pointing
towards the most supportive region for the prediction y(t),
with its magnitude signifying the predicted value.

How to Choose Pivots

When performing a transformation of the instance space, it
is crucial to guarantee the preservation of information from
the original space in the new one. From a mathematical
standpoint, this entails ensuring the injective property of the
space transformation: every element in the transformed space
corresponds to at most one element in the original space.
Achieving this requires the involvement of an appropriate
number of pivots in the transformation process. To be more

Fig. 5 Explanation vector as a sum of pivot contributions to the
prediction

specific, it is imperative to select a minimum of d + 1 piv-
ots (where d represents the dimensionality), as illustrated in
Fig. 6 through a simple two-dimensional example.

The choice of pivot selection strategy within the system
may vary depending on the user involved. On one hand, the
level of comprehensibility required by the audience differs
based on whether they are end-users or considered “expert”
analysts, as discussed in [27]. End-users may primarily seek
an understanding of why the model made a specific predic-
tion, such as why their loan application was not approved.
Conversely, expert analystsmay aim to scrutinize themodel’s
vulnerabilities and seek improvements, such as identifying
potential biases stemming from the training data. On the
other hand, the level of familiarity with the model also dif-
fers among these user groups: developers possess knowledge
about the training process and can access model-related data,
while end-users are limited to interacting with the model
through its interface.

Fig. 6 a In a two-dimensional space featuring three distinct pivots, if
the Euclidean distance is employed as the proximitymetric, the instance
denoted as t can be transformed into t̂ = (d1, d2, d3). The presence of
three non-aligned pivots ensures that t̂ corresponds exclusively to the
original instance t , as it is the solitary point of intersection among three
circles centered on the pivots and having their respective distances as
radii. b When only two pivots are selected, the transformed instance
t̂ = (d1, d2) matches with two distinct points, namely, t1 and t2, which
represent the intersections of the two circles formed by the selected
pivots. This scenario may result in a potential loss of information
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CASTLE provides users with access to training data and
knowledge about the training process, such as developers
and expert analysts, with the means to thoroughly investi-
gate the dynamics of the model. This investigation involves
the analysis of both the supporting directions and the rele-
vance values of the chosen pivots. Expert analysts with data
access can exercise control in extracting pivots by leverag-
ing clustering techniques and their domain expertise. This
approach enables them to select pivots that ensure a sig-
nificant separation between classes within the transformed
space. For instance, there are several strategies based on pivot
selectionmetrics that can be effectively employed to enhance
pivot selection and subsequently improve nearest neighbor
or range query searches, as elaborated in [37].

When an end-user has data access but lacks the expertise
or time to manually choose pivots, an automated explanation
process can be facilitated using a random selection strategy.
It has been empirically demonstrated that this approach does
not negatively impact performance. In the broader context,
for end-users who have neither data access nor training infor-
mation, a fully automated procedure can be employed, where
pivots are selected through random perturbation of the target
instance.

CASTLE on Big Data Architecture

The process has been carried out with a bottom-up approach,
by identifying the main steps and entities that characterize
an explanation process and connecting them together to cre-
ate the final framework that relies on big data technologies.
This is mainly because of their modularity: in fact, it is eas-
ily replace the underlying machine learning model or just as
easily replace the interpretation method. These are the rea-
sons why it is possible to create a generalizable architecture,
which can just as easily be extended to embrace more and
more algorithms as the research goes on. Themilestone steps
of the post hoc local explanation process are as follows:

1. Get the class predictions for your data through a black-
box ML algorithm.

2. Generate a neighborhood around the target instance you
want to provide an explanation for.

3. Make the black-box model (used in the first step) predict
the class label for the new instances.

4. Fit a simple, transparent model on the newly generated
neighbors to get an explanation of the model behavior in
the locality of the target instance.

By following this schema, it was possible to implement
the framework shown in Fig. 7. For the sake of readability
and clarity, only the main methods (directly involved in the
explanation process) are displayed. In the following sections,
each entity represented in the architecture will be discussed.

The first package, named data, contains the entities to han-
dle different data (TextData, ImageData, or TabularData)
from an external source. Successively, model connectors
are defined in order to implement the independence of the
explainer from the specific black-box classifier. In particu-
lar, Model is < inter f ace >, which provides the method
predict() to get the label predictions of the black-box model
for the instances generated in the target instance neighbor-
hood while ScikitConnector and SparkMLConnector are
respectively the connector for Python scikit-learn machine
learning library and MLLib from Apache Spark for inte-
grating whichever ML model. The explainer package, then,
represents the core of the whole explanation process, whose
main entities are as follows:

Explainer This is the general interface that allows to produce
an explanation for the behavior of a black-boxmodel. As you
can see from the architecture Fig. 7, it makes use of themodel
it is going to explain, and of course the data to retrieve all
the information it needs. Once the explainer has computed
all the steps, it instantiates an Explanation object, which will
be analyzed later. In particular, it is possible to distinguish
between global and local explainers, basing on your scope.
GlobalExplainer can be used for those techniques, whose
goal is to provide a global explanation of the whole ML
model, so as to understand the entire logic behind it. On the
other hand, LocalExplainer can be exploited to produce an
explanation for a target instance, without having to go into
the details of the whole model understanding.

LIMEExplainer This is the main class for the implementa-
tion of LIME [18]. Being a local explanation strategy, it
expands LocalExplainer and provides an explanation for a
target instance. According to the type of data you are going
to handle, you can either use LIMETextExplainer, LIMEIm-
ageExplainer or LIMETabularExplainer. This is the class
responsible for the neighborhood generation process and
the definition of the locality of the target instance. Once
the needed computations have been completed, it calls the
method explain_instance_with_data(), provided by LIME-
Base, to generate the explanation.

LIMEBase This is the final step of the explanation pro-
cess, where the simple, transparent model is fitted on the
neighborhood data, previously labeled by the classifier, to
generate an interpretable explanation for the target instance
outcome.

CASTLEExplainer It implements another local explanation
methodology. Its inner working is similar to LIME, but
it additionally exploits global knowledge about the data,
through a clustering technique, to provide more information
about the outcome.
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Fig. 7 General framework for our method
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Table 2 Datasets
characterization

Dataset Original size Scaled size #features #labels

Avilaa 20.867 1.053.430 10 12

Diabetesb 768 2.001.408 8 2

Magic Gamma Telescope (MGT)c 19.020 3.005.160 10 2

HTRUd 17.898 4.009.152 8 2

SUSY e 5.000.000 / 18 2

ahttps://archive.ics.uci.edu/ml/datasets/Avila
bhttps://archive.ics.uci.edu/ml/datasets/diabetes
chttps://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
dhttps://archive.ics.uci.edu/ml/datasets/HTRU2
ehttps://archive.ics.uci.edu/ml/datasets/SUSY

Finally, the explanation package contains the possible
explanation forms (i.e., rule, example, or FeatureImportance)
you can get from an explainer.

Evaluation

In this section,wewill show the performance results obtained
from the implementation of the proposed technique (CAS-
TLE) in a big data environment. As a matter of fact, the main
difference between LIME and CASTLE is that the former is
a “simple local explainer,” which means, it does not require
any preparation phase and it only focuses on the locality of
the target instance. On the other hand, CASTLE provides
an explanation by combining both local and global behavior
of the prediction model. Hence, when handling large-scale
datasets, not only does the adoption of big data paradigms
allow for better performance, but it even becomes necessary
if the amount of data to be processed exceeds the compu-
tational capabilities of traditional architectures. Thus, in a
nutshell, the evaluation process can be split into two phases.
The former is the Clustering evaluation to assess the effec-
tiveness of the clustering model, by finding the appropriate
number of clusters for the related dataset and by evaluat-
ing the quality metrics proposed in the “Preparation Phase”
section. The latter is the Performance evaluation to eval-
uate the efficiency of the technique by comparing it to the
original “non-Big Data” algorithm after identifying the best
clustering configuration for each dataset.

The framework has been tested on different open-source
datasets, whose main features are summarized in Table 2. In
order to show the differences in performance as the amount
of data increases, a simple process of “data augmentation”
has been applied to most of the datasets by replicating the
original instances.

The black-box classification model used on the large-
scale datasets is a RandomForestClassifier, provided by
spark.ml library.3 In configuring our RandomForest model,

3 https://spark.apache.org/mllib/

we selected parameters to optimize both accuracy and com-
putational efficiency. Themodel is set with amaximumdepth
of 4, allowing sufficient complexity while avoiding overfit-
ting. We used 32 maximum bins for discretizing continuous
features, ensuring efficient computation. A minimum of one
instance per node and a minimum information gain of 0.0
were chosen to capture detailed patterns in the data. The
“gini” impurity measure was employed for its effectiveness
in node purity assessment. The forest consists of 100 trees,
balancing performance and computational demand. A sub-
sampling rate of 1.0 allows each tree to learn from the entire
dataset, enhancing model robustness. No minimum weight
fraction per node was set, offering flexibility in tree growth,
and bootstrap sampling was used to promote diversity in the
forest’s trees.. This model has been trained on each dataset,
guaranteeing good prediction performances (> 80%). The
validation procedure employed is a held-outmethod,wherein
70% of the data instances are allocated for training, 20% for
validation, and 10% for the test set. Similarly, in order to
compare the proposed framework to the stand-alone version,
we have used a RandomForestClassifier from Python scikit-
learn library,4 tuned in the same way.

Clustering Evaluation

The first step of the framework evaluation concerns the
clustering phase. In this section, we will first compare two
clustering algorithms, provided by spark.ml, on the different
datasets. Then, once established the best configuration, we
will evaluate the qualitymetrics proposed in the “Preparation
Phase” section. The clustering methods used are as follows:

• KMeans: Given a set of n observations, KMeans clus-
tering aims to partition them into k(≥ n) sets so as to
minimize the within-cluster sum of squares. spark.ml
allows to initialize this algorithm in two modes: (i)
KMeans Random, representing the standard KMeans
method where k centers are chosen randomly and then,

4 https://scikit-learn.org/stable/
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Fig. 8 Inertia method for
clustering algorithms

in every iteration, the algorithm assigns each instance to
the closest center and recomputes the centers, until con-
vergence, and (ii) KMeans //, a parallelized variant of the
KMeans++ method where the first k centers are com-
puted basing on the data distribution, in order to find the
optimal clusters in fewer iterations [38].

• Bisecting KMeans: This approach combines elements
of both divisive hierarchical clustering (top-down clus-
tering) and KMeans clustering. Instead of dividing the
dataset into k clusters in each iteration, the bisecting
KMeans algorithm progressively divides a single cluster
into two sub-clusters at each bisecting step, accomplished
through KMeans, until a total of k clusters are achieved.

Both the clustering algorithms require you to set the num-
ber of clusters k. So, in order to optimize the results, we
tried to find the best trade-off between k and the cost . The
latter refers to the inertia value, which is defined as the aver-
age squared distance between each instance and its nearest
centroid. In accordance with this definition, a lower iner-
tia value indicates a better-performing model. The method
consists in running the algorithm several timeswhile increas-
ing the number of clusters (k ∈ [2, 40]), and plotting the
graph of inertia as the number of clusters increases. Note
that the evaluation has been executed on the original sized
datasets and the inertia value is strictly dependent on the size
of the dataset. As a matter of fact, SUSY, which already had
5.000.000 instances, has much higher inertia values than the
other datasets, but the process is of course unchanged.

Hyperparameters Tuning

The initial phase of our evaluation involves identifying the
optimal value of k for the two clustering algorithms we have
previously delineated. Prior to executing these algorithms,

we employed a MinMaxScaler from spark.ml to preprocess
the data, enhancing the efficacy of the clustering process. The
outcomes of this procedure on various datasets are illustrated
in Fig. 8.

It is noteworthy that the algorithms exhibit minimal
divergence in terms of inertia, attributable to their shared
foundation in the KMeans methodology. Both KMeans Ran-
dom and KMeans// yield remarkably similar results, which
aligns with expectations given their primary distinction lies
in the initialization phase. Conversely, Bisecting KMeans
consistently underperforms in comparison, as evidenced
across all datasets. An additional crucial aspect is the exe-
cution duration; the time required for cluster computation
significantly contributes to the overall explanation pro-
cess, necessitating adherence to reasonable time constraints.
Figure 9 displays the execution times for the aforementioned
algorithms. While the inertia values exhibited marginal dif-
ferences, a stark contrast is apparent in execution times
between KMeans and Bisecting KMeans. The sequential
nature of Bisecting KMeans results in substantially longer
execution times compared to KMeans, rendering it less fea-
sible in practical scenarios.

In conclusion, Table 3 presents the selected hyperparam-
eter k for each dataset.

Clustering Quality

As detailed in the “Preparation Phase” section, the desired
characteristics of a clustering result to be useful within the
explanation process are as follows: (i) High purity, so as
to guarantee the trustworthiness of the final explanations,
which rely on the clustering results, (ii) High coverage, since
you want the clusters to cover as many instances as pos-
sible, and (iii) Low overlap between clusters representing
different classes.
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Fig. 9 Execution time for
clustering algorithms

Aiming to take count of all these properties, we merged
them together in a single quality metric, as shown below:

quali t y = wp · puri ty + wc · coverage

+ wo · (1 − overlap)
(5)

where wp, wc, wo represent the weights associated with
puri ty, coverage, andoverlap, respectively.Theseweights
are useful if, for some reason, the application prefers one
property over the others. For example, if the dataset contains
a lot of noise, it is advisable to set a low weight wc for the
coverage term, in order to facilitate the rejection of noise.
For my experiments, we assumed equal contributions and
set wp = wc = wo = 1

3 . The metric was evaluated using
the optimal k retrieved in the previous section, but this time,
instead of preprocessing the data with a scaler, we referred to
the original instances, since the clusters’ description is com-
puted in the original space. Table 4a, b, and c show the final
results for the different algorithms.

The analysis of the quality evaluation, as delineated in
the table, reveals consistently high performance across most
metrics for the clustering algorithms. A critical observation
is that the coverage (C) metric uniformly registers at 1.0
across all datasets for each algorithm. This is an inherent
characteristic of the KMeans methodology, which inherently
ensures the inclusion of all instances in the clustering process,
thus guaranteeing complete coverage.

Focusing on the overall quality (Q), theBisectingKMeans
algorithm generally lags behind its counterparts, with the
notable exception being theMagicGammaTelescope (MGT)
dataset. In this specific instance, Bisecting KMeans outper-
forms due to a marginally superior purity (P) value. Purity,
in this context, reflects the homogeneity of the clusters, sug-
gesting that Bisecting KMeans, despite its overall lower
efficiency, can achieve better homogeneity under certain con-
ditions.

However, it is crucial to balance these quality metrics
against the practical considerations of execution time. The
Bisecting KMeans algorithm, while occasionally offering
slightly higher purity, is significantly outpaced in terms
of computational efficiency by the other KMeans vari-
ants. Given the substantial discrepancy in execution times,
with Bisecting KMeans being markedly slower, the deci-
sion to favor the more time-efficient KMeans algorithms
for all datasets appears justified. This decision is based on
the premise of achieving optimal overall efficiency, which
encompasses not just the quality of clustering but also the
practical feasibility of the algorithms in terms of computa-
tional resources and time constraints.

Performance Analysis

The instance-space transformation, central to this paper,
necessitates the calculation of a proximity function. This

Table 3 Selection of
hyperparameter k

Hyperparameter Avila Diabetes Magic Gamma Telescope HTRU SUSY

k 26 22 20 20 30
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Table 4 Quality evaluation of different methods, in where C , P , O ,
and Q are respectively coverage, purity, overlap, and quality

(a) KMeans// quality evaluation
Dataset C P O Q

Avila 1.0 0.8810 0.9975 0.9595

Diabetes 1.0 0.8188 0.9986 0.9391

MGT 1.0 0.7873 0.9962 0.9278

HTRU 1.0 0.9708 0.9999 0.9902

SUSY 1.0 0.7470 0.9903 0.9124

(b) KMeans Random quality evaluation
Dataset C P O Q

Avila 1.0 0.8480 0.9980 0.9486

Diabetes 1.0 0.8228 0.9985 0.9404

MGT 1.0 0.7666 0.9942 0.9202

HTRU 1.0 0.9664 0.9999 0.9887

SUSY 1.0 0.7472 0.9877 0.9116

(c) Bisecting KMeans quality evaluation
Dataset C P O Q

Avila 1.0 0.8461 0.9976 0.9479

Diabetes 1.0 0.8006 0.9973 0.9326

MGT 1.0 0.8017 0.9953 0.9323

HTRU 1.0 0.9665 0.9988 0.9884

SUSY 1.0 0.7341 0.9875 0.9072

function produces a numerical value that indicates the close-
ness or similarity between two data points, and it relies on
the computation of the distance between these two instances.

We conducted an assessment of our approach concern-
ing variations in both distance and proximity functions.
Specifically, we examined the performance of the Euclidean,
Minkowski,Chebyshev, andCosine distance functions, along
with the following proximity functions:

P1(x1, x2) = 1

1 + δ(x1, x2)
(6)

P2(x1, x2) = e−δ(x1,x2) (7)

P3(x1, x2) = −δ(x1, x2) (8)

P4(x1, x2) = 1 − δ(x1, x2) − min(δ(x1, x2))

max(δ(x1, x2)) − min(δ(x1, x2))
(9)

P5(x1, x2) = max(δ(x1, x2)) − δ(x1, x2), (10)

x1 and x2 being the two data points, δ(x1, x2) represent-
ing a generic distance function and min(δ(x1, x2)) and
max(δ(x1, x2)) representing the minimum and maximum
distance observed in the whole dataset, respectively.

The findings presented in Table 5 demonstrate that the
optimal proximity functions are those described by Eqs. 8
and 10, where the proximity exhibits a linear relationship
with the distance. On average, cosine distance outperforms
other methods while the most effective configurations typi-
cally involve euclidean or Minkowski distances.

The evaluation of the CASTLEmethodologywill be com-
puted according to two main factors:

1. The efficacy of the technique will be evaluated consider-
ingwhetherCAST transformation affects the explanation
process. Specifically,wehave collected theadjusted coef-
ficient of determination R2 of the linear models learned
on the original and transformed spaces. Adjusted R2 is
an indicative measure of the level of explained variabil-
ity in the data set, used in statistical analysis to assess
how well a model explains and predicts future outcomes;
differently than R2, it is independent of the number of
variables which the linear model used during its fitting.
Note that the datasets have been split into two sets in
order to explain instances which neither the explainer
nor the cluster algorithm had never seen, and confidence
intervals have been computed.

2. The efficiency of the methodology will be evaluated by
comparing the execution time on the original Python
algorithm and on Spark, so as to observe the difference
between a traditional environment and a big data engine
when dealing with huge amounts of data.

Efficacy

As mentioned above, the efficacy of the technique will be
evaluated through the ad justed R2 score:

Ad justed − R2 = 1 − n − 1

n − k − 1
· RSS

T SS
(11)

where n is the number of samples in the neighborhood (set
to 1000), k is the number of features on which the model has
been fitted, and RSS and T SS are the residual sum of squares
and the total sum of squares, respectively, which provide an
indicative measure of the level of explained variability in the
data set.

Table 6 presents a comprehensive comparison of the per-
formance metrics in the original space (LIME) versus the
transformed space (CASTLE). This comparison is quantified
using the average adjusted R2 values, accompanied by their
respective 95% confidence intervals, across various datasets.

A detailed analysis of the results reveals that an astute
selection of pivot points inCASTLEdoes not adversely affect
its performance relative to LIME. This is evident from the
relatively close adjusted R2 values for both methods across
different datasets. For instance, in theAvila dataset, CASTLE
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Table 5 Effects of distance and
proximity functions

Distance
Dataset Proximity Euclidean Minkowski Chebyshev Cosine Mean

P1 0.227 0.279 0.25 0.382 0.284

P2 0.216 0.215 0.158 0.571 0.29

P3 0.689 0.683 0.412 0.684 0.617

P4 0.33 0.333 0.26 0.648 0.393

P5 0.686 0.686 0.392 0.685 0.612

Bank Mean 0.43 0.439 0.294 0.594

P1 0.278 0.278 0.162 0.452 0.292

P2 0.152 0.157 0.141 0.428 0.219

P3 0.512 0.517 0.176 0.511 0.429

P4 0.395 0.395 0.139 0.436 0.341

P5 0.5 0.5 0.18 0.501 0.42

Titanic Mean 0.367 0.369 0.161 0.466

P1 0.312 0.315 0.209 0.637 0.368

P2 0.146 0.148 0.199 0.639 0.283

P3 0.701 0.702 0.216 0.718 0.584

P4 0.584 0.584 0.268 0.707 0.536

P5 0.692 0.694 0.333 0.738 0.614

Diabetes Mean 0.487 0.489 0.245 0.634

P1 0.136 0.138 0.225 0.436 0.234

P2 0.084 0.087 0.155 0.444 0.192

P3 0.581 0.586 0.15 0.563 0.47

P4 0.469 0.469 0.31 0.555 0.451

P5 0.576 0.574 0.147 0.554 0.463

Magic Mean 0.369 0.371 0.197 0.51

P1 −0.045 −0.045 0.007 0.254 0.043

P2 −0.061 −0.061 −0.042 0.368 0.051

P3 0.582 0.581 0.197 0.507 0.467

P4 0.44 0.437 0.123 0.534 0.383

P5 0.576 0.58 0.221 0.511 0.472

Spambase Mean 0.298 0.298 0.1 0.435

P1 0.078 0.078 0.027 0.278 0.115

P2 −0.001 −0.002 0.039 0.411 0.112

P3 0.563 0.56 0.097 0.509 0.432

P4 0.451 0.453 0.07 0.497 0.368

P5 0.559 0.565 0.086 0.513 0.431

Digits Mean 0.33 0.331 0.064 0.442

Values in bold indicate the highest results for each dataset

shows a slightly higher adjusted R2 value (0.610 ± 0.016)
compared toLIME(0.591±0.015), suggesting that the trans-
formation in CASTLE retains the explanatory power.

However, it is crucial to delve deeper into these results
to understand the implications fully. The confidence inter-
vals indicate the range within which we can expect the true

adjusted R2 value to lie with 95% certainty. A narrower inter-
val denotes a higher precision of the estimate. For example,
in the Diabetes dataset, the interval width for LIME is 0.058,
while for CASTLE, it is slightly narrower at 0.047, indicating
a more precise estimation in the transformed space.
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Table 6 Ad justed − R2 of LIME and CASTLE

Dataset LIME CASTLE

Avila 0.591 ± 0.015 0.610 ± 0.016

Diabetes 0.691 ± 0.058 0.715 ± 0.047

Magic Gamma Telescope 0.569 ± 0.083 0.605 ± 0.082

HTRU 0.587 ± 0.062 0.637 ± 0.036

SUSY 0.622 ± 0.071 0.619 ± 0.063

Efficiency

Figure10 offers a detailed analysis of the computational
efficiency by contrasting the execution time of the original
CASTLE algorithm with its adaptation for the Spark engine,
hereafter referred to as CastSpark. The comparison with
LIME is not included in this analysis due to the additional
computational steps inherent toCASTLE, namely theprelim-
inary clustering phase and subsequent data transformation,
which introduce additional complexity and processing time
to the workflow.

The data presented in Fig. 10 indicates that CastSpark
demonstrates a sub-linear growth pattern in execution time
across varying dataset sizes. This suggests an improved scal-
ability in the Spark-based architecture as the size of the
data increases. Conversely, the stand-alone implementation
of CASTLE displays a trend that could be characterized as
exponential,with execution time escalating significantlywith
larger datasets.

The sub-linear trend observed with CastSpark can be
attributed to Spark’s distributed computing features, which
enhance the efficiency of processing large datasets by lever-
aging parallel execution across multiple nodes. This is
particularly evident in the comparison presented in subfigure
(a), which displays the raw execution times, and is further
elucidated by the trend line in subfigure (b), which more
clearly delineates the comparative growth rates of execution
time for both versions of the algorithm.

These findings underscore the importance of optimizing
algorithmic implementations for scalable data processing
frameworks like Spark, especially when dealing with large-

scale data that can benefit from distributed computing
paradigms. The results suggest that the CastSpark imple-
mentation is more suitable for larger datasets, where the
computational overhead can be more effectively managed
and mitigated.

Conclusion and FutureWork

The aim of the paper was to design a novel XAI methodol-
ogy over a big data architecture. More in detail, CASTLE is
a novel state-of-the-art XAI methodology, which provides a
clear, exhaustive explanation for the predictions of a black-
box classifier. Its strength lies in the exploitation of both the
global (through clustering) and the local (through neighbor-
hood generation) behavior of the model, through which not
only does it generate a rule explanation, but it also provides
supporting and opposing directions for the prediction. Two of
themaindrawbacks of the original algorithmare the overhead
added with the clustering phase (which is highly related to
the size of the dataset) and the curse of dimensionality, which
strongly affects the computation of CAST transformation.

Instead, in a distributed environment like Spark, the first
issue is addressed using specifically optimized clustering
techniques. As for CAST transformation, it is a completely
parallelizable process, so it can be easily and efficiently com-
puted in a distributed architecture.

The main findings from our results can be summarized as
follows:

• Our adaptation of CASTLE with PySpark shows sub-
linear growth in execution time, indicating better han-
dling of large datasets.

• Wehave achieved high purity and coveragewith our clus-
tering procedure.

• CASTLE shows similar adjusted R2 to LIME and nar-
rower confidence intervals, indicating more precise esti-
mation in transformed space

• The cosine distance generally outperforms other distance
methods.

• Bisecting KMeans shows marginally superior purity.

Fig. 10 Execution time
comparison between CASTLE
and CastSpark
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Future works will be devoted to extend the methodology
to work with multimodal data (e.g., text and images), by of
course redefining the concepts of neighborhood and clusters
accordingly. In addition, wewant to validate the applicability
of our work for different kinds of problems (e.g., regression,
text, or image generation). Finally, instead of focusing on
general-purpose datasets, we would like to target specific
application domains (e.g., finance, social network analysis)
to investigate the practical utility of the framework.
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