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Abstract
Tuberculosis (TB) is a chronic infectious lung disease, which caused the death of about 1.5 million people in 2020 
alone. Therefore, it is important to detect TB accurately at an early stage to prevent the infection and associated 
deaths. Chest X-ray (CXR) is the most popularly used method for TB diagnosis. However, it is difficult to identify 
TB from CXR images in the early stage, which leads to time-consuming and expensive treatments. Moreover, due 
to the increase of drug-resistant tuberculosis, the disease becomes more challenging in recent years. In this work, a 
novel deep learning-based framework is proposed to reliably and automatically distinguish TB, non-TB (other lung 
infections), and healthy patients using a dataset of 40,000 CXR images. Moreover, a stacking machine learning-based 
diagnosis of drug-resistant TB using 3037 CXR images of TB patients is implemented. The largest drug-resistant TB 
dataset will be released to develop a machine learning model for drug-resistant TB detection and stratification. Besides, 
Score-CAM-based visualization technique was used to make the model interpretable to see where the best performing 
model learns from in classifying the image. The proposed approach shows an accuracy of 93.32% for the classification 
of TB, non-TB, and healthy patients on the largest dataset while around 87.48% and 79.59% accuracy for binary clas-
sification (drug-resistant vs drug-sensitive TB), and three-class classification (multi-drug resistant (MDR), extreme 
drug-resistant (XDR), and sensitive TB), respectively, which is the best reported result compared to the literature. The 
proposed solution can make fast and reliable detection of TB and drug-resistant TB from chest X-rays, which can help 
in reducing disease complications and spread.
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Introduction

Tuberculosis (TB) is a contagious disease and the leading 
infectious disease-related cause of death [1]. TB can be 
cured if diagnosed early and treated properly [2]. Chest 
X-rays (CXRs) are routinely utilized for pulmonary tuber-
culosis detection and screening [3, 4]. Chest radiographs 
are analyzed in clinical practice by trained medical doc-
tors in TB diagnosis. However, this is prone to subjective 
evaluation, expert-dependent, and sometimes inefficient 
process. Subjective discrepancies in radiograph-based ill-
ness diagnosis are unavoidable [5, 6]. CXR images of TB 
patients are sometimes confused with other lung abnor-
malities of similar patterns [7, 8]. This leads to incorrect 
diagnosis and therapeutic treatment which worsen the dis-
ease of the patients. Moreover, radiologists are in short 
supply in low-income countries, particularly in country-
side areas. Computer-assisted diagnostic (CAD) systems 
that analyze chest X-ray images can play an essential role 
in mass screening for pulmonary tuberculosis. The intro-
duction of deep convolutional neural network (CNN) mod-
els and open access publicly available large datasets made 
the wide spread application of computer vision algorithms. 
CNNs allow important image features to be learned auto-
matically from the large training data, but acquiring anno-
tated medical image datasets like ImageNet is a very chal-
lenging task [9–11]. X-ray imaging technique is a popular 
and a very low-cost modality, which can provide plenty of 
data to train machine learning models. Therefore, X-ray 
images are becoming popular in detecting lung abnormali-
ties using deep CNN models.

Recently, several studies employed deep CNN models 
to detect lung abnormalities (i.e., pneumonia, lung can-
cer, tuberculosis) by analyzing CXR images [12–15]. Deep 
CNN models were extensively used to detect the novel 
coronavirus disease from CXR images[15–18]. Ismael 
and Sengur in [16] used a comparatively smaller dataset 
of CXR images and confirmed that deep learning had 
the potential for coronavirus disease 2019 (COVID-19) 
detection using CXR images. Features extracted using the 
ResNet50 model were classified using the support vector 
model (SVM) classifier with the linear kernel to produce 
an accuracy of 94.7%. Tahir et al. [12] proposed a frame-
work for classifying coronavirus families with more than 
90% sensitivity by utilizing multiple pre-trained CNN 
models. To differentiate viral pneumonia, COVID-19, and 
healthy patients, Chowdhury et al. [14] reported a deep 
CNN model for COVID-19 detection from CXR images 
while the different layers of the CNN model were used 
to identify the signature of viral pneumonia and COVID 
pneumonia in the X-ray images. Another study proposed 
a unique CNN model called PulDi-COVID for detecting 

nine different diseases, including COVID-19, using chest 
X-ray images and the SSE algorithm [19]. The test results 
showed that PulDi-COVID had high accuracy for identify-
ing COVID-19 specifically with 99.70% accuracy, 98.68% 
precision, 98.67% recall, 98.67% F1 score, a low zero-one 
loss of 12 chest X-ray images, 99.24% AUC-ROC score, 
and a low error rate of 1.33%. A collection of recent lit-
erature on the use of X-ray, CT, and multimodal imag-
ing for COVID-19 diagnosis was reviewed and classified 
based on the use of pre-trained and custom models by 
Yogesh and Patnaik in [20]. The authors also discussed 
the challenges of using deep learning for COVID-19 diag-
nostic systems and outlined areas for future research to 
improve the accuracy and reliability of COVID-19 detec-
tion. Another study proposed a unique CNN model called 
PulDi-COVID for detecting nine different diseases, includ-
ing COVID-19, using chest X-ray images, and the Search-
able symmetric encryption (SSE) algorithm [19]. The test 
results showed that PulDi-COVID had high accuracy for 
identifying COVID-19 specifically with 99.70% accuracy, 
98.68% precision, 98.67% recall, 98.67% F1 score, a low 
zero-one loss of 12 chest X-ray images, 99.24% AUC-
ROC score, and a low error rate of 1.33%. A collection of 
recent literature on the use of X-ray, CT, and multimodal 
imaging for COVID-19 diagnosis was reviewed and clas-
sified based on the use of pre-trained and custom models 
[20]. The authors also discussed the challenges of using 
deep learning for COVID-19 diagnostic systems and out-
lined areas for future research to improve the accuracy 
and reliability of COVID-19 detection. Ieracitano et al. 
[21] introduced a deep learning framework that incorpo-
rates fuzzy logic to distinguish between COVID-19 pneu-
monia and non-COVID-19 interstitial pneumonias based 
on chest X-ray (CXR) images. They utilized CXR images 
and fuzzy images generated through a formal fuzzy edge 
detection method as inputs to their developed CovNNet 
model, allowing for automatic extraction of the most cru-
cial features. The experimental findings demonstrated that 
by combining CXR and fuzzy features, the classification 
performance significantly improved, reaching an accuracy 
rate of up to 81%.

Several research groups applied standard machine learn-
ing algorithms to stratify TB and healthy or other non-TB 
lung infections using CXR images [22–27]. Different groups 
have proposed deep CNN models [28–33] by pruning the 
networks to detect tuberculosis. TB patients were identified 
with an accuracy of 82.09% using a deep CNN model by 
Hooda et al. [28]. In [30], a CAD model was proposed for 
the detection of TB patients from the chest X-ray images 
with an accuracy of 88.76% utilizing important patterns in 
the lung images. Pasa et al. [31] showed a deep neural net-
work for tuberculosis detection with an accuracy of 86.82%. 
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They also mentioned a technique for interactively visualizing 
tuberculosis instances. In another work utilizing the ensem-
ble of CNN models, Hernandez et al. [33] automatically 
classified TB patients from CXR images with an accuracy 
of 86%. Pre-trained CNN models, which were trained on 
the ImageNet dataset, were utilized by Lopes et al. [34] to 
stratify the TB and non-TB patients using CXR images. A 
simplified pre-trained CNN model for TB detection with and 
without image augmentation has been developed by Ahsan 
et al. [35] with an accuracy of 81.25% and 80%, respectively. 
Again, pre-trained CNN models were reported to show an 
accuracy of 94.89% in TB detection by Yadav et al. [36]. 
Abbas et al. [37] suggested a class decomposition strategy-
based CNN architecture to enhance the performance of pre-
trained models. It is worth noting here that TB culture test 
images were used for training the pre-trained CNN models. 
Chang et al. [38] achieved 98% sensitivity with 99% preci-
sion by applying the transfer learning technique to TB cul-
ture images. TB culture image-based classification needs 
specific samples from the patients, which makes it less reli-
able than classification from readily available chest X-rays. 
In our previous work [39], we presented a transfer learning 
approach utilizing deep Convolutional Neural Networks 
(CNNs) to automatically detect tuberculosis (TB) from chest 
radiographs. The researchers evaluated the performance of 
nine different CNN models in classifying TB and normal 
chest X-ray (CXR) images. Among these models, ChexNet 
demonstrated superior performance for datasets with the 
lung segmented CXR images. The results revealed high clas-
sification accuracy, precision, and recall for TB detection. 
Specifically, without segmentation, the accuracy, precision, 
and recall were found to be 96.47%, 96.62%, and 96.47%, 
respectively, while with segmentation, they increased to 
98.6%, 98.57%, and 98.56%, respectively.

The drug-resistant TB strains are particularly concerning 
in the diagnosis and treatment of TB. There are currently 
around 20 medicines in use to treat tuberculosis. The five 
most often used medications, usually known as first-line 
treatments, are typically given to TB patients who did not 
get TB treatment before. Rifampin (RIF), isoniazid (INH), 
ethambutol (EMB), pyrazinamide (PZA), and streptomycin 
(SM) are the first-line drugs [40]. To avoid getting resistance 
to a single treatment, it is critical to take multiple TB drugs 
at the same time. Patients need to be very careful about the 
treatment plan for several months without missing a single 
dose to avoid drug resistance. Medicines for drug resistance 
tuberculosis, which are so-called second-line medications, 
have negative impacts as well as very expensive. These 
reserve drugs are grouped according to their experience 
of usage and efficiency. If the TB bacterium that causes 
the infection responds to all medicines, the patient is drug-
susceptible or drug-sensitive. If a patient’s TB becomes 
drug-resistive, at least one of the primary medications will 

not affect the TB bacteria, either through poor treatment or 
transmitted by the infected patient. Multi-drug resistant TB 
(MDR-TB) and extreme drug-resistant TB (XDR-TB) are the 
two main kinds of drug resistance. MDR-TB is characterized 
as resistance to at least one of the most effective first-line 
TB medications, isoniazid or rifampicin. These two are the 
most common TB drug resistance types while further clas-
sifications are occasionally used relying on the number of 
medications to which the Mycobacterium tuberculosis bac-
teria stop responding such as resistance to specific drugs 
and resistance to the majority of currently available drugs. 
XDR TB is an extensively rare type of MDR TB, which 
is resistant to rifampin, fluoroquinolone, or any isoniazid 
drugs [41]. They are also resistant to any of the second-line 
injectable drugs (i.e., kanamycin, amikacin, or capreomy-
cin). Patients have very fewer and less effective drug options 
due to the resistance of the XDR TB to the most potent TB 
drugs. Human immunodeficiency virus (HIV)-infected or 
other similar condition patient who has weak immune sys-
tem should be very careful about XDR TB. Once infected 
such a patient can easily develop TB and also have a high 
risk of death after developing the TB.

MDR-TB is challenging to detect and requires additional 
time and cost for patient treatment (sometimes more than 
2  years). MDR-TB affects 3.3% of new TB patients, as 
well as 20% of previously treated patients [42]. One of the 
most difficult aspects of treating MDR-TB is detecting drug 
resistance in suspected patients on their first hospital visit. 
Drug resistance status is determined by a drug susceptibility 
test often done on sputum samples. A well-equipped 
laboratory is necessary to acquire such a report in 4 to 
6 weeks [43]. This investigation time can be considerably 
shortened to detect MDR-TB by the recent invention of 
the Xpert Mycobacterium tuberculosis/rifampicin (MTB/
RIF) [44]. This is a real-time polymerase chain reaction test 
to identify the genetic changes that happened to the MTB 
genome related to rifampicin (RIF) drug resistance. But 
the sputum sample collection is still required for the test, 
which is very hard to collect, particularly from children. As 
a result, finding MDR-TB remains a difficulty, and because 
of its broad availability, the traditional chest X-ray (CXR) 
remains an important tool in the surveillance, diagnosis, 
and screening of MDR-TB. There is evidence that computed 
tomography (CT) images can be used to distinguish MDR 
TB and drug-sensitive TB. For instance, Yeom et al. [45] 
showed a substantial association between primary MDR-TB 
patients and multiple bilateral abnormalities in the lung 
CT images. Stefan et al. [44] reported multiple cavities and 
bilateral consolidations in the chest CT slices, which help 
in the discrimination analysis of MDR-TB patients. Chen 
et al. [46] used positron emission tomography and computed 
tomography (PET-CT) imaging to relate the abnormalities 
in images with the MDR TB patients while studying the 
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changes in the lung abnormalities in a cohort of 28 MDR TB 
patients under second-line TB treatment for 2 years and then 
monitored for another 6 months using CT alone. Traditional 
sputum microbiology is less sensitive than several radiologic 
markers in detecting successful vs unsuccessful TB patients 
under treatment. Cha et al. [47] explained the radiological 
results of XDR-TB and compare them to those of MDR-TB 
and drug-sensitive TB among non-AIDS patients. Drug-
sensitive TB was represented by the presence of several 
nodules, bronchial, and cavities dilatation in CT images 
of young individuals, whereas no significant difference in 
the image of the patients with MDR-TB and XDR-TB was 
observed. These findings were verified by Kim et al. [48], 
who detected apparent cavities in CT images for the patients 
with MDR-TB. This is also supported by the findings of 
Chung et al. [49]. On the other hand, Lee et al. [50] later 
determined that XDR-TB had more widespread consolidation 
and a tree-in-bud presence in CT images in comparison to 
MDR-TB. Very little effort has been made to automatically 
distinguish drug-resistant and drug-sensitive TB using CXR 
images. A significant relationship between the treatment 
resistance status of TB patients and computerized features of 
radiological imaging was identified by Kovalev et al. [51] in 
a pilot study. By combining CXR and CT features, the authors 
attained an accuracy of more than 75% in drug-resistance 
TB detection [52]. However, the CXR features alone had a 
substantially low performance. Stefan et al. [44] reported that 
it is possible to computationally extract relevant information 
from the chest X-ray images related to the drug-resistant TB 
infection. They have used the CXR images from the database 
of the Republic of Belarus where MDR/XDR-TB and HIV/TB 
are dominant. The database also incorporates the laboratory 
values and clinical biomarkers along with CXR images from 
either diagnosed or suspected MDR-TB patients. Out of 
135 investigated cases by Stefan et al. [44], 45% (61) were 
sensitive while 54% (74) were MDR. As radiological images 
can provide details that can help in distinguishing the various 
drug-resistant TB categories, machine learning networks 
can be used to detect them and make decisions. It has been 
found from previous works of the authors and other recent 
work that novel machine learning networks along with pre-
processing techniques can accurately detect other pulmonary 
abnormalities [13, 53, 54]. The above studies motivated this 
study to use a machine learning framework in classifying TB 
and healthy patients using chest X-ray images and further 
classify the TB patients into the different drug-resistant TB 
groups to help in early disease detection and treatment. The 
key contributions of this work are highlighted below:

• The largest TB benchmark dataset, namely, QU-
MLG-TB, has been created using 40,000 CXR images 
along with their ground truth lung masks. Of the TB 
patients’ CXR images, 10,881 normal (healthy), 

24,119 non-TB (other lung infections), and 5000 are 
present in the dataset. This is the largest TB data-
set which is collected from multiple open access and 
restricted access databases.

• A novel framework, TB-CXR-Net, for TB detec-
tion using this largest dataset was proposed. This is a 
benchmark performance on a benchmark dataset with 
the highest accuracy ever achieved in the diagnosis and 
assessment of TB disease using CXR alone.

• The largest drug-resistant TB dataset as a subset of 
the QU-MLG-TB dataset will be released to develop a 
machine learning model for drug-resistant TB detection 
and stratification.

• A state-of-the-art machine learning stacking model is pro-
posed to detect and stratify drug-resistant TB from chest 
X-ray images alone with state-of-the-art performance.

• Score-CAM-based visualization technique to see how 
the best performing model decides to classify the image.

The paper is divided into five subsequent sections. The 
“Methodology” section summarizes the methodology used 
in the paper with the details of the datasets and pre-process-
ing steps. The “Experiments” section provides the experi-
mental details, while the “Results and Discussion” section 
describes the results and discussion of the TB classification 
and drug-resistant TB stratification. Finally, the article is 
concluded in the “Conclusion” section.

Methodology

The objective of this research is first to classify the TB 
patients among healthy control and non-TB other lung infec-
tions and then stratify the TB patients into drug-sensitive 
and drug-resistive TB.

In the first stage, a novel framework was developed to 
classify normal, non-TB (other lung infections), and TB 
patients (Fig. 1A) using a convolutional neural network 
with a non-linear neuron-based multi-layer perceptron 
(MLP) classifier [55]. In the second stage, the chest 
X-ray images of the TB patients are applied as input to 
a CheXNet-based CNN encoder to extract CXR image 
features, and then the dimensionality of the extracted fea-
tures was reduced using the principal component analysis 
(PCA). Finally, different machine learning classifiers and 
stacking approaches were investigated to find the best 
performing model to classify the TB chest X-rays into 
binary (drug-resistant and drug-sensitive, i.e., cases that 
are sensitive to all the TB drugs (Fig. 1B)) and 3-class 
problems (MDR, XDR, and sensitive-TB (Fig. 1B)). The 
overall methodology of the proposed system is shown 
in Fig. 1.
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Dataset Description

The study considered only posterior-to-anterior or anterior-to-
posterior view of the chest X-ray images, as this view is widely 
used by radiologists. QU-MLG-TB is the largest TB benchmark 
dataset and consists of 40,000 chest X-ray (CXR) images along 
with their corresponding lung masks. Details of the full dataset 
are shown in Table 1. There are two categories in the dataset:

TB Classification

This is one of the largest datasets for TB which consist of 
10,881 normal (healthy), 24,119 non-TB (other lung infec-
tions), and 5000 TB patients’ CXR images that are present in 
the dataset. This dataset was built using a variety of publicly 
available and restricted access datasets and repositories [39, 
53]. Therefore, the dataset has a wide range of resolution and 
format and was collected using different equipment. In the 
pre-processing phase, the authors identified and discarded the 
images with extremely low-quality, over-exposed, and dupli-
cate images to ensure a good quality dataset for this study.

RSNA CXR Dataset (Non‑COVID Infections and Normal 
CXR) The RSNA pneumonia detection challenge dataset 
[56] is made up of 26,684 chest X-ray images, where 8851 
images are normal, 11,821 are abnormal, and 6012 are 

images of lung opacity. The images are in DICOM format. 
In this study, we used 8851 normal images and 6012 images 
of lung opacity as the non-COVID class.

PadChest Dataset The PadChest dataset [57] is made up of 
more than 160,000 X-ray images from 67,000 patients that 
were collected and reported by radiologists at Hospital San 
Juan (Spain) from 2009 to 2017. In this study, we used 4000 
normal and 4000 pneumonia/infiltrate (non-COVID-19) 
cases from the PadChest dataset.

NLM Dataset The National Library of Medicine (NLM) in 
the USA has made two datasets of lung X-ray images publicly 
available: the Montgomery and Shenzhen datasets [58]. The 
Montgomery County (MC) and the Shenzhen, China (CHN) 
databases consist of 138 and 667 posterior-anterior (PA) chest 
X-ray images, respectively. The resolution of the images in 
the MC database is either 4020 × 4892 or 4892 × 4020 pixels, 
while the resolution of the images in the CHN database is vari-
able, but around 3000 × 3000 pixels. In the MC database, out 
of the 138 chest X-ray images, 58 were taken from different 
TB patients, and 80 were from normal subjects. In the CHN 
database, out of 662 chest X-ray images, 336 were taken from 
different TB patients, and 324 were from normal subjects. 
Therefore, in this NLM database, there are 406 normal and 
394 TB-infected X-ray images.

Fig. 1  Overall methodology of this study for (A) healthy, non-TB, and TB classification and (B) drug-resistant vs sensitive TB, and MDR, XDR, 
and sensitive TB classification
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Belarus Dataset The Belarus dataset [59] was gathered 
for a study on drug resistance led by the National Institute 
of Allergy and Infectious Diseases, Ministry of Health, 
Republic of Belarus. The dataset includes 306 chest X-ray 
images from 169 patients. The images were taken using the 
Kodak Point-of-Care 260 system and have a resolution of 
2248 × 2248 pixels. All the images in this database are from 
individuals infected with TB.

NIAID TB Dataset The NIAID TB portal program dataset 
[60] includes around 3037 chest X-ray images that are posi-
tive for TB from approximately 3087 cases. The images were 
collected from seven different countries and are in Portable 
Network Graphics (PNG) format.

Drug‑Resistant TB Classification

A subset of the QU-MLG-TB dataset, where 3037 CXR 
images out of 5000 TB images labeled as drug-resistant/sen-
sitive TB, was used for the drug-resistant TB classification. 
Among these 3037 CXR images, 626, 1672, and 739 images 
are sensitive, MDR, TB, and XDR TB, respectively. Figure 2 

(last row) shows the sample CXR images of the drug-resist-
ant/sensitive TB. Figure 2 shows the sample images for 
healthy, non-TB other lung infections, and TB images with 
high interclass variations and varied quality, signal-to-noise 
ratio (SNR) levels, and resolution. Figure 2 (last row) shows 
the sample CXR images of the drug-resistant/sensitive TB. 
Figure 2 (last row) shows the sample CXR images of the 
drug-resistant/sensitive TB.

Preprocessing

This section describes different pre-processing steps used in 
this study, such as image enhancement techniques, technical 
details in the model development for the lung segmentation 
and classification including feature extraction, feature reduc-
tion using principal component analysis (PCA), and finally 
stacking machine learning-based classification.

Gamma Correction The image enhancement technique is 
to is to highlight important information in an image while 
reducing or eliminating irrelevant details, thereby enhanc-
ing decision-making performance. In this study, the authors 

Fig. 2  Sample CXR images 
from the QU-MLG-TB dataset
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employed the Gamma correction technique, which has pre-
viously demonstrated improved classification performance 
on chest X-ray (CXR) images in the works of the same 
authors [39, 53]. While linear operations such as addition, 
subtraction, and scalar multiplication are commonly used 
for pixel normalization in image processing, Gamma correc-
tion involves applying a non-linear operation to enhance the 
pixels of the image. Gamma correction is typically denoted 
by the following expression:

where the non-negative pixel values are raised to the power 
of γ and gamma value can be greater or smaller than 1 and 
multiplied by the constant A.

Lung Segmentation Model Development It is very impor-
tant to localize the region of interest for the machine learn-
ing networks, i.e., the lungs in the chest X-ray images. In our 
previous work for CXR lung segmentation [61], a detailed 
investigation was done on three segmentation architectures, 
Feature Pyramid Networks (FPN) [62], U-Net++ [63], and 
U-Net [64] with various encoder backbones. FPN [62] seg-
mentation network with DenseNet121 [65] encoder as a 
backbone outperformed other conventional segmentation 
networks [61]. Using the FPN network with DenseNet121 
backbone, the lung area is segmented very accurately which 
was verified by the experienced radiologists in the previous 
work. The model trained in [61] was used to create lung 

(1)Pgamma = A × Poriginal�

segmentation for this work. Figure 3 shows the sample chest 
X-ray images and their corresponding lung masks.

TB Classification Model and Drug‑Resistant TB Stratification 
Model Two experimental frameworks have been proposed 
in this study to classify TB patients into healthy and non-
TB other lung infections and then stratify drug-resistive TB 
patients among the TB patients.

TB Classification Model In this study, a novel deep learning 
network using a pre-trained CNN (ChexNet) encoder and non-
linear neuron-based MLP classifier (Self-MLP)—details pro-
vided below, is proposed for TB classification (Fig. 4).

Feature Extractor An encoder of the pre-trained CNN 
model, ChexNet, was used to extract important features 
from the segmented chest X-rays. It should be worth 
mentioning here that CheXNet is a variant of DenseNet 
(DenseNet121) which was trained on a large chest X-ray 
dataset and the pre-trained model is available publicly. 
CheXNet performed exceptionally well in the CXR image 
classification task for COVID-19 as shown in our previ-
ous work [39]. In the DenseNet architecture, in the Dense 
block, each layer is connected to every other layer. Every 
Dense block has a feature map of the same size, and the 
features are reused within the network. Such Dense con-
nections connecting the DenseNet layers expedite the flow 
of information throughout the network. The useful features 

Fig. 3  Sample CXR images 
from QU-MLG-TB dataset (A), 
generated masks by the best 
performing Densenet121-FPN 
model (B), and corresponding 
segmented lung (C)
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of the CXR images from the CheXNet were extracted from 
the last layer of the encoder, ‘AvgPool.’

The DenseNet encoder has three dense blocks that each 
has an equal number of layers. Before entering the first 
dense block, a convolution with 16 output channels is per-
formed on the input images. For convolutional layers with 
kernel size 3 × 3, each side of the inputs is zero-padded by 
one pixel to keep the feature-map size fixed. Moreover, the 
encoder part has 1 × 1convolution followed by 2 × 2 average 
pooling as transition layers between two contiguous dense 
blocks. At the end of the last dense block, a global max pool-
ing is performed and then a Self-MLP classifier is attached. 
The feature-map sizes in the three dense blocks are 32 × 32, 
16 × 16, and 8 × 8, respectively.

Principal Component Analysis‑Based Feature Reduc‑
tion Principal component analysis (PCA) is used to reduce 
the dimensionality of the feature space extracted from the 
ChexNet encoder. PCA projects high-dimensional data into 
a new lower-dimensional representation with as minimal 
reconstruction error as feasible. Because all the fundamental 
components in the reduced set are orthogonal to one another, 
there is no redundant data. PCA was calculated with the use 
of whitening, which can improve accuracy by forcing data 
to meet certain assumptions.

Self‑MLP To overcome the linear nature of CNN, the Oper-
ational Neural Network (ONN)-based model was recently 
presented in [55]. ONN is a heterogeneous network that 
learns complicated patterns of any signal using a fixed set of 
non-linear operators and has demonstrated promising results 
in numerous applications such as image denoising and image 

restoration [66–69]. Self-organized Operational Neural Net-
works (Self-ONN) is a new variant of ONN. Instead of a 
fixed collection of operator libraries, Self-ONN learns the 
best set of operators throughout the training process. This 
results in a more robust model that can handle a wider range 
of scenarios and generalizes effectively in real-world scenar-
ios. During the training phase, operational layers determine 
the best set of operators, which can be a combination of any 
conventional functions or unknown functions. The output xl

k
 

at k th neuron of l th the layer of any ONN can be illustrated 
as follows in Eqs. (2) and (3):

where bl
k
 and wl

ki
 denote the biases and weights correspond-

ing with that neuron and layer, yl−1
i

 represent the previous 
layer’s input, Nl−1 stands for kernel size of that layer, and Ψl

ki
 

corresponds to the nodal operator of the neuron and layer. If 
Ψl

ki
 is linear then the equation simply corresponds to conven-

tional CNN. In ONN, the composite nodal operator Ψ can 
be constructed using a set of standard functions as follows:

where � represents the q-dimensional array of parameters 
that are composed of internal parameters and weights of 
the individual functions. Instead of a fixed set of operators, 
the composite nodal operator Ψ can be constructed using a 
Taylor series approximation. The Taylor series approxima-
tion of a function f (x), near point, x = a is expressed by the 
following equation:

(2)xl
k
= bl

k
+

Nl− 1
∑

i = 1

Ψl
ki

(

wl
ki
, yl− 1

i

)

(3)
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(

w2y
)
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(

w4y
)

+ ⋯ + wqy
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Fig. 4  CNN-Self-MLP-based 
TB classifier
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Equation (4) can be used to construct the nodal opera-
tor as follows:

where wq =
f (n)(a)

q!
 is the q th parameter of the q th-order poly-

nomial. In Self-ONN, tangent hyperbolic (tanh) has been 
used as an activation function that is bounded at the range 
[− 1, 1]. So, for tanh, a is equal to zero in Eq. (5).

Figure  4 illustrates the CheXNet-Self-MLP-based 
TB classifier that uses Self-MLP as a classifier after the 
CheXNet-based encoder. MLP layers can be implemented 
using convolutional layers by using kernels of the same 
size as the input. Thus, a single sliding window of the con-
volutional kernel will cover the full signal, retaining the 
fully connected nature of MLPs. Similarly, 1D operational 
layers can be used to implement Self-MLP layers, which 
were used in the implementation of this study.

Drug‑Resistant TB Stratification Model

ML Classifier To identify the patients with TB drug 
resistance, the CheXNet encoder was used to extract features 
as mentioned earlier, PCA was used to reduce the features 
obtained from the encoder and then eight machine learning 
classifiers, including Support Vector Machine (SVM) [70], 
K-nearest neighbor (KNN) [71], XGBoost [72], Random 
Forest [73], Adaboost [74], linear discriminant analysis 
(LDA) [75], Gradient boosting [76], and Logistic regression 
[77], were used to classify a subset of TB patients into 
sensitive and drug-resistive TB (binary class problem) and 
XDR, MDR, and sensitive TB (3-class problem).

Stacking Model The three best performing classifiers were 
chosen as base learner models (M1, M2, M3) in the stacking 
architecture, and a meta learner classifier (Mf) was trained in 
the second phase, resulting in separate performance matri-
ces based on the final prediction. Consider a single dataset  

(5)
Ψ(�, y) = w0 + w1(y − a) + w2(y − a)2 + ⋯ + wq(y − a)q

A is consisting of input vectors ( xi ) and their classifica-
tion score ( yi ). At first, a set of base-level ML classifiers 
M1,…… ,Mp is trained on the dataset and the estimation of 
these base learners is applied to train the meta-level classi-
fierMf  , [78–80] which is illustrated in Fig. 5. 

Model Interpretability

Saliency map or class activation map techniques make 
the deep learning model interpretable. It is become very 
important to see why the CNN model works and to know 
the underlying reason in the decision-making process. This 
helps to make the model trustworthy as the reason for clas-
sification becomes evident to humans. SmoothGrad [81], 
Grad-CAM [82], Grad-CAM++ [83], and Score-CAM [84] 
are the common visualization techniques. However, Score-
CAM was used in this study as it outperformed other tech-
niques in the recently reported medical image classification 
problems. The heat map created by the Score-CAM tech-
nique will show the regions of the images where the model 
is learning most. This visualization process of CNN allows 
its user to have trust in the model decision if it is seen that 
the model is learning from the relevant area of the image 
rather than just using the model as back-box without any 
clue where is taking the decision from.

Experiments

Different experiments conducted in this study are listed in 
this section.

TB Classification

A novel model, CheXNet-Self-ONN, using a pre-trained 
CheXNet encoder with a Self-MLP classifier was trained, 
tested, and validated for the classification of TB, non-TB 
(other lung infections), and healthy CXR images. Four other 

Fig. 5  Architecture of stacking machine learning model
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state-of-the-art pre-trained CNN models were used as fea-
ture extractors (encoder) to compare the performance with 
the CheXNet-based encoder. The image dataset was parti-
tioned into 80–20% train-test sets and 20% of the training 
set was kept aside for validation. This process is repeated 5 
times to get five-fold cross-validation results.

However, the number of images in the training set per fold 
for different classes is not equal, and therefore, the training 
images for TB and healthy classes were augmented to bal-
ance the training dataset. Three different image augmenta-
tion techniques such as translation, rotation, and scaling [85] 
were utilized to balance the training data classes and expand 
the training set. The healthy class was augmented one time 
(translation by 10% from top and left) only while the TB 
class was augmented four times (rotation by 5 and 10°, trans-
lation by 10% from top and left, and translation by 10% from 
top and right). The details of the train, validation, and test 
sets for the TB classification task are shown in Table 2.

Drug‑Resistant TB Stratification

This stratification framework includes a CheXNet encoder, 
PCA for dimensionality reduction, and classification using 
the stacking ML model. CheXNet pre-trained model was 
used to extract spatial features from the lung segmented 
CXR images and performed PCA to reduce the dimen-
sionality. Then eight state-of-the-art ML classifiers and a 
stacking ML model were investigated to predict different 
drug-resistant patients using the PCA reduced features. This 
experiment was done also using five-fold stratified cross-
validation, where 80% of drug-resistive/sensitive images in 
each class were utilized for training and 20% of images per 
class were used as test set and validation set (20% of train 
set) were used to avoid over-fitting. Rotation, translation, 
and scaling were utilized as image augmentation techniques 
to balance the training data classes and expand the training 
set to the make the number of images available in the train-
ing set equal to the number of images present in the class of 
maximum image (i.e., 1337 for MDR class in this example). 
Image rotation rotates the original image either clockwise or 
counterclockwise (5° to 10°). The scaling process expands 

or shrinks the image, with image magnifications ranging 
from 2.5 to 10% in this investigation. Image translation was 
performed with 5–10% horizontal or vertical translation. The 
details of the train, validation and test set used in this study 
are reported in Table 2. To report the result, a weighted aver-
age of the five-folds was obtained.

Training Parameters

All classification models were instigated using Python 
3.7 and PyTorch library, a 64-GB RAM, and a 16-GB 
NVIDIA GeForce GTX 1080 GPU using an Intel® Xeon® 
E5-2697v4 processor running at 2.30  GHz. Training 
parameters and stopping criteria were the same for all 
classification models and the models were trained with 
15 backpropagation epochs. The results of five-fold test 
sets were accumulated to generate the receiver operating 
characteristic (ROC) curve and confusion matrix and to 
calculate overall accuracy and weighted evaluation met-
rics. Details of the training parameters are also summa-
rized in Table 3.

Performance Matrix for TB and Drug‑Resistant  
TB Classification

The performance of different classifiers was evaluated using 
ROC curves along with the area under the curve (AUC) as 
well as precision, sensitivity, specificity, accuracy, and 
F1 score. Since five-fold cross-validation was used in this 
study, the reported results are on the entire data (five test 

Table 2  Details of the train, validation, and test datasets for TB classification and drug-resistant TB stratification

Database Types Total no. of 
X-rays/class

Training set/fold Training set with 
augmentation/fold

Validation/fold Test image/fold

QU-MLG-TB dataset Healthy 10,881 6964 13,928 1741 2176
Non-TB 24,119 15,436 15,436 3859 4824
TB 5000 3200 16,000 800 1000

Drug-resistant TB dataset (a 
subset of QU-MLG-TB)

MDR 1672 1337 1337 267 335
Sensitive 626 500 1337 100 126
XDR 739 591 1337 118 148

Table 3  Details of training 
parameters for all the 
experiments

Parameters Different 
experiments

Batch size 32
Learning rate 0.0001
Epochs 15
Epoch patience 3
Stopping 

criteria
5

Optimizer ADAM



 Cognitive Computation

fold-concatenated). Because different classes had variable 
numbers of instances, weighted metrics per class and overall 
accuracy were reported. As a metric for performance com-
parison, the area under the curve (AUC) was considered. 
The mathematical expressions of five evaluation metrics 
such as weighted sensitivity, precision, specificity, F1 score, 
and overall accuracy are reported below:

(6)

Accuracyclass_i =
TPclass_i + TNclass_i

TPclass_i + TNclass_i + FPclass_i + FNclass_i

(7)Precisionclass_i =
TPclass_i

TPclass_i + FPclass_i

(8)Recall∕Sensitivityclassi =
TPclassi

TPclassi
+ FNclassi

where class_i are the healthy, non-TB, and TB or drug-
resistant TB and sensitive TB.

Here, false positive, false negative, true positive, and true 
negative are represented as FP, FN, TP, and TN, respec-
tively. TP represents how many of the positive class was 
correctly identified, and TN represents how many of the 
negative class was correctly identified. FP represents how 
many of the negative class was incorrectly identified as posi-
tive and FN represents how many of the positive class was 
incorrectly identified as negative. 

(9)F1_scoreclassi = 2
Precisionclassi × Sensitivityclassi

Precisionclassi + Sensitivityclassi

(10)Specificityclass_i =
TNclass_i

TNclass_i + FPclass_i

Table 4  Performance 
comparison of different models 
for TB classification

The bold text in the tables indicates the instances of the best performance

Networks Accuracy Precision Recall Specificity F1 score

Resnet18 92.1 92.14 92.1 92.11 93.03
Mobilenetv2 91.56 91.63 91.56 91.59 92.83
Densenet201 92.45 92.47 92.45 92.45 93.03
CheXNet 91.78 91.84 91.78 91.79 92.9
InceptionV3 91.9 91.91 91.89 91.9 92.81
CheXNet-Self-MLP 93.32 93.38 93.32 93.34 94.58

Fig. 6  ROC curves for normal, non-TB, and TB classification (A) and confusion matrix for normal, non-TB, and TB classification for CheXNet-
Self-MLP model with segmented X-ray images (B)
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Results and Discussion

This section showcases the results from the different experi-
ments conducted in the study along with the discussions 
about the findings.

TB Classification

The comparative performance of the proposed CheXNet-
Self-MLP model and various pre-trained CNN models 
for the 3-class classification are shown in Table 4 below. 
According to Table 4, all the evaluated pre-trained mod-
els perform very well when it comes to classifying TB, 
non-TB, and healthy images in this three-class prob-
lem. The proposed model outperformed all the vari-
ous pre-trained CNN Encoder-Self-MLP models in TB 
prediction. Figure 6 illustrates that the performance of 
the models is comparable and the ROC curves showed 
similar performances from all networks. Although differ-
ent pre-trained CNN models show good performance in 
3-class classification, CheXNet-Self-MLP displayed the 
best performance in classifying healthy, non-TB, and TB 
chest X-ray images with accuracy, recall, and F1 score 
of 93.2%, 93.38%, and 94.58%, respectively. The second 
best performing model was DenseNet201, which showed 
an accuracy, recall, and F1 score of 92.45%, 92.47%, and 
93.03%, respectively.

Figure 6(A) clearly shows the ROC curves for various 
CNNs and the proposed CheXNet-Self-MLP model, 
where the proposed model generated an AUC of 0.9887 

and outperformed various state-of-the-art CNN models. It 
is also evident that the pre-trained CNN models performed 
well for the 3-class classification. The confusion matrix 
for the best performing model, CheXNet-Self-MLP, is 
shown in Fig. 6(B). It can be noticed that 4628 out of 
5000 TB images were correctly classified by the model. 
With this exceptional performance of the computer-aided 
classifier, the proposed model can help the radiologists 
significantly in screening TB patients using only chest 
X-ray images.

Drug‑Resistant TB Classification

Two different approaches were investigated for drug-resist-
ant TB classification using CXR images. Firstly, PCA-
reduced CXR features were used for binary classification 
(sensitive vs drug-resistant TB). Secondly, three-class clas-
sifications (sensitive, MDR, and XDR TB) were investigated 
using CXR images. For both investigations, eight different 
machine learning classifiers were analyzed, and a novel 
stacking model was constructed to compare with the eight 
different machine learning classifiers.

For binary classification, the Gradient boosting classi-
fier was the best performing classifier. It achieves the accu-
racy, precision, sensitivity, and F1 scores of 86.43%, 85.7%, 
86.43%, and 85.05%, respectively. Then the stacking model 
was built using the top three performing classifiers (i.e., 
Gradient boosting, Adaboost, and Logistic regression). The 
stacking model produces better performance with the accu-
racy, precision, sensitivity, and F1 scores of 87.85%, 87.46%, 

Table 5  Overall accuracy and weighted average performance for different ML classifiers and stacking models

The bold text in the tables indicates the instances of the best performance

Approach Classifier Accuracy Precision Recall Specificity F1 score

Binary classification 
(sensitive vs drug-
resistant TB)

Extra tree (ET) classifier 70.33 74.55 70.33 70.33 72
K-nearest neighbor (KNN) classifier 71.78 75.71 71.78 71.78 73.33
Logistic regression (LR) 81.69 79.51 81.69 81.69 79.7
Linear discriminant analysis (LDA) 45.67 67.05 45.67 45.67 50.33
Random Forest (RF) classifier 79.35 74.76 79.35 79.35 74.57
XGBoost (XGB) classifier 60.32 70.92 60.32 60.32 63.86
AdaBoost (Ada) classifier 80.38 79.26 80.38 80.38 79.71
Gradient boosting (GB) classifier 86.43 85.7 86.43 86.43 85.05
Stacking model (GB + Ada + LR) 87.48 91.45 87.76 86.42 89.5

Three-class 
classification 
(sensitive, MDR, and 
XDR TB)

Extra tree (ET) classifier 43.86 48.54 43.86 43.86 45.21
K-nearest neighbor (KNN) classifier 50.64 53.49 50.64 50.64 51.53
Logistic regression (LR) 59.3 56.93 59.3 59.3 51.7
Linear discriminant analysis (LDA) 61.97 59.58 61.97 61.97 59.14
Random Forest (RF) classifier 61.9 61.1 61.9 61.9 61.2
XGBoost (XGB) classifier 69.21 67.72 69.21 69.21 65.38
AdaBoost (Ada) classifier 71.95 77.5 71.95 71.95 73.43
Gradient boosting (GB) classifier 77.35 77.27 77.35 77.35 74.16
Stacking model (GB + Ada + XGB) 79.59 78.78 79.59 79.59 78.33
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87.84%, and 86.65%, respectively, which is ~ 2% better than 
the best performing model, the Gradient boosting classifier. 

Similarly, for three-class classification, the Gradient 
boosting classifier was the best performing classifier. It 
achieves the accuracy, precision, sensitivity, and F1 scores 
of 77.35%, 77.27%, 77.35%, and 74.16%, respectively. The 
stacking model was built using the top three classifiers (i.e., 
Gradient boosting, Adaboost, and XGboost). The stacking 
model also produces better performance with the accuracy, 

precision, sensitivity, and F1 scores of 79.59%, 78.78%, 
79.59%, and 78.33%, respectively, which is ~2% better than 
the best performing Gradient boosting classifier. Table 5 
shows the performance of eight different state-of-the-art 
machine learning classifiers with stacking models for binary 
and three-class classification.

Figure 7(A) displays the ROC curves for binary classifi-
cation (drug-resistant vs sensitive) using the proposed stack-
ing model and different ML classifiers, where the stacking 

Fig. 7  ROC curves for the different models in A binary classification (drug-resistant vs sensitive TB) and B three-class (MDR, XDR, and sensi-
tive TB) classification

Fig. 8  Confusion matrix for the stacking machine learning model for A binary class and B three-class classification



Cognitive Computation 

model provided 0.912 AUC and outperforms all other ML 
classifiers. It is also shown that the Gradient boosting clas-
sifier performed the second-best with an AUC of 0.904. 
Figure 7(B) also clearly shows the ROC curves for three-
class (MDR, XDR, and sensitive TB) classification using 
eight ML classifiers and the new stacking model. It is also 
noticed that the stacking ML model produced the best per-
formance compared to other ML models with an AUC of 
0.808. The stacking ML model showed a 2% improvement 
in AUC compared to the best performing classifier (Gradient 
boosting classifier).

Figure 8 shows the confusion matrix for outperforming 
the stacking model in classifying drug-sensitive TB and 
drug-resistive TB using chest X-ray images for 2-class and 
3-class classification. It can be noticed that 2116 out of 2411 
drug-resistant TB images were correctly classified by the 
stacking model for binary classification whereas 1600 out 

of 1672 MDR TB images were correctly classified by the 
stacking model for three-class classification. It is evident 
from Fig. 8(A) that the proposed model can stratify the drug-
resistive TB and drug-sensitive TB with very high accuracy, 
which is the state-of-the-art performance to the best of the 
authors’ knowledge compared to all work reported in the 
literature (Table 6).

The proposed model is also trained on a very large and 
robust dataset [86], which also confirms its reliability and 
generalizability. It is also reported in the literature that there 
is a distinct pattern of drug-resistant TB which makes it pos-
sible to be identified from chest X-rays. The non-linearity 
provided by the Self-MLP has helped in identifying this pat-
tern. The authors also wanted to investigate if it was possible 
to distinguish MDR and XDR TB patients from chest X-rays 
to facilitate early drug-resistant TB detection and avoid 
spreading the infection. As seen in Fig. 8(B), the proposed 

Table 6  A comparison study with other recent comparable works

The bold text in the tables indicates the instances of the best performance
MC Montgomery Country,  CHN Shenzhen, China,  AUC   Area Under the Curve, CNN  Convolutional Neural Network, SVM  Support Vector 
Machine

Author Year # of CXR Method Database Evaluation matrix

 Singh et al. [24] 2019 805 TB classification (SVM) MC, CHN AUC — 0.96 and specificity 
— 100%

Pasa et al. [31] 2019 1111 TB classification (CNN) MC, CHN, and Belarus AUC — 81.1% for MC, 90% 
for CHN and 92.5% for 
combined

Meraj et al. [87] 2019 805 TB classification (CNN) MC, CHN AUC — 85%
Ahsan et al. [35] 2021 805 TB classification (VGG16) MC, CHN Accuracy — 80% and 

81.25% without and with 
augmentation

Nguyen et al. [32] 2019 805 TB classification (tuning of 
DenseNet model)

MC, CHN AUC — 0.94 and 0.82 for 
CHN and MC

Hernández et al. 
[33]

2019 805 TB classification (3 pre-
trained CNN models)

MC, CHN Accuracy — 86%

Jaeger et al. [44] 2018 135 Drug-resistant TB classification 
(2-class) (CNN)

Private dataset AUC — 66%

Bhosale et al. [88] 2022 10,800 (only 1200 TB) Nine class classifications 
including TB (CNN)

NIH and Kaggle dataset AUC — 98.18%

Yang et al. [89] 2022 2233 Drug-resistant TB 
classification (2-class) (ML 
classifier)

NIAID TB dataset Accuracy — 72%

Ejiyi et al. [90] 2023 718 (test only 82 images) TB classification (ResNet-
fused External Attention 
Network)

Private dataset Accuracy — 95%

Liu et al. [91] 2023 1500 TB classification (deep 
denseNet)

Private dataset AUC — 84%

This paper 2023 40,000 (CXR and 3037 
for drug-resistant TB

- TB classification (CNN-
Self-MLP model)

- Drug-resistant TB 
classification (2- and 
3-class) (stacking ML)

QU-MLG-TB dataset - TB classification (accuracy 
— 93.2%)

- Drug-resistant TB (2-class 
classification) accuracy 
— ~ 87%

- Drug-resistant TB (3-class 
classification) accuracy 
— ~ 80%
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model can detect MDR-TB reliably while many misclassi-
fication happens between MDR and XDR TB groups. It is 
understood that additional clinical information is required 
to classify them more accurately, which is a future direction 
of work authors are planning. 

Model Interpretability

As mentioned earlier, this study used the Score-CAM-based 
visualization technique to see how the best performing 
model decides to classify the image, which is the image it 
considers for taking the decision. Since the model input is 
the segmented lung images and the infections investigated 
in this study are confined to the lung only, the model is 
constrained to learn from the lung only. However, the model 
still can learn from the area of infection or non-infectious 
area of the lung, which can be verified by the Score-CAM 
technique. Figure 9(A)–(C) show the raw chest X-ray images 
with lesion and consolidation (first row) and Score-CAM 

visualization of the best performing model (bottom row) for 
(A) healthy, (B) non-TB, and (C) TB subjects. Figure 9(A) 
shows that the model is learning from the entire image and 
there is no specific area in the lung from where the model 
is taking decisions.

In Fig. 9(B), it is visible that Score-CAM-based heat 
maps were learned mostly from the same area where both 
images are showing the abnormality (highlighted the 
abnormal region by a red arrow). Both the CXR images 
are non-TB lung infections with lung opacity in both of 
the lungs. The Score-CAM images highlight those areas as 
the most important areas for taking decisions. Figure 9(C) 
shows the lymph nodes in the lower right lung of the first 
image and upper right lung of the second image in TB 
patients. Score-CAM-based heat maps showed the same 
area as the most contributing area in the decision of CNN. 
Thus, it can be concluded that the model decided on the 
abnormal region of CXR images. Moreover, the patterns 
of abnormal areas in the lungs for non-TB and TB are 

Fig. 9  Raw chest X-ray images with lesion and consolidation (first row) and Score-CAM visualization of the best performing model (bottom 
row) for A healthy, B non-TB, and C TB subjects

Fig. 10  Raw chest X-ray images with lesion and consolidation (first row) and Score-CAM visualization of the best performing model (bottom 
row) for A MDR-TB, B XDR-TB, and C sensitive-TB subjects
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quite different where non-TB CXR images are showing 
abnormalities in both lungs’ middle and lower parts but 
TB images are mostly showing the consolidation, cavita-
tion, and other abnormalities in one of the lungs.

The study also used the Score-CAM visualization tech-
nique for the second experiment to see how the best perform-
ing model learns from the lung images and which area of the 
lung is used for making the decision. Figure 10 shows the 
raw chest X-ray images of MDR-TB, XDR-TB, and sensitive-
TB subjects with lesion and consolidation (first row: A–C) 
and Score-CAM visualization for the best performing model. 
It is apparent that Score-CAM-based heat maps show the 
highest important area in CXR images corresponding to the 
area of abnormality as shown by red arrows.

It is also interesting to see the Score-CAM visualization 
for misclassified CXR TB images. Figure 11 shows the CXR 
images for TB patients misclassified into other classes where 
the first two CXR TB images (from left) are misclassified as 
normal and the last two are misclassified as non-TB patients.

The first two cases of CXR images of TB patients mis-
classified as normal can be explained as the patients were 
in the initial stage of TB disease development and thus the 
effect of TB is not yet visible on the CXR images. The last 
two TB images misclassified as non-TB can be understood 
from the heat map where the pattern is different from most 
of the TB cases. In these cases, both the lungs are largely 
affected, while typically in TB images only the lung is 
affected (Fig. 9(C)). These misclassifications can be avoided 
by the use of multimodal techniques where CXR images can 
be used with clinical biomarkers to improve the performance 
of the model; this will be investigated in a prospective study 
in the future. In summary, the proposed work confirms that 
it is possible to detect drug-resistant TB from chest X-ray 
images and this work produces better performance compared 
to the ones reported in the literature (Table 5).

Conclusion

This work describes a novel stacking method to diagnose 
tuberculosis and drug-resistant tuberculosis from chest X-ray 
images. The entire framework is divided into two steps: 
firstly, TB-infected CXR images were identified among the 
TB, non-TB (other lung infections), and healthy CXR images, 
and secondly, the TB CXR images are further stratified into 
sensitive TB or drug-resistive TB images. It was found that 
the CheXNet encoder with Self-MLP outperforms compared 
to other pre-trained deep learning models with an accuracy 
of 93.2% using segmented lung CXR images. The paper 
also proposes a novel stacking approach to classify TB chest 
X-rays as drug-resistant and drug-sensitive TB with 80% 
accuracy which is the best-reported result in the literature. 
The work could be further improved with the help of a larger 
labelled dataset and multimodal approach using clinical infor-
mation from Electronic Health Record (EHR) data can also 
help in improving the performance. The proposed novel TB 
detection and drug-resistant TB stratification framework can 
significantly help in the timely detection of this killer disease 
and can help in taking proactive action to avoid the spread-
ing of disease and infection. The proposed rapid diagnostic 
tool with such high performance can be a very valuable tool 
to save a significant number of people from death due to 
improper and delayed diagnoses every year.
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