
Vol.:(0123456789)

Cognitive Computation
https://doi.org/10.1007/s12559-024-10258-4

Shift‑Equivariant Similarity‑Preserving Hypervector Representations
of Sequences

Dmitri A. Rachkovskij1,2

Received: 14 March 2022 / Accepted: 24 January 2024
© The Author(s) 2024

Abstract
Hyperdimensional Computing (HDC), also known as Vector-Symbolic Architectures (VSA), is a promising framework for the
development of cognitive architectures and artificial intelligence systems, as well as for technical applications and emerging
neuromorphic and nanoscale hardware. HDC/VSA operate with hypervectors, i.e., neural-like distributed vector representa-
tions of large fixed dimension (usually > 1000). One of the key ingredients of HDC/VSA are the methods for encoding vari-
ous data types (from numeric scalars and vectors to graphs) by hypervectors. In this paper, we propose an approach for the
formation of hypervectors of sequences that provides both an equivariance with respect to the shift of sequences and preserves
the similarity of sequences with identical elements at nearby positions. Our methods represent the sequence elements by
compositional hypervectors and exploit permutations of hypervectors for representing the order of sequence elements. We
experimentally explored the proposed representations using a diverse set of tasks with data in the form of symbolic strings.
Although we did not use any features here (hypervector of a sequence was formed just from the hypervectors of its symbols
at their positions), the proposed approach demonstrated the performance on a par with the methods that exploit various
features, such as subsequences. The proposed techniques were designed for the HDC/VSA model known as Sparse Binary
Distributed Representations. However, they can be adapted to hypervectors in formats of other HDC/VSA models, as well
as for representing sequences of types other than symbolic strings. Directions for further research are discussed.

Keywords Hyperdimensional computing · Vector symbolic architectures · Brain-like distributed representations · Sequence
representation · Similarity preserving transformation · Hypervector permutation

Introduction

Hyperdimensional Computing (HDC [1]), also known as
Vector-Symbolic Architectures (VSA [2]), is an approach
that has been proposed to combine the advantages of neural-
like distributed vector representations and symbolic struc-
tured data representations in Artificial Intelligence, Machine
Learning, and Pattern Recognition problems. HDC/VSA
have demonstrated potential in technical applications and
cognitive modelling and are well-suited for implementation
in the emerging stochastic hardware (e.g., [3–13] and refer-
ences therein).

HDC/VSA are one of the few viable proposals [14] for
implementing brain-like compositional operations on sym-
bols “on-the-fly”, i.e., without training, that appears to be
challenging for modern Deep Neural Networks (DNNs)
[15]. For another recent non-DNN proposal (that, however,
requires learning) see [16]. There is evidence in favor of dis-
tributed (“holographic”) and sparse representation of infor-
mation in the brain, e.g., [17–21] and references therein.
Brain-like cognitive architectures based on HDC/VSA have
been proposed, e.g., in [22, 23]. One of applications of the
HDC/VSA-based approach proposed in this paper is cogni-
tive modelling of visual word recognition and similarity in
humans [24–27].

HDC/VSA operate with hypervectors (the term pro-
posed in [1]), i.e., brain-like distributed vector represen-
tations of large fixed dimension. To be useful in applica-
tions (e.g., in various types of similarity search, in linear
models for classification, approximation, etc.), hyper-
vectors must be formed to be similar for similar data.

 * Dmitri A. Rachkovskij
 dmitri.rachkovskij@ltu.se; dar@infrm.kiev.ua

1 Luleå University of Technology, Luleå 97187, Sweden
2 International Research and Training Center for Information

Technologies and Systems, Kiev, 03680, Ukraine

http://orcid.org/0000-0002-3414-5334
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-024-10258-4&domain=pdf

 Cognitive Computation

Methods for obtaining hypervectors for data of various
types have been proposed, from numeric scalars and vec-
tors to graphs, e.g., [28–37].

A widespread data type is sequences and, in particular,
symbol strings. Sequences and strings are used to represent
genome and proteome, signals, textual data, computer logs,
etc. Applications that benefit from sequential data repre-
sentation include bioinformatics, text retrieval and near-
duplicate detection, spam identification, virus and intru-
sion detection, spell checking, signal processing, speech and
handwriting recognition, error correction, and many others
(e.g., [38–42] and references therein).

The methods of similarity search, clustering, classification,
etc., require an assessment of sequence similarity. Formation of
hypervector representations that reflect similarity of sequences
opens up the possibility of using a large arsenal of methods
developed specifically for vectors. These are methods of statis-
tical pattern recognition, linear and nonlinear methods of clas-
sification and approximation, index structures for fast similarity
search, selection of informative features, and others.

There are several techniques for the representation of
sequences with hypervectors. However, most of them do
not satisfy either the requirement of equivariance (see
“Equivariance of Hypervectors with Respect to Sequence
Shift” section) with respect to the sequence shift or the
requirement of preserving the similarity of sequences
with identical elements at nearby positions (see “Related
Work” section). In this paper, we propose an approach
for hypervector representation of symbol sequences that
satisfies these two requirements. Our methods are based on
the use of hypervector permutations to represent the order
of sequence elements and were developed for the HDC/
VSA model of Sparse Binary Distribution Representations
[43, 44] (SBDR). However, the proposed approach can be
adapted for hypervector formats of other HDC/VSA models,
as well as for representing sequences of other types.

The main contributions of this paper are as follows:

1. Permutation-based hypervector representation of sequences
that is shift-equivariant and preserves the similarity of
sequences with the same elements at nearby positions.

2. Measures of hypervector similarity of sequences.
3. Measures of symbolic similarity of sequences that approx-

imate the proposed hypervector similarity measures.
4. Experimental study of the proposed hypervector rep-

resentations of sequences and similarity measures in
several diverse tasks: similarity search (spellcheck-
ing), classification (splice junction recognition in
genes and protein secondary structure prediction), and
cognitive modelling (modeling humans’ restrictions
on the perception of word similarity and the visual
similarity of words).

Background and Basic Notions

Hyperdimensional Computing

In various HDC/VSA models, hypervector (HV) compo-
nents have a different format. For example, they can be real
numbers from the Gaussian distribution (the HRR model
[45]) or binary values from {0,1} (the BSC model [46] and
the SBDR model). Data HVs are formed from the hyper-
vectors of the data elements, usually without changing the
HV dimensionality. For example, for elements-symbols
their hypervectors are i.i.d. randomly generated vectors of
high dimension D, commonly D > 1000. Such random HVs
are considered dissimilar. The similarity of HVs is usu-
ally measured based on their (normalized) dot product. In
a particular task, the same data object is represented by its
fixed HV.

A set of data objects (e.g., a set of symbols) is repre-
sented by the "superposition" of their HVs, for instance,
by component-wise addition for real-valued HVs, or by
addition followed by thresholding for binary HVs. Super-
position does not preserve information about the order or
grouping of the objects. The superimposed HVs of similar
sets are similar.

To represent a sequence of data objects, their HVs are
modified in a special way. For instance, for a hypervec-
tor representation of a symbol at some position, the HV of
that position ("role") is "bound" to the HV of the symbol
("filler"). Binding can be performed, e.g., by component-
wise conjunction (in SBDR) or by XOR (in BSC) for binary
HVs, or by cyclic convolution for real-valued HVs (in HRR).
This type of binding is called "multiplicative" binding. In
another, "permutative" binding type, a role is represented
not by a HV, but by a (random) permutation of dimension D,
fixed for the particular role, which is applied to the filler HV.
A hypervector resulting from binding contains information
about the HVs from which it is formed, i.e., about the role
and the filler. Binding operation distributes over superposi-
tion operation.

Most of the binding operations produce dissimilar HVs
for the case when dissimilar filler HVs are bound with the
same role, or when the same filler HV is bound with dis-
similar roles. "Dissimilar" means that the similarity value is
of the order of that for random HVs. For the bound HVs to
be similar, both the HVs of the roles as well as the HVs of
the fillers should be similar.

The obtained bound HVs are then superimposed. The
resulting HV contains information about the bound HVs
in superposition, and the bound HVs, in their turn, contain
information about their respective constituents. For exam-
ple, the HV of a symbol string is formed as a superposition
of HVs that result from binding HVs of its symbols and

Cognitive Computation

HVs of their positions in the string. Known schemes for
hypervector representation of strings are given in “Related
Work” section, and those proposed in this work appear in
“Method” section.

This paper uses the HDC/VSA model of SBDR. In
SBDR, binary hypervectors are used with a small number
of M << D (randomly placed) 1-components, the rest of the
components are 0s. Superposition is performed by compo-
nent-wise disjunction. Though the multiplicative binding
procedures exist for SBDR [43], in this paper we only use
permutative binding.

Symbol Sequences and their Similarity Measures

We will consider sequences of symbols from a finite alpha-
bet. The symbol (sequence element) x at position i is denoted
as xi. E.g., a0 denotes a at the beginning of the string (at the
initial position), a–1 is the same symbol shifted one position
left, b3 is the symbol b shifted 3 positions right, and so on.
If a symbol is specified without an index, it is at the initial
position: x ≡ x0.

We denote by xiyj … zk the sequence of symbols x,y, …, z
at positions, respectively, i, j, …, k, e.g., b3c1a4a–3. A symbol
string (symbols at consecutive positions) is denoted as xiyi+1
… zi+k ≡ xy…zi, e.g., c1b2c3a4 ≡ cbca1 ≡ (cbca)1. A string
without an index is at its initial position, e.g., cbca ≡ cbca0
≡ c0b1c2a3.

Various similarity measures are used for strings [39]. The
Hamming distance distHam is equal to the number of non-
matching symbols at the same positions (simHam is defined
as the number of matching symbols). Hamming measures
capture the intuitive idea of string similarity: the similar-
ity of a string to itself is greater than to other strings, and
the more is the number of mismatchings, the less similar
strings are, e.g., simHam(cbca0,cbca0) > simHam (cbca0,cbc
b0) > simHam(cbca0,cbab0).

Hamming similarity can be extended to strings of dif-
ferent lengths by augmenting a shorter string with special
symbols. One can also compare strings at different posi-
tions, for example, cbca0 and cbca1, by representing them
as c0b1c2a3$4 and $0c1b2c3a4, where $ is a special symbol
that does not belong to the alphabet of string symbols. The
last example, however, breaks the intuition of string similar-
ity, since simHam(c0b1c2a3$4, $0c1b2c3a4) = 0, however, these
strings seem to be similar to us. This problem is solved by
the shift distance [47], defined as the minimum Hamming
distance between one string and some cyclic shift of the
other string.

An alternative approach to string comparison is the
Levenshtein distance distLev defined as the minimum
number of edit operations required to change one string

into the other [48]. For distLev, edit operations are symbol
insertion, deletion, and substitution. The complexity of
calculating distLev (by dynamic programming) is quadratic
of the string length. distLev is widely used in practice, so
methods of speeding up its estimation and usage in similar-
ity search are a direction of intensive research [38, 39, 42].

Alignment-free sequence comparison methods [49] do
not use dynamic programming to "align" the whole strings
(i.e., to find a match between all symbols in two strings)
and their computational complexity is sub-quadratic. The
methods are based on n-gram frequencies, the length of
common substrings, the alignment of substrings, the use
of words with some symbol gaps, etc.

Equivariance of Hypervectors with Respect
to Sequence Shift

Let x be an object (input), F be a function performing a
representation, F(x) be the result of x representation. F
is equivariant with respect to transformations T, S if [50]
F(S(x)) = T(F(x)). Transformations T, S can be different. If T
is the identity transformation, F is invariant with respect to S.

We consider hypervector representations of sequences.
Let us represent the sequence x as a HV by applying some
function (algorithm) F(x). Then shift x to another position,
denote this transformation by S(x). The hypervector of the
shifted sequence is obtained as F(S(x)). The representation
function F equivariant with respect to S(x) must ensure
F(S(x)) = T(F(x)), where T is some transformation of the
hypervector F(x). In other words, the hypervector of the
shifted sequence can be obtained not only by transforming
this sequence into a hypervector, but just by transforming
the HV of the unshifted sequence. In the context of brain
studies, this can be considered as mental transformation or
mental imagery [51, 52]. Please see “Discussion” section
for further discussion of equivariance.

Hypervectors corresponding to symbols/sequences
will be denoted by the corresponding bold letters. For
example, F(a0) = a0, F(cbca0) = cbca0, F(cbcas) = cbcas.
We denote the shift of symbols by s positions by Ss:
S1(a0) = a1, S–1(abc) = S–1(abc0) = abc–1 ≡ a–1b0c1.
Let Ts denote the hypervector transform correspond-
ing to Ss. To ensure equivariance, the following must
be true: F(Ss(x)) = Ts(F(x)) = xs (x is a symbol or
sequence). For instanse, for specific symbols or strings:
F(S1(a0)) = a1 = T1(F(a0)), F(S2(abc0)) = T2(F(abc0)) = ab
c2, F(S–2(abc4)) = T–2(F(abc4)) = abc2, etc. In “Permutative
Binding with Position” section, hypervector representa-
tions of sequences are shown that are shift-equivariant and
use a permutation as T.

 Cognitive Computation

Related Work

As mentioned in “Hyperdimensional Computing” section,
in the HDC/VSA-based methods for representing sequences,
each element of a sequence is associated with a hypervec-
tor. For symbol strings, symbols are considered dissimilar
and so they are assigned randomly generated (and thereafter
fixed) hypervectors in the format of the HDC/VSA model
being used. To represent sequence elements at their posi-
tions, element HVs are modified in various ways. In [53],
the following modifications were identified: multiplicative
binding with the position HV, multiplicative binding with
the HVs of other (e.g., context) elements, and binding the
element HV with its position by permutation. N-gram rep-
resentations are also used. Below, we review some of these
approaches in more detail. Let us show that the hypervec-
tors formed by these approaches either do not preserve the
similarity of sequences with identical elements at nearby
positions or are not shift-equivariant.

Multiplicative Binding with Position

In [54], it was proposed to bind the hypervectors of sym-
bols with the hypervectors of their positions by a multipli-
cative binding operation (“Hyperdimensional Computing”
section). Thus, the HV of the sequence xiyj … zk is formed
as xiyj … zk = F(xiyj … zk) = x ⊗posi ⊕ y ⊗ posj ⊕ … ⊕
z ⊗ posk, where posk is the HV of the k-th position, ⊗ is
the binding operation, ⊕ is the superposition operation.
For instance, for the string abc, the hypervector is formed
as abc = a ⊗ pos0 ⊕ b ⊗ pos1 ⊕ c ⊗ pos2. Such a rep-
resentation was also considered in [45] and was applied,
e.g., in [25, 55]. I.i.d. random hypervectors for positions
were used. This representation does not preserve the simi-
larity of symbol hypervectors at nearby positions and is
not shift-equivariant.

The following approach allows obtaining shift-equivariance.
Some multiplicative binding operations allow recursive binding
of a hypervector to itself [45], e.g.:

The representation of the sequence in the form xiyj …
zk = F(xiyj … zk) = x ⊗ posi ⊕ y ⊗ posj ⊕ … ⊕ z ⊗ posk
allows obtaining the hypervector of the shifted sequence as
(using the distributivity of the binding operation over the
superposition):

���
j = ��� ⊗ ... j �����

... ⊗ ���.

(1)

F(Ss(xiyj...zk)) = F(xi+syj+s...zk+s)

= ���
i+s

⊗ �
0
⊕ ���

j+s
⊗ �

0
⊕ ...⊕ ���

k+s
⊗ �

0

= ���
s
⊗ (���i ⊗ �⊕ ���

j
⊗ � ⊕ ...⊕ ���

k
⊗ �)

= Ts(F(xiyj...zk)).

Thus, such a hypervector of a string is equivariant with
respect to the string shift for Ts = poss ⊗. However, this HV
does not preserve the similarity of a symbol at nearby posi-
tions, since the position hypervectors are not similar and
therefore posi ⊗ x is not similar to posj ⊗ x for i ≠ j. The
MBAT approach [56, 57] has similar properties, however,
the position binding is performed by multiplying by a ran-
dom orthonormal position matrix.

Multiplicative Binding with Correlated Position
Hypervectors

As mentioned in [53, 58], if the position hypervectors are
similar (correlated) for nearby positions, the hypervector
representation preserves the similarity of the symbol at dif-
ferent nearby positions. The binding with correlated roles
represented by correlated random matrices was proposed in
[59]. We are not aware of transformations that ensure shift-
equivariance of such string hypervectors.

Based on the ideas of [45], in [60–66] an approach using
multiplicative binding is considered. It represents a coordinate
value by converting a random hypervector into a complex one
using FFT and raises the result component-wise to the fractional
power corresponding to the coordinate value. The HV similar-
ity decreases from 1 to 0 when the coordinate increases from
0 to 1. It could be adapted to the representation of strings by
associating positions with small coordinate changes and ensures
equivariance (mathematically, at least). However, it works with
real-valued hypervectors and does not apply to binary hypervec-
tors, and requires expensive forward and inverse FFT.

Permutative Binding with Position

Using permutations of hypervector components to represent
the order of sequence elements has been proposed in [1,
67]. The hypervector of the sequence xiyj … zk is formed
as xiyj … zk = F(xiyj … zk) = permi(x0) ⊕ permj(y0) ⊕ … ⊕
 permk(z0), where permk is the permutation corresponding
to the k-th position. Similar ideas were considered in [23,
43, 45, 68].

Let per m k = per m k , where per m k(x) = per m
(perm(perm… k times … perm(x)…)) is the sequential appli-
cation of k identical permutations. Here perm is usually a
random permutation and perm0(x) = x. For k < 0, perm–|k|(x)
denotes the k permutations inverse to perm. This hypervec-
tor representation of a sequence is equivariant with respect
to the sequence shift :

(2)

F(Ss(xiyj...zk)) = F(xi+syj+s...zk+s)

= permi+s(�
0
)⊕ permj+s(�

0
) ⊕ ... ⊕ permk+s(�

0
)

= perms(permi(�)⊕ permj(�) ⊕ ...⊕ permk(�))

= Ts(F(xiyj...zk)).

Cognitive Computation

However, such a representation does not preserve the
similarity of the same symbols at nearby positions, since
permutation does not preserve the similarity of the permuted
hypervector with the original one.

In [69], the representation of a word was formed from
the hypervectors of its letters cyclically shifted by the
number of positions corresponding to the letter position
in the word. In addition, to preserve the similarity with
the words containing the same letters in a different order,
the original hypervectors of letters were superimposed
into the final hypervector of the word. However, shift-
ing this hypervector would give the hypervector differ-
ent from that obtained by superimposing the initial letter
hypervectors with the hypervectors of the shifted word
letters at their positions.

Binding by Partial Permutations

To preserve the similarity of hypervectors when using
permutations, [70] proposed to use partial (correlated)
permutations. Let us apply this approach to symbol
sequences. Symbols are represented by random sparse
binary HVs x. The HV of a symbol at position i is formed
as follows. Let R (“similarity radius”) be an integer. The x
is permuted ⌊i∕R⌋ times. Then we additionally permute a
part of 1-components of the resulting HV, the part being
equal to i/R – ⌊i∕R⌋ . The rest of the 1-components coin-
cide with the 1-components of the HV at the position
R⌊i∕R⌋ . HVs of all string symbols obtained in this way
are superimposed (by component-wise disjunction). For
the HV of a symbol at positions i,j, this method approxi-
mates the linearly decreasing similarity characteristic 1
– |i – j|/R for |i – j|< R. For |i – j|≥ R, the similarity is close
to 0 (corresponds to the similarity of random hypervec-
tors). Such a decreasing similarity is also observed for the
HV of a sequence.

When forming the sequence HV, since all the sequence
symbols are at different positions, their HVs are permuted
in different ways. Therefore, when shifting the string, the
HV of each symbol must be permuted differently, taking
into account the current position of the symbol. How-
ever, we cannot do this, since we have access only to the
holistic hypervector of the whole string. Thus, equivari-
ance is not ensured. We are forced to calculate the new
positions of symbols in the shifted string xi+syj+s … zk+s
and re-form the hypervector of the sequence at a new
position from the scratch: F(Ss(xiyj … zk)) = F(xi+syj+s …
zk+s) = xi+s ∨ yj+s ∨ … ∨ zk+s. Shift-equivariance is also
absent in [71], where partial permutations of dense hyper-
vectors are used.

Method

To preserve both the equivariance of hypervector representa-
tions of sequences with respect to the shift and the similarity
of the sequence hypervectors having the same symbols at
nearby positions, we propose to form the HVs of symbols
as compositional HVs of a specific structure, using random
permutation and superposition. We use the SBDR model
(“Hyperdimensional Computing” section).

Hypervector Representation of Symbols

To represent the symbol a, we will form its hypervector a as
follows. Let's generate a random ("atomic") HV ea 0. Let's form
other atomic HVs as: ea i = perm(ea i–1) = permi(ea 0). Obtain the
hypervector of the symbol a at position i (that is, ai = F(ai) for a
given value of R) as ai = ea i ∨ ea i+1 ∨ … ∨ ea i+R–1.

Equivariance

For such a hypervector representation, the equivariance with
respect to the symbol shift holds if an appropriate permuta-
tion is used as the hypervector transformation T. Indeed,

Similarity

Let us consider hypervectors ai = ea i ∨ ea i+1 ∨ … ∨ ea i+R–1
and ai+j = ea i+j ∨ ea i+j+1 ∨ … ∨ ea i+j+R–1. For |j| < R, ai and
ai+j have R–|j| coinciding atomic HVs. E.g., for j > 0 these
are atomic HVs with the indices from i + j to i + R–1 (the
last atomic HVs from ai and the first atomic HVs from ai+j;
for j < 0, the opposite is true). For |j|≥ R, ai and ai+j have no
coinciding atomic HVs.

For atomic hypervectors e with the number of 1-com-
ponents |e|= m << D, their intersection is small with high
probability. For the case without the intersection of atomic
HVs, the similarity of symbol hypervectors ai and ai+j at dif-
ferent positions inside R is m(R–|j|) (in terms of the number
of coinciding 1-components). For the case with the inter-
section of atomic HVs, the similarity of ai and ai+j inside
R may somewhat vary around this value, and there may be
similarities between ai and ai+j outside R.

(3)

Tj(F(ai)) = permj(�i) = permj(�a i ∨ �a i+1 ∨ ... ∨ �a i+R−1)

= permj(�a i) ∨ permj(�a i+1) ∨ ... ∨ permj(�a i+R−1)

= �a i+j ∨ �a i+j+1 ∨ ... ∨ �a i+j+R−1 = �i+j = F(ai+j) = F(Sj(ai)).

 Cognitive Computation

Hypervector Representation and Similarity
of Sequences

Hypervectors of various symbols at their positions are
formed by the method of “Hypervector Representation of
Symbols” section from their randomly generated atomic
HVs, using the same permutation. Generally, for a random
permutation, some intersection of the HVs of symbols
xi и yj is possible for any x ≠ y and for any i,j. A symbol
sequence HV is formed from the symbol HVs using the per-
mutation and superposition operations: xiyj … zk = F(xiyj …
zk) = permi(x0) ∨ … ∨ permk(z0).

The properties of equivariance and preservation of
similarity for hypervectors of symbol sequences can be
obtained in the same manner as in “Hypervector Repre-
sentation of Symbols” and “Permutative Binding with
Position” sections. This is achieved due to the distribu-
tive property of vector permutation over the superposition
operation (the permutation distributivity is also preserved
over any component-wise operation on vectors [1]).

Hypervector Similarity of Strings Without Shift

The hypervector similarity is calculated using usual similarity
measures of binary vectors. The normalized similarities with
the values in [0,1] are given, e.g., by the following measures.

The cosine similarity: simcos =|a∧b| / sqrt(|a||b|) ≡ ⟨�, �⟩ /
sqrt(⟨�, �⟩⟨�, �⟩), where |x| ≡ ⟨�, �⟩ is the number of 1-com-
ponents in x, ⟨⋅, ⋅⟩ is the dot product. Jaccard: simJac =|a∧b|
/ |a∨b| =|a∧b| / (|a|+|b|–|a∧b|). Simpson: simSimp =|a∧b| /
min(|a|,|b|).

Let us denote by simHV,R,type(a,b) the measure of hypervector
similarity of symbol sequences a,b. HVs are obtained by the
method proposed above for a given R value. The “type” stands
for, e.g., cos, Jac, Simp, etc. This similarity measure is align-
ment-free, see “Symbol Sequences and their Similarity Meas-
ures” section. Examples of hypervector similarity characteristics
for a string at different positions are shown in Fig. 1. The larger
value of R provides less steep similarity slopes.

Hypervector Similarity of Strings with the Shift

Strings might have identical substrings outside R. For instance,
for dddabc0 and abc0, the value of simHV,R,type is close to zero
for R ≥ 3. However, if abc0 is shifted to abc3, the string abc3 will
match the substring of dddabc0. Let us take into account such
cases by calculating the similarity as the maximum value of
 simHV,R,type for various shifts of one of the sequences:

Unless stated otherwise, we assume that the numeric
value s specifies the set of shifts from –s to s in steps of 1.
For instance, if s = 1 then simHV,R,s,type(a,b) is the max value
of simHV,R,type(Ss(a),b) obtained with shifts {–1,0,1} of the
sequence a. An example of the resulting similarity charac-
teristics is shown in Fig. 2. Equivariance permits obtaining
the HVs of shifted sequences by permuting the sequence
HV obtained for a single position. For brevity, if the values
of R, s, type are clear, we denote our hypervector similarity
measures as simHV.

(4)

simHV,R,s,type(a, b) ≡ simHV,R,s,type(F(a),F(b)) ≡ simHV,R,s,type(�,�)

= maxs simHV,R,s,type(Ss(a), b).

Fig. 1 The hypervector (HV)
and the symbolic (Sym) similar-
ity of the string aba with itself
at different positions 0, 1, 2,
3. The similarity radii R = 2
and R = 4. No shifts used when
calculating similarity by (4) and
(7). Similarity type: cosine

(aba)0 (aba)1 (aba)2 (aba)3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Perm String aba: D = 10000 m = 50

(aba)0 R=2 HV

(aba)1 R=2 HV

(aba)2 R=2 HV

(aba)3 R=2 HV

(aba)0 R=4 HV

(aba)1 R=4 HV

(aba)2 R=4 HV

(aba)3 R=4 HV

(aba)0 R=2 Sym

(aba)1 R=2 Sym

(aba)2 R=2 Sym

(aba)3 R=2 Sym

(aba)0 R=4 Sym

(aba)1 R=4 Sym

(aba)2 R=4 Sym

(aba)3 R=4 Sym

Cognitive Computation

A Symbolic Similarity Measure for Symbol
Sequences

Let us introduce a symbolic similarity measure for symbol
sequences that is analogous to the proposed simHV but does
not use the transformation of strings into hypervectors. We
denote: symbol sequences as a, b; an element of sequence
x at the position i as xi; the similarity radius as R ⊂ ℤ≥0 (a
fixed non-negative integer); δij =|i – j|;

Then the measure of string similarity, which we call
“symbolic overlap” SymOv, is given by

This SymOv similarity is analogous to |a∧b| for hyper-
vectors of strings a, b. To obtain normalized similarities
with the values in [0,1] (analogous to simHV from “Hyper-
vector Similarity of Strings without Shift” section),
we define the SymOv-norm of a symbol sequence x as
|x|R = simSymOv,R(x,x). Then different types of normalized
similarities simSym,R,type(a,b) are defined analogously to
 simHV,R,type(a,b).

Taking into account shifts, we obtain:

The values of these similarities would coincide with the
(expected) values of hypervector measures, provided that the

(5)
Δi,R =

∑
j 1 − �ij∕R if ai ∈ b ∧ �ij ≤ R�j ∶ bj = ai;

Δi,R = 0 otherwise.

(6)simSymOv,R(a, b) =
∑

i
Δi,R.

(7)simSym,R,s,type(a, b) = maxs simSym,R,type(Ss(a), b).

symbol HVs are superimposed in the sequence HV by addi-
tion instead of component disjunction, and |x∧y| is changed
to ⟨�, �⟩.

Experiments

Experimental evaluations of the proposed approach were
carried out in several diverse tasks: spellchecking (“Spell-
checking” section), classification of molecular biology data
(“Classification of Molecular Biology Data” section), mod-
eling the identification of visual images of words by humans
(“Modeling Visual String Identification by Humans” sec-
tion). In the scope of this paper, the intention of the experi-
ments was to demonstrate the feasibility of the proposed
approach to hypervector representation of sequences and its
applicability to diverse problem setups.

Spellchecking

For misspelled words, a spellchecker suggests one or more
variants of the correct word. We used similarity search for
this problem. Dictionary words and misspelled (query)
words were transformed to hypervectors by the methods
of “Method” section. A specified number of dictionary
words with the HVs most similar to the HV of a query
word were selected.

As in [72–75], the measure Top-n = tn/t was used as an
indicator of quality or accuracy, where tn is the number of
cases where correct words are contained among the n words
of the dictionary most similar to the query, t is the number of
queries (i.e., the size of the test set). Two datasets were used:
aspell1 and wikipedia.2 The tests contain misspellings for
some English words and their correct spelling. Our results
are obtained with the corncob3 dictionary containing 58,109
lowercase English words.

Figure 3 shows the aspell Top-n vs R for n = {1,10} and
their average (Top-mean) for n = 1…10. Here and thereaf-
ter, the dimension of HVs is D = 10,000. R = 1 corresponds
to the lack of similarity between letter HVs at adjacent posi-
tions. As R increases, the results improve upto R = 6–8, then
deteriorate slowly.

Our results obtained using simHV and simSym for various
parameters are shown in Table 1. For HVs, means and stds
are given (over 50 realizations). The results of Word®, Ispell
[75], Aspell [75], and the spellcheckers from [72–74] are
also shown. All these spellcheckers work with single words,

(abc)0 (abc)1 (abc)2 (abc)3 (abc)4
0

0.2

0.4

0.6

0.8

1

1.2
Perm Shift String abc: D = 10000 m = 10

(abc)0 R=3 s=1

(abc)1 R=3 s=1

(abc)2 R=3 s=1

(abc)3 R=3 s=1

(abc)4 R=3 s=1

Fig. 2 The values of simHV,cos between the hypervector representation
of the string abc at different positions, taking into account the shift
s = 1 configuration in (4) (i.e., shifts from {–1,0,1}). R = 3

1 http:// aspell. net/ test/ cur/ batch0. tab
2 https:// www. dcs. bbk. ac. uk/ ~ROGER/ wikip edia. dat
3 https:// github. com/ sibos op/ specl ib/ blob/ master/ cornc ob_ lower case. txt

http://aspell.net/test/cur/batch0.tab
https://www.dcs.bbk.ac.uk/~ROGER/wikipedia.dat
https://github.com/sibosop/speclib/blob/master/corncob_lowercase.txt

 Cognitive Computation

i.e., do not take into account the adjacent words. However,
the results of [72, 73, 75] were obtained using methods spe-
cialized for English (using rules, word frequencies, etc.). In
contrast to those results, our approach extends naturally to
other languages.

Only [74] worked with HV representations and corncob.
However, they used the HVs of all 2-grams in the forward
direction and in the backward direction, as well as all sub-
sequences (i.e., non-adjacent letters) of two letters in the

backward direction. This is in striking contrast to our HV
representations, which reflect only the similarity of the
same individual letters at nearby positions. Our results are
at the level of [74]. Our best results were obtained for s = 0
(no string shifts, see “Hypervector Similarity of Strings
without Shift” section). Increasing s did not lead to a notice-
able result change. Note that the similarity search using
 distLev and distLev/max (divided by the length of the longer
word) produced results that are inferior to ours.

Fig. 3 The Top-1, Top 10, and
Top-mean spellchecking accu-
racy on the aspell dataset vs the
similarity radius R. SimHV,cos,
no shifts in (4)

Table 1 Spellchecking accuracy
on the aspell and wikipedia tests

Study Method Top1
%

Top3
%

Top5
%

Top10
%

Top1
%

Top3
%

Top5
%

Top10
%

aspell wikipedia

[72] Ispell 36.0 47.7 50.3 51.7 76.0 82.8 83.2 83.4
[72] Aspell (normal) 56.9 74.4 81.0 87.9 84.7 95.6 97.4 98.5
[72] Word 97 59.0 69.0 71.0 72.6 89.0 94.3 94.7 95.0
[72] Word 2003 62.8 74.1 77.2 78.2 92.6 96.1 96.5 96.6
[72] Deorowicz et al 66.3 79.6 83.6 85.5 94.1 98.3 98.9 99.0
[73] Mitton 71.1 88.6 91.4 94.4 92.9 97.9 98.6 99.0
[74] Omelchenko HV 58.6 77.7 82.4 88.9 80.0 92.8 95.7 97.5
Our Lev 47.8 67.1 73.9 82.2 66.1 81.6 85.7 90.0
Our Lev/max 54.2 73.1 78.9 85.9 70.9 83.3 86.5 89.7
Our Sym R = 7 56.7 74.5 78.9 85.1 81.2 94.2 96.4 97.7
Our Sym R = 7 s = 1 55.9 74.7 78.5 84.7 81.1 94.7 96.1 97.9
Our HV R = 7 m = 11

std (50)
59.0
0.467

76.5
0.419

81.7
0.408

87.2
0.262

82.8
0.279

93.9
0.134

96.4
0.125

98.0
0.071

Our HV R = 7 m = 11
s = 1 std (50)

59.4
0.522

76.3
0.482

81.1
0.406

86.4
0.471

84.39
0.234

94.36
0.165

96.61
0.110

97.93
0.0778

Our HV R = 7 m = 11
s = 2 std (50)

59.2
0.559

75.8
0.449

80.8
0.354

86.3
0.479

83.78
0.27

94.37
0.177

96.55
0.116

96.86
0.0802

Cognitive Computation

Classification of Molecular Biology Data

Experiments were carried out on two Molecular Biology data-
sets from [76]. For hypervectors, we used the following classifi-
ers: nearest neighbors kNN (mainly with simHV,cos), Prototypes,
and linear SVM. In Prototypes, class prototypes were obtained
by summing the HVs of all training samples from the class;
their max similarity with the test HV was used. For SVM, in
some cases, the SVM hyperparameters for a single realization
of hypervectors were selected by optimization on the training
set. The same SVM hyperparameters (or default) were used for
multiple HV realizations.

Splice Junction Recognition

The Splice-junction Gene Sequences dataset4 [76] contains
gene sequences for which one needs to recognize the class
of splice junctions they correspond to: exon–intron (EI),
intron–exon (IE), and no splice (Neither). Each sequence
contains 60 nucleotides. The database consists of 3190 sam-
ples; 80% of each class was used for training and 20% for
testing. Recognition results (accuracy) are shown in Table 2.
The results obtained using hypervectors are on a par with

the results of other methods from [76–81]. Note that a direct
comparison of the results is not fair due to different data
partitioning into training and test sets.

The best results were obtained for R = 1, s = 0. This cor-
responds to an element-wise comparison of the sequences.
We explain this by the fact that the sequences in the database
are well-aligned and the recognition result in this problem
depends on the presence of certain nucleotides at strictly
defined positions. Nevertheless, the introduced hypervector
representations and similarity measures demonstrate com-
petitive results for the selected parameters.

Protein Secondary Structure Prediction

The Protein Secondary Structure dataset5 [76] contains
some globular proteins data from [82], and the task is to
predict their secondary structure: random-coil, beta-sheet,
or alpha-helix. As input data, a window of 13 consecutive
amino acids was used, which was shifted over proteins. For
each window position and for the amino acid in the mid-
dle of the window, the task was to predict what secondary
structure it is a part of within the protein. The training/test
sets contained 18,105/3520 samples. The prediction results

Table 2 Accuracy on the splice-
junction gene sequences dataset

The best results are given in bold

Study Method Total
%

EI
%

IE
%

Neither
%

[76] Hybrid KBANN – 92.44 91.53 95.38
[77] C4.5 decision-tree 95.7 – – –
[77] C5.0 rules 95.5 – – –
[77] SLIPPER (rules + AdaBoost) 94.1 – – –
[78] kNN Global Alignment k = 5 93.90 – – –
[78] SVM 97 – – –
[79] C4.5 + Boosting (rule-based) 94.7 96.46 92.81 94.84
[80] Naive Bayes 94.80 – – –
[80] General Bayesian network (K2) 96.22 – – –
[81] Convolutional NN 96.18 – – –
[55] HDNA (Encoder II) 93.4 96.7 91.5 92.15
Our Lev kNN k = 27 84.82 88.31 96.75 77.64
Our Sym kNN R = 1 k = 425 96.71 94.16 98.70 96.98
Our Sym kNN R = 1 s = 1 k = 170 90.45 83.77 94.81 91.54
Our Sym kNN R = 2 k = 375 91.24 87.01 97.40 90.33
Our HV + SVM R = 1 BC = KS = 100.0 opt 97.03 98.05 97.40 96.37
Our HV + SVM R = 1 m = 11 std = 0.289 95.63 93.83 97.00 95.82
Our HV + SVM R = 1 m = 111 std = 0.326 95.85 93.32 97.01 96.48
Our HV + Prototypes R = 1 m = 111 std = 0.483 94.09 96.27 98.43 91.06
Our HV + kNN R = 1 k = 425 m = 11 std = 0.333 96.16 95.22 98.56 95.48

4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Molec ular+ Biolo gy+ (Splice-
junct ion+ Gene+ Seque nces).

5 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Molec ular+ Biolo gy+ (Prote in+
Secon dary+ Struc ture).

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Protein+Secondary+Structure
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Protein+Secondary+Structure

 Cognitive Computation

are shown in Table 3. The results of HV and linear SVM for
R = 1 are at the level of 62.7% [82] obtained by multilayer
perceptron for the same experimental design. Using R = 2
slightly improved the results obtained with R = 1.

Note, that the results obtained on this dataset under this
very setup using other methods are inferior to ours (see, e.g.,
[82]). To improve the results in this and similar tasks, some
techniques after [82] used additional information, such as

the "similarity" of amino acids, etc. This information can be
taken into account in the varied similarity of HVs represent-
ing different amino acids; however, this is beyond the scope
of this paper (see also Discussion).

The results of this section show that not all string pro-
cessing tasks benefit from accounting for symbol insertions/
deletions (in our approach, regulated by R) and string shifts
(regulated by s). For instance, for the Splice-junction dataset,
R > 1 worsened the results, and for the Secondary-structure
dataset, R = 2 only slightly improved them. However, we see
that the HV representations provide worthy classification
results using linear vector classifiers.

The tasks in which the results depend significantly on
both parameters R and s are considered in the next section.

Modeling Visual String Identification by Humans

Here we present the results of experiments on the similar-
ity of words using their hypervector representation. The
results are compared to those obtained by psycholinguists for
human subjects and provided in [24, 26]. Those experiments
investigated priming for visual (printed) words in humans.

Modeling Restrictions on the Perception of Word Similarity

In [25], the properties of visual word similarity obtained by
psycholinguists in experiments with human subjects have
been summarized and classified into 4 types of constraints,
i.e., stability (similarity of a string to any other is less than to

Table 3 Prediction accuracy on the protein secondary structure data-
set

The best results are given in bold

Method Total
%

Coil
%

Sheet
%

Helix
%

Backprop 13 amino acids input
[82]

62.7 – – –

Lev kNN, k = 37 (of 100) 58.72 95.73 21.32 5.614
HV + Prototypes m = 11 R = 1 54.23 50.24 62.02 55.66
HV + SVM R = 1 m = 1 opt 62.78 83.05 45.70 30.08
HV + SVM R = 2 m = 1 opt 63.21 83.05 46.29 31.41
HV + SVM R = 3 m = 1 opt 62.47 82.89 45.23 29.55
HV + SVM, R = 1 m = 11
std

62.67
0.0934

84.53
0.142

44.12
0.265

27.53
0.223

HV + SVM, R = 2 m = 11
std

62.86
0.0567

82.97
0.0781

45.65
0.1432

30.69
0.1457

HV + kNN k = 28 m = 111 R = 1
std

57.39
0.5261

90.68
0.5101

22.32
1.550

11.64
1.011

HV + kNN k = 28 m = 111 R = 2
std

58.36
0.3682

88.49
0.3277

27.68
1.036

15.73
0.8358

Table 4 Constraints on human
perception of visual word
similarity that are satisfied by
various models

The best results are given in bold

Study Method Stability Edge
Eff.

Loc
TL

Glob
TL

Dist
TL

Comp
TL

Dist
RP

Rep
RP

[25] HV BSC Slot coding ✓ – ✓ ✓ – ✓ – –
[25] HV BSC COB ✓ – ✓ – – – ✓ ✓
[25] HV BSC UOB ✓ ✓ ✓ – – – ✓ ✓
[25] HV BSC LCD ✓ ✓ ✓ – – – ✓ –
[25] Spatial Coding – ✓ ✓ ✓ ✓ ✓ ✓ ✓
[25] Seriol ✓ – ✓ – ✓ ✓ ✓ –
[58] HV BSC bin 2X ✓ – ✓ – – ✓ ✓ ✓
[58] HV HRR real 2X ✓ – ✓ – – ✓ ✓ ✓
[58] 1–Lev/AddedLength ✓ – ✓ ✓ – – ✓ ✓
[26] HV HRR Terminal ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Our minus Lev ✓ – – ✓ – ✓ ✓ ✓
Our Sym cos R = 2 s = 2 ✓ – ✓ ✓ – ✓ ✓ ✓
Our Sym cos R = 3 s = 2 ✓ – ✓ – ✓ ✓ ✓ ✓
Our Sym cos R = 2 s = 2 db ✓ ✓ ✓ ✓ – ✓ ✓ ✓
Our Sym cos R = 3 s = 2 db ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Our HV cos R = 2 s = 2 db ✓ ✓ ✓ ✓ – ✓ ✓ ✓
Our HV cos R = 3 s = 2 db ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?
Our HV Simp R = 3 s = 2 db ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Cognitive Computation

itself); edge effect (the greater importance of the outer letters
coincidence vs the inner ones); transposed letter (TL) effects
(transposing letters reduces similarity less than replacing
them with others); relative position (RP) (breaking the abso-
lute letter order while keeping the relative one still gives
effective priming).

Table 4 shows which constraints on human perception
of visual word similarity are satisfied in various models.
Our results were obtained for simSym and simHV (D = 10,000,
m = 11, 50 realizations). To reflect the edge effect, we used
the "db" option: the HVs were formed in a special way
equivalent to the HV representation of strings with doubled
first and last letters.

For s > 2, the results coincided with s = 2. The best fit to
the human constraints was for R = {2,3}, s = 2. For simSym,cos
and for simHV,Simp all constraints are satisfied for R = 3, s = 2.

For comparison, the results of other models are shown:
Hannagan et al. [25] used the HV representations of the

BSC model [46], with the following options. Slot: superposi-
tion of HVs obtained by binding HVs of each letter and its
(random) position HV. COB: all subsequences of two letters
with a position difference of up to 3. UOB: all subsequences
of two letters. LCD: a combination of Slot and COB. [25]
also tested non-hypervector models: Seriol and Spatial [24].

Cohen et al. [58] used the BSC model and real- and com-
plex-valued HVs of HRR [45]. Position HVs were corre-
lated, and their similarity decreased linearly along the length
of a word.

Cox et al. [26] proposed the “terminal-relative” string
representation scheme. It used the representation of letters
and 2-grams without position, as well as the representation
of the positions of letters and 2-grams relative to the termi-
nal letters of the word. This scheme was implemented in the
HRR model and met all the constraints from [25].

Modeling the Visual Similarity of Words

In [27], the experimental data on the visual word identifica-
tion by humans were adapted from [24]. 45 pairs of prime-
target strings were obtained, for which there exist the times of
human word identification under different types of priming.

Figure 4 shows the average value of the Pearson correla-
tion coefficient Corr (between the simHV values and prim-
ing times) vs R for different s (D = 10,000, m = 111, 50 HV
realizations). It can be seen that the value of Corr depends
substantially on both R and s. The maximum values were
obtained at R = 3 and s = 2.

Table 5 shows the Corr between the times of human
identification and the values of similarity. The results for
HVs were obtained for R = 3, s = 2 (D = 10,000, m = 111,
50 HV realizations) and for similarity measures simHV,Jac,
 simHV,cos, simHV,Simp. The db option was used. We also pro-
vide results for distLev and simSym,Simp (R = 3, s = 2) without
the db option.

The results from [27] are shown as well, where strings
were transformed to vectors whose components correspond
to certain combinations of letters, with the following variants.
Spatial Coding: adapted from [24]. GvH UOB: all subse-
quences of two letters are used. Kernel UOB (Gappy String
kernel): uses counters of all subsequences of two letters
within a window. 3-WildCard (gappy kernel): kernel string
similarity [27] (all subsequences of two letters are padded
with * in all acceptable positions, the vector contains the
frequency of each obtained combination of three symbols).

Fig. 4 Mean values of the Pearson correlation coefficient Corr between
word hypervector similarity values and the times of the word forward
priming vs R. SimHV,cos, shift configurations s = 1, 2, 3, 4 in (4)

Table 5 The Pearson correlation coefficient Corr between 45 word pairs similarity values and the times of the forward priming

The best result is given in bold

Method Spatial
Coding

GvH
UOB

Kernel
UOB

3Wild
Card

Lev/
max

Sym
Simp

HV
Jac

HV
cos

HV
Simp

Corr 0.732 0.673 0.747 0.797 0.834 0.843 0.831 0.822 0.866

 Cognitive Computation

It can be seen that with the proper parameters, the results
of hypervector similarity measures are competitive with
other best results, such as distLev and simSym.

Discussion

The paper proposed a hypervector representation of
sequences that is equivariant with respect to sequence shifts
and preserves the similarity of identical sequence elements
at nearby positions. The case of symbol strings was consid-
ered in detail. We exploited a feature-free approach, as our
hypervector representations of strings have been formed just
from the hypervectors of the symbols at their positions and
without using features such as, e.g., n-grams. We also pro-
posed a similarity measure of symbol strings that does not
use hypervectors but approximates their similarity.

The proposed methods were explored in diverse tasks
where strings were used: similarity search in spellchecking,
classification of molecular biology data, and modeling of
human perception of word similarity. The results obtained
were on a par with the results by other methods that, how-
ever, additionally use n-gram or subsequence representations
of strings or some other domain knowledge. We hope that
these examples will encourage novel research on other types
of tasks and applications.

Other Types of Sequence Elements

Our approach allows using various types of sequence elements,
i.e., the data types for which hypervector representations are
known can be used. They include numeric scalars or vectors,
n-grams, other sequences, graphs, etc. Moreover, the proposed
methods do not demand sequence elements to be in contiguous
positions, as in strings. These modifications may require some
method adaptations, such as increasing hypervector dimen-
sionality or/and adjusting parameters and techniques.

Also, our approach can be applied to representing vectors
with components that are integers in a fixed range (symbols
would correspond to the components of the vector, whereas
positions would correspond to the components' values).

Equivariance

The equivariance of representations is a desirable property,
at least for the following reasons:

• In the equivariant representations, the information about
the transformation S(x) for which the representation is
obtained is preserved and available for further process-
ing. For example, a hypervector representation equivari-
ant with respect to a sequence shift preserves information

about the position of the sequence. This contrasts with the
invariant representation, where such information is lost.

• Ensuring equivariance in hypervector representations
opens up the possibility to perform their further equiv-
ariance-preserving transformations.

• From an equivariant representation, an invariant one can
be obtained. For example, this could be done by superpo-
sition of the hypervectors obtained for all the transforma-
tions with respect to which invariance is required.

• The system gets the ability to operate with the trans-
formed internal representations of objects, instead of rec-
reating them from the transformed objects (an analogue
of “mental transformations” mentioned in “Equivariance
of Hypervectors with Respect to Sequence Shift”).

• Obtaining the hypervector of the transformed object as
T(F(x)) is computationally more efficient than as F(S(x)),
if T is easier to calculate than F and there exists previ-
ously obtained object hypervector F(x).

• The absence of computation and energy costs for the
execution of F(S(x)) is important in case of limited
resources, e.g., in edge computing.

We also foresee other interesting effects from equivariant
hypervector representations, both in line with DNNs [50]
and beyond.

Directions for Future Research

In this paper, the proposed approach for hypervector represen-
tation of sequences has been detailed and tested for the case
of rather short symbolic strings and for the HDC/VSA model
of Sparse Binary Distributed Representations [23, 37, 43].
Areas for further research include the following extensions:

• other HDC/VSA models;
• long sequences; hierarchical sequences;
• other data types (besides sequences);
• other types of equivariance (besides shifts);
• other types of application tasks;
• interplay with DNNs.

Some of these extensions look rather straightforward,
some will probably require more research and novel solu-
tions. For example, the proposal for the recursive multipli-
cative binding based on the approach from this paper was
considered in [83].

Concerning further progress in the HDC/VSA field, one
promising direction is representing different types of data in a
single hypervector [8, 23]. For example, different descriptors
for a single image [8] or different modalities of object rep-
resentation [23]. When using permutative hypervector repre-
sentations, this would require applying different permutations.

Cognitive Computation

Unlike the formation of distributed vector representations in
DNNs, no training is needed to form such hypervector rep-
resentations in HDC/VSA. As another prospective research
topic, let us mention distributed associative memories, along
the lines proposed in [84], but for sparse hypervectors [85, 86].

Acknowledgements The author would like to thank the Editor and
anonymous reviewers for their fruitful comments and suggestions, Denis
Kleyko and Evgeny Osipov for their help and support, and the respective
organzations/projects for funding.

Funding Open access funding provided by Lulea University of
Technology. This work was supported in part by the Swedish
Foundation for Strategic Research (SSF, UKR22-0024), VR SAR
Sweden (GU 2022/1963), LTU support grant, as well as by the National
Academy of Sciences of Ukraine and the Ministry of Education and
Science of Ukraine.

Data Availability The datasets used in this study are available in the
respective repositories (the links are provided in the paper text).

Declarations

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflict of Interest The author Dmitri A. Rachkovskij declares that he
has no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Kanerva P. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional
random vectors. Cognit Comput. 2009;1(2):139–59.

 2. Gayler RW. Vector symbolic architectures answer Jackendoff’s
challenges for cognitive neuroscience. In Proc Joint Int Conf
Cognit Sci ICCS/ASCS. 2003. p. 133–8.

 3. Rahimi A, et al. High-dimensional computing as a nanoscalable par-
adigm. IEEE Trans Circuits Syst I Reg Papers. 2017;64(9):2508–21.

 4. Neubert P, Schubert S, Protzel P. An introduction to hyperdi-
mensional computing for robotics. KI-Kunstliche Intelligenz.
2019;33(4):319–30.

 5. Rahimi A, Kanerva P, Benini L, Rabaey JM. Efficient biosignal
processing using hyperdimensional computing: Network tem-
plates for combined learning and classification of ExG signals.
Proc of the IEEE. 2019;107(1):123–43.

 6. Schlegel K, Neubert P, Protzel P. A comparison of Vector Sym-
bolic Architectures. Artif Intell Rev. 2022;55(6):4523–55.

 7. Ge L, Parhi KK. Classification using hyperdimensional comput-
ing: A review. IEEE Circ Syst Mag. 2020;20(2):30–47.

 8. Neubert P, Schubert S. Hyperdimensional computing as a frame-
work for systematic aggregation of image descriptors. in Proc
IEEE/CVF Conf Comp Vis Pat Rec. 2021. p. 16938–47.

 9. Hassan E, Halawani Y, Mohammad B, Saleh H. Hyper-Dimensional
Computing challenges and opportunities for AI applications. IEEE
Access. 2022;10:97651–64.

 10. Kleyko D, et al. Vector symbolic architectures as a computing frame-
work for emerging hardware. Proc IEEE. 2022;110(10):1538–71.

 11. Neubert P et al. Vector semantic representations as descriptors
for visual place recognition, in Proc. Robotics: Science and Sys-
tems XVII. 2021;83.1–83.11.

 12. Kleyko D, Rachkovskij DA, Osipov E, Rahimi A. A survey on
hyperdimensional computing aka vector symbolic architectures,
part i: Models and data transformations. ACM Comput Surv.
2023;55(6):1–40 (Article 130).

 13. Kleyko D, Rachkovskij DA, Osipov E, Rahimi A. A survey on
hyperdimensional computing aka vector symbolic architectures,
part ii: Applications, cognitive models, and challenges. ACM Com-
put Surv. 2023;55(9): 1–52 (Article 175).

 14. Do Q, Hasselmo ME. Neural circuits and symbolic processing.
Neurobiol Learn Mem. 2021;186:Article 107552.

 15. Greff K, van Steenkiste S, Schmidhuber J. On the binding prob-
lem in artificial neural networks. 2020. [Online]. Available:
arXiv:2012.05208.

 16. Papadimitriou CH, Friederici AD. Bridging the gap between
neurons and cognition through assemblies of neurons. Neural
Comput. 2022;34(2):291–306.

 17. Olshausen BA, Field DJ. Sparse coding of sensory inputs. Curr
Opin Neurobiol. 2004;14(4):481–7.

 18. Rehn M, Sommer FT. A network that uses few active neurones
to code visual input predicts the diverse shapes of cortical
receptive fields. J Comput Neurosci. 2007;22(2):135–46.

 19. Eichenbaum H. Barlow versus Hebb: When is it time to abandon
the notion of feature detectors and adopt the cell assembly as
the unit of cognition? Neurosci Lett. 2018;680:88–93.

 20. Stefanini F, Kushnir L, Jimenez JC, et al. A distributed neural
code in the Dentate Gyrus and in CA1. Neuron. 2020;107(4):703-
716.e4.

 21. Gastaldi C, Schwalger T, De Falco E, Quiroga RQ, Gerstner W.
When shared concept cells support associations: Theory of overlap-
ping memory engrams. PLoS Comput Biol. 2021;17(12):e1009691.

 22. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang
Y, Rasmussen D. A Large-scale model of the functioning brain.
Science. 2012;338(6111):1202–5.

 23. Rachkovskij DA, Kussul EM, Baidyk TN. Building a world
model with structure-sensitive sparse binary distributed repre-
sentations. Biol Inspired Cognit Archit. 2013;3:64–86.

 24. Davis CJ. The spatial coding model of visual word identifica-
tion. Psychol Rev. 2010;117(3):713–58.

 25. Hannagan T, Dupoux E, Christophe A. Holographic string
encoding. Cognit Sci. 2011;35(1):79–118.

 26. Cox GE, Kachergis G, Recchia G, Jones MN. Toward a scal-
able holographic word-form representation. Behav Res Meth.
2011;43(3):602–15.

 27. Hannagan T, Grainger J. Protein analysis meets visual word
recognition: A case for string kernels in the brain. Cognit Sci.
2012;36(4):575–606.

 28. Kussul EM, Rachkovskij DA, Wunsch DC. The random sub-
space coarse coding scheme for real-valued vectors, in Inter-
national Joint Conference on Neural Networks (IJCNN).
1999:1;450–5.

 29. Rachkovskij DA, Slipchenko SV, Kussul EM, Baidyk TN.
Sparse binary distributed encoding of scalars. J Autom Inf Sci.
2005;37(6):12–23.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Cognitive Computation

 30. Rachkovskij DA, Slipchenko SV, Misuno IS, Kussul EM, Baidyk
TN. Sparse binary distributed encoding of numeric vectors. J
Autom Inf Sci. 2005;37(11):47–61.

 31. Kleyko D, Osipov E, Senior A, et al. Holographic graph neuron: A
bioinspired architecture for pattern processing. IEEE Trans Neural
Netw Learn Syst. 2017;28(6):1250–62.

 32. Rachkovskij DA. Formation of similarity-reflecting binary
vectors with random binary projections. Cybern Syst Anal.
2015;51(2):313–23.

 33. Rachkovskij DA. Estimation of vectors similarity by their rand-
omized binary projections. Cybern Syst Anal. 2015;51(5):808–18.

 34. Dasgupta S, Stevens C, Navlakha S. A neural algorithm for a fun-
damental computing problem. Science. 2017;358(6364):793–6.

 35. Osaulenko VM. Expansion of information in the binary
autoencoder with random binary weights. Neural Comput.
2021;33(11):3073–101.

 36. Rachkovskij DA. Some approaches to analogical mapping with
structure sensitive distributed representations. J Exp Theor Artif
Intel. 2004;16(3):125–45.

 37. Rachkovskij DA, Slipchenko SV. Similarity-based retrieval with
structure-sensitive sparse binary distributed representations. Com-
put Intell. 2012;28(1):106–29.

 38. Navarro G. A guided tour to approximate string matching. ACM
Comp Surv. 2001;33(1):31–88.

 39. Yu M, Li G, Deng D, Feng J. String similarity search and join: A
survey. Front Comput Sci. 2016;10(3):399–417.

 40. Kussul EM, Kasatkina LM, Rachkovskij DA, Wunsch DC. Appli-
cation of random threshold neural networks for diagnostics of
micro machine tool condition. Int Jt Conf Neural Netw (IJCNN).
1998;1:241–4.

 41. Goltsev A, Rachkovskij DA. Combination of the assembly neural
network with a perceptron for recognition of handwritten digits
arranged in numeral strings. Pattern Recogn. 2005;38(3):315–22.

 42. Rachkovskij DA. Index structures for fast similarity search for
symbol strings. Cybern Syst Anal. 2019;55(5):860–78.

 43. Rachkovskij DA, Kussul EM. Binding and normalization of binary
sparse distributed representations by context-dependent thinning.
Neural Comput. 2001;13(2):411–52.

 44. Kleyko D, Osipov E, Rachkovskij DA. Modification of holo-
graphic graph neuron using sparse distributed representations.
Procedia Comput Sci. 2016;88:39–45.

 45. Plate TA. Holographic reduced representation: distributed rep-
resentation for cognitive structures. Stanford, CA: Center for
the study of language and information; 2003.

 46. Kanerva P. Binary spatter-coding of ordered k-tuples, in Proc.
6th Int. Conf. Artif. Neural Netw. von der Malsburg C, von
Seelen W, Vorbrüggen JC, Sendhoff B, eds. 1996. p. 869–73.

 47. Andoni A, Goldberger A, McGregor A, Porat E. Homomorphic
fingerprints under misalignments: Sketching edit and shift dis-
tances, in Proc. 45th ACM Sym. Th. Comp. 2013. p. 931–40.

 48. Levenshtein VI. Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady. 1966;10(8):707–10.

 49. Zielezinski A, et al. Benchmarking of alignment-free sequence
comparison methods. Genome Biol. 2019;20:Art. no. 144.

 50. Cohen T, Welling M. Group equivariant convolutional networks.
in Proc. 33rd Int. Conf. Machine Learn. 2016. p. 2990–9.

 51. Pearson J, Naselaris T, Holmes EA, Kosslyn SM. Mental
imagery: Functional mechanisms and clinical applications.
Trends Cogn Sci. 2015;19(10):590–602.

 52. Christophel TB, Cichy RM, Hebart MN, Haynes J-D. Parietal
and early visual cortices encode working memory content across
mental transformations. Neuroimage. 2015;106:198–206.

 53. Sokolov A, Rachkovskij D. Approaches to sequence similarity
representation. Int J Inf Theor Appl. 2006;13(3):272–8.

 54. Kussul EM, Rachkovskij DA. Multilevel assembly neural archi-
tecture and processing of sequences. In: Holden AV, Kryukov

VI, editors. Neurocomputers and Attention: Connectionism and
Neurocomputers, vol. 2. Manchester and New York: Manchester
University Press; 1991. p. 577–90.

 55. Imani M, Nassar T, Rahimi A, Rosing T. HDNA: energy-efficient
DNA sequencing using hyperdimensional computing. Proc. 2018
IEEE EMBS Int Conf Biomed Health Informatics; 2018. p. 271–4.

 56. Gallant SI, Okaywe TW. Representing objects, relations, and
sequences. Neural Comput. 2013;25(8):2038–78.

 57. Gallant SI. Orthogonal matrices for MBAT Vector Symbolic
Architectures, and a "soft" VSA representation for JSON. 2022.
[Online]. Available: arXiv:2202.04771.

 58. Cohen T, Widdows D, Wahle M, Schvaneveldt R. Orthogonality and
orthography: Introducing measured distance into semantic space, in
Proc. 7th Int. Conf. on Quantum Interaction, Selected Papers, H.
Atmanspacher, E. Haven, K. Kitto, and D. Raine, eds. 2013. p. 34–46.

 59. Gallant SI, Culliton PP. Positional binding with distributed rep-
resentations. Proc. 5th Int. Conf. on Image, Vision and Compu-
tin; 2016. p. 108–13.

 60. Frady EP, Kent SJ, Kanerva P, Olshausen BA, Sommer FT.
Cognitive neural systems for disentangling compositions. Proc.
2nd Int. Conf. Cognit. Computing; 2018. p. 1–3.

 61. Komer B, Stewart TC, Voelker AR, Eliasmith C. A neural represen-
tation of continuous space using fractional binding. Proc. 41st Ann.
Meet. Cog Sci Soc.; 2019. p. 2038–43.

 62. Voelker AR, Blouw P, Choo X, Dumont NSY, Stewart TC, Elia-
smith C. Simulating and predicting dynamical systems with spatial
semantic pointers. Neural Comput. 2021;33(8):2033–67.

 63. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT.
Computing on functions using randomized vector representa-
tions. 2021. [Online]. Available: arXiv: 2109.03429.

 64. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT.
Computing on functions using randomized vector representa-
tions (in brief), in NICE 2022: Neuro-Inspired Computational
Elements Conference. 2022. p. 115–22.

 65. Schlegel K, Mirus F, Neubert P, Protzel P. Multivariate time
series analysis for driving style classification using neural net-
works and hyperdimensional computing, in IEEE Intelligent
Vehicles Symposium (IV). 2021. p. 602–9.

 66. Schlegel K, Neubert P, Protzel P. HDC-MiniROCKET: Explicit
time encoding in time series classification with hyperdimen-
sional computing, in 2022 International Joint Conference on
Neural Networks (IJCNN). 2022. p. 1-8. https:// doi. org/ 10.
1109/ IJCNN 55064. 2022. 98921 58.

 67. Sahlgren M, Holst A, Kanerva P. Permutations as a means to
encode order in word space. Proc. 30th Annual Meeting of the
Cogni Sci Soc.; 2008. p. 1300–5.

 68. Kleyko D, Osipov E. On bidirectional transitions between local-
ist and distributed representations: the case of common sub-
strings search using Vector Symbolic Architecture. Procedia
Comp Sci. 2014;41:104–13.

 69. Kleyko D, Osipov E, Gayler RW. Recognizing permuted words
with Vector Symbolic Architectures: A Cambridge test for
machines. Procedia Comp Sci. 2016;88:169–75.

 70. Kussul EM, Baidyk TN, Wunsch DC, Makeyev O, Martin A.
Permutation coding technique for image recognition system.
IEEE Trans Neural Netw. 2006;17(6):1566–79.

 71. Cohen T, Widdows D. Bringing order to neural word embed-
dings with embeddings augmented by random permutations
(EARP), in Proc. 22nd Conf. Computational Natural Language
Learning. 2018, p. 465–75.

 72. Deorowicz S, Ciura MG. Correcting spelling errors by modeling
their causes. Int J Appl Math Comp Sci. 2005;12(2):275–85.

 73. Mitton R. Ordering the suggestions of a spellchecker without
using context. Nat Lang Eng. 2009;15(2):173–92.

 74. Omelchenko RS. Spellchecker based on distributed representa-
tions. Problems in Programming. 2013;(4):35–42. (in Russian)

https://doi.org/10.1109/IJCNN55064.2022.9892158
https://doi.org/10.1109/IJCNN55064.2022.9892158

Cognitive Computation

 75. Atkinson K. GNU Aspell. [Online]. Available: http:// aspell. net/.
Accessed 12 Feb 2024.

 76. Dua D, Graff C. UCI Machine Learning Repository Irvine, CA:
University of California, School of Information and Computer
Science. 2019. [Online]. Available: http:// archi ve. ics. uci. edu/
ml. Accessed 12 Feb 2024

 77. Cohen W, Singer Y. A simple, fast and efficient rule learner, in
Proc. 16th Nat. Conf. Artific. Intell. 1999. p. 335–42.

 78. Deshpande M, Karypis G. Evaluation of techniques for classi-
fying biological sequences, in Proc 6th Pacific-Asia Conf Adv
Knowl Discov Data Mining. 2002. p. 417–31.

 79. Li J, Wong L. Using rules to analyse bio-medical data: A com-
parison between C4.5 and PCL, in Adv Web-Age Inf Manage.
Dong G, Tang C, Wang W, eds. 2003. p. 254–65.

 80. Madden M. The performance of Bayesian network classifiers
constructed using different techniques, in Proc. 14th Eur. Conf.
Machine Learn., Workshop on Probabilistic Graphical Models
for Classification. 2003. p. 59–70.

 81. Nguyen NG, et al. DNA sequence classification by Convolu-
tional Neural Network. J Biomed Sci Eng. 2016;9(5):280–6.

 82. Qian N, Sejnowski TJ. Predicting the secondary structure of
globular proteins using neural network models. J Mol Biol.
1988;202(4):865–84.

 83. Rachkovskij DA, Kleyko D. Recursive binding for similarity-pre-
serving hypervector representations of sequences, in 2022 Inter-
national Joint Conference on Neural Networks (IJCNN). 2022. p.
1-8. https:// doi. org/ 10. 1109/ IJCNN 55064. 2022. 98924 62.

 84. Steinberg J, Sompolinsky H. Associative memory of structured
knowledge. Sci Rep. 2022;12:Article 21808.

 85. Vdovychenko R, Tulchinsky V. Sparse distributed memory for
sparse distributed data, in Proc. SAI Intelligent Systems Confer-
ence (IntelliSys 2022). 2022. p. 74–81.

 86. Vdovychenko R, Tulchinsky V. Sparse distributed memory for
binary sparse distributed representations, in Proc. 7th Interna-
tional Conference on Machine Learning Technologies (ICMLT
2022). 2022. p. 266–70.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://aspell.net/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/IJCNN55064.2022.9892462

	Shift-Equivariant Similarity-Preserving Hypervector Representations of Sequences
	Abstract
	Introduction
	Background and Basic Notions
	Hyperdimensional Computing
	Symbol Sequences and their Similarity Measures
	Equivariance of Hypervectors with Respect to Sequence Shift

	Related Work
	Multiplicative Binding with Position
	Multiplicative Binding with Correlated Position Hypervectors
	Permutative Binding with Position
	Binding by Partial Permutations

	Method
	Hypervector Representation of Symbols
	Equivariance
	Similarity

	Hypervector Representation and Similarity of Sequences
	Hypervector Similarity of Strings Without Shift
	Hypervector Similarity of Strings with the Shift

	A Symbolic Similarity Measure for Symbol Sequences

	Experiments
	Spellchecking
	Classification of Molecular Biology Data
	Splice Junction Recognition
	Protein Secondary Structure Prediction

	Modeling Visual String Identification by Humans
	Modeling Restrictions on the Perception of Word Similarity
	Modeling the Visual Similarity of Words

	Discussion
	Other Types of Sequence Elements
	Equivariance
	Directions for Future Research

	Acknowledgements
	References

