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Abstract
Hyperdimensional Computing (HDC), also known as Vector-Symbolic Architectures (VSA), is a promising framework for the 
development of cognitive architectures and artificial intelligence systems, as well as for technical applications and emerging 
neuromorphic and nanoscale hardware. HDC/VSA operate with hypervectors, i.e., neural-like distributed vector representa-
tions of large fixed dimension (usually > 1000). One of the key ingredients of HDC/VSA are the methods for encoding vari-
ous data types (from numeric scalars and vectors to graphs) by hypervectors. In this paper, we propose an approach for the 
formation of hypervectors of sequences that provides both an equivariance with respect to the shift of sequences and preserves 
the similarity of sequences with identical elements at nearby positions. Our methods represent the sequence elements by 
compositional hypervectors and exploit permutations of hypervectors for representing the order of sequence elements. We 
experimentally explored the proposed representations using a diverse set of tasks with data in the form of symbolic strings. 
Although we did not use any features here (hypervector of a sequence was formed just from the hypervectors of its symbols 
at their positions), the proposed approach demonstrated the performance on a par with the methods that exploit various 
features, such as subsequences. The proposed techniques were designed for the HDC/VSA model known as Sparse Binary 
Distributed Representations. However, they can be adapted to hypervectors in formats of other HDC/VSA models, as well 
as for representing sequences of types other than symbolic strings. Directions for further research are discussed.

Keywords  Hyperdimensional computing · Vector symbolic architectures · Brain-like distributed representations · Sequence 
representation · Similarity preserving transformation · Hypervector permutation

Introduction

Hyperdimensional Computing (HDC [1]), also known as 
Vector-Symbolic Architectures (VSA [2]), is an approach 
that has been proposed to combine the advantages of neural-
like distributed vector representations and symbolic struc-
tured data representations in Artificial Intelligence, Machine 
Learning, and Pattern Recognition problems. HDC/VSA 
have demonstrated potential in technical applications and 
cognitive modelling and are well-suited for implementation 
in the emerging stochastic hardware (e.g., [3–13] and refer-
ences therein).

HDC/VSA are one of the few viable proposals [14] for 
implementing brain-like compositional operations on sym-
bols “on-the-fly”, i.e., without training, that appears to be 
challenging for modern Deep Neural Networks (DNNs) 
[15]. For another recent non-DNN proposal (that, however, 
requires learning) see [16]. There is evidence in favor of dis-
tributed (“holographic”) and sparse representation of infor-
mation in the brain, e.g., [17–21] and references therein. 
Brain-like cognitive architectures based on HDC/VSA have 
been proposed, e.g., in [22, 23]. One of applications of the 
HDC/VSA-based approach proposed in this paper is cogni-
tive modelling of visual word recognition and similarity in 
humans [24–27].

HDC/VSA operate with hypervectors (the term pro-
posed in [1]), i.e., brain-like distributed vector represen-
tations of large fixed dimension. To be useful in applica-
tions (e.g., in various types of similarity search, in linear 
models for classification, approximation, etc.), hyper-
vectors must be formed to be similar for similar data. 
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Methods for obtaining hypervectors for data of various 
types have been proposed, from numeric scalars and vec-
tors to graphs, e.g., [28–37].

A widespread data type is sequences and, in particular, 
symbol strings. Sequences and strings are used to represent 
genome and proteome, signals, textual data, computer logs, 
etc. Applications that benefit from sequential data repre-
sentation include bioinformatics, text retrieval and near-
duplicate detection, spam identification, virus and intru-
sion detection, spell checking, signal processing, speech and 
handwriting recognition, error correction, and many others 
(e.g., [38–42] and references therein).

The methods of similarity search, clustering, classification, 
etc., require an assessment of sequence similarity. Formation of 
hypervector representations that reflect similarity of sequences 
opens up the possibility of using a large arsenal of methods 
developed specifically for vectors. These are methods of statis-
tical pattern recognition, linear and nonlinear methods of clas-
sification and approximation, index structures for fast similarity 
search, selection of informative features, and others.

There are several techniques for the representation of 
sequences with hypervectors. However, most of them do 
not satisfy either the requirement of equivariance (see 
“Equivariance of Hypervectors with Respect to Sequence 
Shift” section) with respect to the sequence shift or the 
requirement of preserving the similarity of sequences 
with identical elements at nearby positions (see “Related 
Work” section). In this paper, we propose an approach 
for hypervector representation of symbol sequences that 
satisfies these two requirements. Our methods are based on 
the use of hypervector permutations to represent the order 
of sequence elements and were developed for the HDC/
VSA model of Sparse Binary Distribution Representations 
[43, 44] (SBDR). However, the proposed approach can be 
adapted for hypervector formats of other HDC/VSA models, 
as well as for representing sequences of other types.

The main contributions of this paper are as follows:

1.	 Permutation-based hypervector representation of sequences 
that is shift-equivariant and preserves the similarity of 
sequences with the same elements at nearby positions.

2.	 Measures of hypervector similarity of sequences.
3.	 Measures of symbolic similarity of sequences that approx-

imate the proposed hypervector similarity measures.
4.	 Experimental study of the proposed hypervector rep-

resentations of sequences and similarity measures in 
several diverse tasks: similarity search (spellcheck-
ing), classification (splice junction recognition in 
genes and protein secondary structure prediction), and 
cognitive modelling (modeling humans’ restrictions 
on the perception of word similarity and the visual 
similarity of words).

Background and Basic Notions

Hyperdimensional Computing

In various HDC/VSA models, hypervector (HV) compo-
nents have a different format. For example, they can be real 
numbers from the Gaussian distribution (the HRR model 
[45]) or binary values from {0,1} (the BSC model [46] and 
the SBDR model). Data HVs are formed from the hyper-
vectors of the data elements, usually without changing the 
HV dimensionality. For example, for elements-symbols 
their hypervectors are i.i.d. randomly generated vectors of 
high dimension D, commonly D > 1000. Such random HVs 
are considered dissimilar. The similarity of HVs is usu-
ally measured based on their (normalized) dot product. In 
a particular task, the same data object is represented by its 
fixed HV.

A set of data objects (e.g., a set of symbols) is repre-
sented by the "superposition" of their HVs, for instance, 
by component-wise addition for real-valued HVs, or by 
addition followed by thresholding for binary HVs. Super-
position does not preserve information about the order or 
grouping of the objects. The superimposed HVs of similar 
sets are similar. 

To represent a sequence of data objects, their HVs are 
modified in a special way. For instance, for a hypervec-
tor representation of a symbol at some position, the HV of 
that position ("role") is "bound" to the HV of the symbol 
("filler"). Binding can be performed, e.g., by component-
wise conjunction (in SBDR) or by XOR (in BSC) for binary 
HVs, or by cyclic convolution for real-valued HVs (in HRR). 
This type of binding is called "multiplicative" binding. In 
another, "permutative" binding type, a role is represented 
not by a HV, but by a (random) permutation of dimension D, 
fixed for the particular role, which is applied to the filler HV. 
A hypervector resulting from binding contains information 
about the HVs from which it is formed, i.e., about the role 
and the filler. Binding operation distributes over superposi-
tion operation.

Most of the binding operations produce dissimilar HVs 
for the case when dissimilar filler HVs are bound with the 
same role, or when the same filler HV is bound with dis-
similar roles. "Dissimilar" means that the similarity value is 
of the order of that for random HVs. For the bound HVs to 
be similar, both the HVs of the roles as well as the HVs of 
the fillers should be similar.

The obtained bound HVs are then superimposed. The 
resulting HV contains information about the bound HVs 
in superposition, and the bound HVs, in their turn, contain 
information about their respective constituents. For exam-
ple, the HV of a symbol string is formed as a superposition 
of HVs that result from binding HVs of its symbols and 
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HVs of their positions in the string. Known schemes for 
hypervector representation of strings are given in “Related 
Work” section, and those proposed in this work appear in 
“Method” section.

This paper uses the HDC/VSA model of SBDR. In 
SBDR, binary hypervectors are used with a small number 
of M << D (randomly placed) 1-components, the rest of the 
components are 0s. Superposition is performed by compo-
nent-wise disjunction. Though the multiplicative binding 
procedures exist for SBDR [43], in this paper we only use 
permutative binding.

Symbol Sequences and their Similarity Measures

We will consider sequences of symbols from a finite alpha-
bet. The symbol (sequence element) x at position i is denoted 
as xi. E.g., a0 denotes a at the beginning of the string (at the 
initial position), a–1 is the same symbol shifted one position 
left, b3 is the symbol b shifted 3 positions right, and so on. 
If a symbol is specified without an index, it is at the initial 
position: x ≡ x0.

We denote by xiyj … zk the sequence of symbols x,y, …, z 
at positions, respectively, i, j, …, k, e.g., b3c1a4a–3. A symbol 
string (symbols at consecutive positions) is denoted as xiyi+1 
… zi+k ≡ xy…zi, e.g., c1b2c3a4 ≡ cbca1 ≡ (cbca)1. A string 
without an index is at its initial position, e.g., cbca ≡ cbca0 
≡ c0b1c2a3.

Various similarity measures are used for strings [39]. The 
Hamming distance distHam is equal to the number of non-
matching symbols at the same positions (simHam is defined 
as the number of matching symbols). Hamming measures 
capture the intuitive idea of string similarity: the similar-
ity of a string to itself is greater than to other strings, and 
the more is the number of mismatchings, the less similar 
strings are, e.g., simHam(cbca0,cbca0) > simHam (cbca0,cbc
b0) > simHam(cbca0,cbab0).

Hamming similarity can be extended to strings of dif-
ferent lengths by augmenting a shorter string with special 
symbols. One can also compare strings at different posi-
tions, for example, cbca0 and cbca1, by representing them 
as c0b1c2a3$4 and $0c1b2c3a4, where $ is a special symbol 
that does not belong to the alphabet of string symbols. The 
last example, however, breaks the intuition of string similar-
ity, since simHam(c0b1c2a3$4, $0c1b2c3a4) = 0, however, these 
strings seem to be similar to us. This problem is solved by 
the shift distance [47], defined as the minimum Hamming 
distance between one string and some cyclic shift of the 
other string.

An alternative approach to string comparison is the 
Levenshtein distance distLev defined as the minimum 
number of edit operations required to change one string 

into the other [48]. For distLev, edit operations are symbol 
insertion, deletion, and substitution. The complexity of 
calculating distLev (by dynamic programming) is quadratic 
of the string length. distLev is widely used in practice, so  
methods of speeding up its estimation and usage in similar-
ity search are a direction of intensive research [38, 39, 42].

Alignment-free sequence comparison methods [49] do 
not use dynamic programming to "align" the whole strings 
(i.e., to find a match between all symbols in two strings) 
and their computational complexity is sub-quadratic. The 
methods are based on n-gram frequencies, the length of 
common substrings, the alignment of substrings, the use 
of words with some symbol gaps, etc.

Equivariance of Hypervectors with Respect 
to Sequence Shift

Let x be an object (input), F be a function performing a 
representation, F(x) be the result of x representation. F 
is equivariant with respect to transformations T, S if [50] 
F(S(x)) = T(F(x)). Transformations T, S can be different. If T 
is the identity transformation, F is invariant with respect to S.

We consider hypervector representations of sequences. 
Let us represent the sequence x as a HV by applying some 
function (algorithm) F(x). Then shift x to another position, 
denote this transformation by S(x). The hypervector of the 
shifted sequence is obtained as F(S(x)). The representation 
function F equivariant with respect to S(x) must ensure 
F(S(x)) = T(F(x)), where T is some transformation of the 
hypervector F(x). In other words, the hypervector of the 
shifted sequence can be obtained not only by transforming 
this sequence into a hypervector, but just by transforming 
the HV of the unshifted sequence. In the context of brain 
studies, this can be considered as mental transformation or 
mental imagery [51, 52]. Please see “Discussion” section 
for further discussion of equivariance.

Hypervectors corresponding to symbols/sequences 
will be denoted by the corresponding bold letters. For 
example, F(a0) = a0, F(cbca0) = cbca0, F(cbcas) = cbcas. 
We denote the shift of symbols by s positions by Ss: 
S1(a0) = a1, S–1(abc) = S–1(abc0) = abc–1 ≡  a–1b0c1. 
Let Ts denote the hypervector transform correspond-
ing to Ss. To ensure equivariance, the following must 
be true: F(Ss(x)) = Ts(F(x)) = xs (x is a symbol or 
sequence). For instanse, for specific symbols or strings: 
F(S1(a0)) = a1 = T1(F(a0)), F(S2(abc0)) = T2(F(abc0)) = ab
c2, F(S–2(abc4)) = T–2(F(abc4)) = abc2, etc. In “Permutative 
Binding with Position” section, hypervector representa-
tions of sequences are shown that are shift-equivariant and 
use a permutation as T.
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Related Work

As mentioned in “Hyperdimensional Computing” section, 
in the HDC/VSA-based methods for representing sequences, 
each element of a sequence is associated with a hypervec-
tor. For symbol strings, symbols are considered dissimilar 
and so they are assigned randomly generated (and thereafter 
fixed) hypervectors in the format of the HDC/VSA model 
being used. To represent sequence elements at their posi-
tions, element HVs are modified in various ways. In [53], 
the following modifications were identified: multiplicative 
binding with the position HV, multiplicative binding with 
the HVs of other (e.g., context) elements, and binding the 
element HV with its position by permutation. N-gram rep-
resentations are also used. Below, we review some of these 
approaches in more detail. Let us show that the hypervec-
tors formed by these approaches either do not preserve the 
similarity of sequences with identical elements at nearby 
positions or are not shift-equivariant.

Multiplicative Binding with Position

In [54], it was proposed to bind the hypervectors of sym-
bols with the hypervectors of their positions by a multipli-
cative binding operation (“Hyperdimensional Computing” 
section). Thus, the HV of the sequence xiyj … zk is formed 
as xiyj … zk = F(xiyj … zk) = x ⊗posi ⊕ y ⊗ posj ⊕ … ⊕ 
z ⊗ posk, where posk is the HV of the k-th position, ⊗ is 
the binding operation, ⊕ is the superposition operation. 
For instance, for the string abc, the hypervector is formed 
as abc = a ⊗ pos0 ⊕ b ⊗ pos1 ⊕ c ⊗ pos2. Such a rep-
resentation was also considered in [45] and was applied, 
e.g., in [25, 55]. I.i.d. random hypervectors for positions 
were used. This representation does not preserve the simi-
larity of symbol hypervectors at nearby positions and is 
not shift-equivariant.

The following approach allows obtaining shift-equivariance. 
Some multiplicative binding operations allow recursive binding 
of a hypervector to itself [45], e.g.:

The representation of the sequence in the form xiyj … 
zk = F(xiyj … zk) = x ⊗ posi ⊕ y ⊗ posj ⊕ … ⊕ z ⊗ posk 
allows obtaining the hypervector of the shifted sequence as 
(using the distributivity of the binding operation over the 
superposition):

���
j = ��� ⊗ ... j �����

... ⊗ ���.

(1)

F(Ss(xiyj...zk)) = F(xi+syj+s...zk+s)

= ���
i+s

⊗ �
0
⊕ ���

j+s
⊗ �

0
⊕ ...⊕ ���

k+s
⊗ �

0

= ���
s
⊗ (���i ⊗ �⊕ ���

j
⊗ � ⊕ ...⊕ ���

k
⊗ �)

= Ts(F(xiyj...zk)).

Thus, such a hypervector of a string is equivariant with 
respect to the string shift for Ts = poss ⊗. However, this HV 
does not preserve the similarity of a symbol at nearby posi-
tions, since the position hypervectors are not similar and 
therefore posi ⊗ x is not similar to posj ⊗ x for i ≠ j. The 
MBAT approach [56, 57] has similar properties, however, 
the position binding is performed by multiplying by a ran-
dom orthonormal position matrix.

Multiplicative Binding with Correlated Position 
Hypervectors

As mentioned in [53, 58], if the position hypervectors are 
similar (correlated) for nearby positions, the hypervector 
representation preserves the similarity of the symbol at dif-
ferent nearby positions. The binding with correlated roles 
represented by correlated random matrices was proposed in 
[59]. We are not aware of transformations that ensure shift-
equivariance of such string hypervectors.

Based on the ideas of [45], in [60–66] an approach using 
multiplicative binding is considered. It represents a coordinate 
value by converting a random hypervector into a complex one 
using FFT and raises the result component-wise to the fractional 
power corresponding to the coordinate value. The HV similar-
ity decreases from 1 to 0 when the coordinate increases from 
0 to 1. It could be adapted to the representation of strings by 
associating positions with small coordinate changes and ensures 
equivariance (mathematically, at least). However, it works with 
real-valued hypervectors and does not apply to binary hypervec-
tors, and requires expensive forward and inverse FFT.

Permutative Binding with Position

Using permutations of hypervector components to represent 
the order of sequence elements has been proposed in [1, 
67]. The hypervector of the sequence xiyj … zk is formed 
as xiyj … zk = F(xiyj … zk) = permi(x0) ⊕ permj(y0) ⊕ … ⊕ 
permk(z0), where permk is the permutation corresponding 
to the k-th position. Similar ideas were considered in [23, 
43, 45, 68].

Let  per m k  =  per m k ,  where   per m k(x )  = per m 
(perm(perm… k times … perm(x)…)) is the sequential appli-
cation of k identical permutations. Here perm is usually a 
random permutation and perm0(x) = x. For k < 0, perm–|k|(x) 
denotes the k permutations inverse to perm. This hypervec-
tor representation of a sequence is equivariant with respect 
to the sequence shift :

(2)

F(Ss(xiyj...zk)) = F(xi+syj+s...zk+s)

= permi+s(�
0
)⊕ permj+s(�

0
) ⊕ ... ⊕ permk+s(�

0
)

= perms(permi(�)⊕ permj(�) ⊕ ...⊕ permk(�))

= Ts(F(xiyj...zk)).
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However, such a representation does not preserve the 
similarity of the same symbols at nearby positions, since 
permutation does not preserve the similarity of the permuted 
hypervector with the original one.

In [69], the representation of a word was formed from 
the hypervectors of its letters cyclically shifted by the 
number of positions corresponding to the letter position 
in the word. In addition, to preserve the similarity with 
the words containing the same letters in a different order, 
the original hypervectors of letters were superimposed 
into the final hypervector of the word. However, shift-
ing this hypervector would give the hypervector differ-
ent from that obtained by superimposing the initial letter 
hypervectors with the hypervectors of the shifted word 
letters at their positions.

Binding by Partial Permutations

To preserve the similarity of hypervectors when using 
permutations, [70] proposed to use partial (correlated) 
permutations. Let us apply this approach to symbol 
sequences. Symbols are represented by random sparse 
binary HVs x. The HV of a symbol at position i is formed 
as follows. Let R (“similarity radius”) be an integer. The x 
is permuted ⌊i∕R⌋ times. Then we additionally permute a 
part of 1-components of the resulting HV, the part being 
equal to i/R – ⌊i∕R⌋ . The rest of the 1-components coin-
cide with the 1-components of the HV at the position 
R⌊i∕R⌋ . HVs of all string symbols obtained in this way 
are superimposed (by component-wise disjunction). For 
the HV of a symbol at positions i,j, this method approxi-
mates the linearly decreasing similarity characteristic 1 
– |i – j|/R for |i – j|< R. For |i – j|≥ R, the similarity is close 
to 0 (corresponds to the similarity of random hypervec-
tors). Such a decreasing similarity is also observed for the 
HV of a sequence.

When forming the sequence HV, since all the sequence 
symbols are at different positions, their HVs are permuted 
in different ways. Therefore, when shifting the string, the 
HV of each symbol must be permuted differently, taking 
into account the current position of the symbol. How-
ever, we cannot do this, since we have access only to the 
holistic hypervector of the whole string. Thus, equivari-
ance is not ensured. We are forced to calculate the new 
positions of symbols in the shifted string xi+syj+s … zk+s 
and re-form the hypervector of the sequence at a new 
position from the scratch: F(Ss(xiyj … zk)) = F(xi+syj+s … 
zk+s) = xi+s ∨ yj+s ∨ … ∨ zk+s. Shift-equivariance is also 
absent in [71], where partial permutations of dense hyper-
vectors are used.

Method

To preserve both the equivariance of hypervector representa-
tions of sequences with respect to the shift and the similarity 
of the sequence hypervectors having the same symbols at 
nearby positions, we propose to form the HVs of symbols 
as compositional HVs of a specific structure, using random 
permutation and superposition. We use the SBDR model 
(“Hyperdimensional Computing” section).

Hypervector Representation of Symbols

To represent the symbol a, we will form its hypervector a as 
follows. Let's generate a random ("atomic") HV ea 0. Let's form 
other atomic HVs as: ea i = perm(ea i–1) = permi(ea 0). Obtain the 
hypervector of the symbol a at position i (that is, ai = F(ai) for a 
given value of R) as ai = ea i ∨ ea i+1 ∨ … ∨ ea i+R–1.

Equivariance

For such a hypervector representation, the equivariance with 
respect to the symbol shift holds if an appropriate permuta-
tion is used as the hypervector transformation T. Indeed,

Similarity

Let us consider hypervectors ai = ea i ∨ ea i+1 ∨ … ∨ ea i+R–1 
and ai+j = ea i+j ∨ ea i+j+1 ∨ … ∨ ea i+j+R–1. For |j| < R, ai and 
ai+j have R–|j| coinciding atomic HVs. E.g., for j > 0 these 
are atomic HVs with the indices from i + j to i + R–1 (the 
last atomic HVs from ai and the first atomic HVs from ai+j; 
for j < 0, the opposite is true). For |j|≥ R, ai and ai+j have no 
coinciding atomic HVs.

For atomic hypervectors e with the number of 1-com-
ponents |e|= m << D, their intersection is small with high 
probability. For the case without the intersection of atomic 
HVs, the similarity of symbol hypervectors ai and ai+j at dif-
ferent positions inside R is m(R–|j|) (in terms of the number 
of coinciding 1-components). For the case with the inter-
section of atomic HVs, the similarity of ai and ai+j inside 
R may somewhat vary around this value, and there may be 
similarities between ai and ai+j outside R.

(3)

Tj(F(ai)) = permj(�i) = permj(�a i ∨ �a i+1 ∨ ... ∨ �a i+R−1)

= permj(�a i) ∨ permj(�a i+1) ∨ ... ∨ permj(�a i+R−1)

= �a i+j ∨ �a i+j+1 ∨ ... ∨ �a i+j+R−1 = �i+j = F(ai+j) = F(Sj(ai)).
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Hypervector Representation and Similarity 
of Sequences

Hypervectors of various symbols at their positions are 
formed by the method of “Hypervector Representation of 
Symbols” section from their randomly generated atomic 
HVs, using the same permutation. Generally, for a random 
permutation, some intersection of the HVs of symbols 
xi и yj is possible for any x ≠ y and for any i,j. A symbol 
sequence HV is formed from the symbol HVs using the per-
mutation and superposition operations: xiyj … zk = F(xiyj … 
zk) = permi(x0) ∨ … ∨ permk(z0).

The properties of equivariance and preservation of 
similarity for hypervectors of symbol sequences can be 
obtained in the same manner as in “Hypervector Repre-
sentation of Symbols” and “Permutative Binding with 
Position” sections. This is achieved due to the distribu-
tive property of vector permutation over the superposition 
operation (the permutation distributivity is also preserved 
over any component-wise operation on vectors [1]).

Hypervector Similarity of Strings Without Shift

The hypervector similarity is calculated using usual similarity 
measures of binary vectors. The normalized similarities with 
the values in [0,1] are given, e.g., by the following measures.

The cosine similarity: simcos =|a∧b| / sqrt(|a||b|) ≡ ⟨�, �⟩ / 
sqrt(⟨�, �⟩⟨�, �⟩ ), where |x| ≡ ⟨�, �⟩ is the number of 1-com-
ponents in x, ⟨⋅, ⋅⟩ is the dot product. Jaccard: simJac =|a∧b| 
/ |a∨b| =|a∧b| / (|a|+|b|–|a∧b|). Simpson: simSimp =|a∧b| / 
min(|a|,|b|).

Let us denote by simHV,R,type(a,b) the measure of hypervector 
similarity of symbol sequences a,b. HVs are obtained by the 
method proposed above for a given R value. The “type” stands 
for, e.g., cos, Jac, Simp, etc. This similarity measure is align-
ment-free, see “Symbol Sequences and their Similarity Meas-
ures” section. Examples of hypervector similarity characteristics 
for a string at different positions are shown in Fig. 1. The larger 
value of R provides less steep similarity slopes.

Hypervector Similarity of Strings with the Shift

Strings might have identical substrings outside R. For instance, 
for dddabc0 and abc0, the value of simHV,R,type is close to zero 
for R ≥ 3. However, if abc0 is shifted to abc3, the string abc3 will 
match the substring of dddabc0. Let us take into account such 
cases by calculating the similarity as the maximum value of 
simHV,R,type for various shifts of one of the sequences:

Unless stated otherwise, we assume that the numeric 
value s specifies the set of shifts from –s to s in steps of 1. 
For instance, if s = 1 then simHV,R,s,type(a,b) is the max value 
of simHV,R,type(Ss(a),b) obtained with shifts {–1,0,1} of the 
sequence a. An example of the resulting similarity charac-
teristics is shown in Fig. 2. Equivariance permits obtaining 
the HVs of shifted sequences by permuting the sequence 
HV obtained for a single position. For brevity, if the values 
of R, s, type are clear, we denote our hypervector similarity 
measures as simHV.

(4)

simHV,R,s,type(a, b) ≡ simHV,R,s,type(F(a),F(b)) ≡ simHV,R,s,type(�,�)

= maxs simHV,R,s,type(Ss(a), b).

Fig. 1   The hypervector (HV) 
and the symbolic (Sym) similar-
ity of the string aba with itself 
at different positions 0, 1, 2, 
3. The similarity radii R = 2 
and R = 4. No shifts used when 
calculating similarity by (4) and 
(7). Similarity type: cosine

(aba)0 (aba)1 (aba)2 (aba)3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Perm String aba: D = 10000 m = 50

(aba)0 R=2 HV

(aba)1 R=2 HV

(aba)2 R=2 HV

(aba)3 R=2 HV

(aba)0 R=4 HV

(aba)1 R=4 HV

(aba)2 R=4 HV
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A Symbolic Similarity Measure for Symbol 
Sequences

Let us introduce a symbolic similarity measure for symbol 
sequences that is analogous to the proposed simHV but does 
not use the transformation of strings into hypervectors. We 
denote: symbol sequences as a, b; an element of sequence 
x at the position i as xi; the similarity radius as R ⊂ ℤ≥0 (a 
fixed non-negative integer); δij =|i – j|;

Then the measure of string similarity, which we call 
“symbolic overlap” SymOv, is given by

This SymOv similarity is analogous to |a∧b| for hyper-
vectors of strings a, b. To obtain normalized similarities 
with the values in [0,1] (analogous to simHV from “Hyper-
vector Similarity of Strings without Shift” section), 
we define the SymOv-norm of a symbol sequence x as 
|x|R = simSymOv,R(x,x). Then different types of normalized 
similarities simSym,R,type(a,b) are defined analogously to 
simHV,R,type(a,b).

Taking into account shifts, we obtain:

The values of these similarities would coincide with the 
(expected) values of hypervector measures, provided that the 

(5)
Δi,R =

∑
j 1 − �ij∕R if ai ∈ b ∧ �ij ≤ R�j ∶ bj = ai;

Δi,R = 0 otherwise.

(6)simSymOv,R(a, b) =
∑

i
Δi,R.

(7)simSym,R,s,type(a, b) = maxs simSym,R,type(Ss(a), b).

symbol HVs are superimposed in the sequence HV by addi-
tion instead of component disjunction, and |x∧y| is changed 
to ⟨�, �⟩.

Experiments

Experimental evaluations of the proposed approach were 
carried out in several diverse tasks: spellchecking (“Spell-
checking” section), classification of molecular biology data 
(“Classification of Molecular Biology Data” section), mod-
eling the identification of visual images of words by humans 
(“Modeling Visual String Identification by Humans” sec-
tion). In the scope of this paper, the intention of the experi-
ments was to demonstrate the feasibility of the proposed 
approach to hypervector representation of sequences and its 
applicability to diverse problem setups.

Spellchecking

For misspelled words, a spellchecker suggests one or more 
variants of the correct word. We used similarity search for 
this problem. Dictionary words and misspelled (query) 
words were transformed to hypervectors by the methods 
of “Method” section. A specified number of dictionary 
words with the HVs most similar to the HV of a query 
word were selected.

As in [72–75], the measure Top-n = tn/t was  used as an 
indicator of quality or accuracy, where tn is the number of 
cases where correct words are contained among the n words 
of the dictionary most similar to the query, t is the number of 
queries (i.e., the size of the test set). Two datasets were used: 
aspell1 and wikipedia.2 The tests contain misspellings for 
some English words and their correct spelling. Our results 
are obtained with the corncob3 dictionary containing 58,109 
lowercase English words.

Figure 3 shows the aspell Top-n vs R for n = {1,10} and 
their average (Top-mean) for n = 1…10. Here and thereaf-
ter, the dimension of HVs is D = 10,000. R = 1 corresponds 
to the lack of similarity between letter HVs at adjacent posi-
tions. As R increases, the results improve upto R = 6–8, then 
deteriorate slowly.

Our results obtained using simHV and simSym for various 
parameters are shown in Table 1. For HVs, means and stds 
are given (over 50 realizations). The results of Word®, Ispell 
[75], Aspell [75], and the spellcheckers from [72–74] are 
also shown. All these spellcheckers work with single words, 

(abc)0 (abc)1 (abc)2 (abc)3 (abc)4
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Perm Shift String abc: D = 10000 m = 10
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(abc)1 R=3 s=1

(abc)2 R=3 s=1
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(abc)4 R=3 s=1

Fig. 2   The values of simHV,cos between the hypervector representation 
of the string abc at different positions, taking into account the shift 
s = 1 configuration in (4) (i.e., shifts from {–1,0,1}). R = 3

1  http://​aspell.​net/​test/​cur/​batch0.​tab
2  https://​www.​dcs.​bbk.​ac.​uk/​~ROGER/​wikip​edia.​dat
3  https://​github.​com/​sibos​op/​specl​ib/​blob/​master/​cornc​ob_​lower​case.​txt

http://aspell.net/test/cur/batch0.tab
https://www.dcs.bbk.ac.uk/~ROGER/wikipedia.dat
https://github.com/sibosop/speclib/blob/master/corncob_lowercase.txt
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i.e., do not take into account the adjacent words. However, 
the results of [72, 73, 75] were obtained using methods spe-
cialized for English (using rules, word frequencies, etc.). In 
contrast to those results, our approach extends naturally to 
other languages.

Only [74] worked with HV representations and corncob. 
However, they used the HVs of all 2-grams in the forward 
direction and in the backward direction, as well as all sub-
sequences (i.e., non-adjacent letters) of two letters in the 

backward direction. This is in striking contrast to our HV 
representations, which reflect only the similarity of the 
same individual letters at nearby positions. Our results are 
at the level of [74]. Our best results were obtained for s = 0 
(no string shifts, see “Hypervector Similarity of Strings 
without Shift” section). Increasing s did not lead to a notice-
able result change. Note that the similarity search using 
distLev and distLev/max (divided by the length of the longer 
word) produced results that are inferior to ours.

Fig. 3   The Top-1, Top 10, and 
Top-mean spellchecking accu-
racy on the aspell dataset vs the 
similarity radius R. SimHV,cos, 
no shifts in (4)

Table 1   Spellchecking accuracy 
on the aspell and wikipedia tests

Study Method Top1
%

Top3
%

Top5
%

Top10
%

Top1
%

Top3
%

Top5
%

Top10
%

aspell wikipedia

[72] Ispell 36.0 47.7 50.3 51.7 76.0 82.8 83.2 83.4
[72] Aspell (normal) 56.9 74.4 81.0 87.9 84.7 95.6 97.4 98.5
[72] Word 97 59.0 69.0 71.0 72.6 89.0 94.3 94.7 95.0
[72] Word 2003 62.8 74.1 77.2 78.2 92.6 96.1 96.5 96.6
[72] Deorowicz et al 66.3 79.6 83.6 85.5 94.1 98.3 98.9 99.0
[73] Mitton 71.1 88.6 91.4 94.4 92.9 97.9 98.6 99.0
[74] Omelchenko HV 58.6 77.7 82.4 88.9 80.0 92.8 95.7 97.5
Our Lev 47.8 67.1 73.9 82.2 66.1 81.6 85.7 90.0
Our Lev/max 54.2 73.1 78.9 85.9 70.9 83.3 86.5 89.7
Our Sym R = 7 56.7 74.5 78.9 85.1 81.2 94.2 96.4 97.7
Our Sym R = 7 s = 1 55.9 74.7 78.5 84.7 81.1 94.7 96.1 97.9
Our HV R = 7 m = 11

std (50)
59.0
0.467

76.5
0.419

81.7
0.408

87.2
0.262

82.8
0.279

93.9
0.134

96.4
0.125

98.0
0.071

Our HV R = 7 m = 11
s = 1 std (50)

59.4
0.522

76.3
0.482

81.1
0.406

86.4
0.471

84.39
0.234

94.36
0.165

96.61
0.110

97.93
0.0778

Our HV R = 7 m = 11
s = 2 std (50)

59.2
0.559

75.8
0.449

80.8
0.354

86.3
0.479

83.78
0.27

94.37
0.177

96.55
0.116

96.86
0.0802
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Classification of Molecular Biology Data

Experiments were carried out on two Molecular Biology data-
sets from [76]. For hypervectors, we used the following classifi-
ers: nearest neighbors kNN (mainly with simHV,cos), Prototypes, 
and linear SVM. In Prototypes, class prototypes were obtained 
by summing the HVs of all training samples from the class; 
their max similarity with the test HV was used. For SVM, in 
some cases, the SVM hyperparameters for a single realization 
of hypervectors were selected by optimization on the training 
set. The same SVM hyperparameters (or default) were used for 
multiple HV realizations.

Splice Junction Recognition

The Splice-junction Gene Sequences dataset4 [76] contains 
gene sequences for which one needs to recognize the class 
of splice junctions they correspond to: exon–intron (EI), 
intron–exon (IE), and no splice (Neither). Each sequence 
contains 60 nucleotides. The database consists of 3190 sam-
ples; 80% of each class was used for training and 20% for 
testing. Recognition results (accuracy) are shown in Table 2. 
The results obtained using hypervectors are on a par with 

the results of other methods from [76–81]. Note that a direct 
comparison of the results is not fair due to different data 
partitioning into training and test sets.

The best results were obtained for R = 1, s = 0. This cor-
responds to an element-wise comparison of the sequences. 
We explain this by the fact that the sequences in the database 
are well-aligned and the recognition result in this problem 
depends on the presence of certain nucleotides at strictly 
defined positions. Nevertheless, the introduced hypervector 
representations and similarity measures demonstrate com-
petitive results for the selected parameters.

Protein Secondary Structure Prediction

The Protein Secondary Structure dataset5 [76] contains 
some globular proteins data from [82], and the task is to 
predict their secondary structure: random-coil, beta-sheet, 
or alpha-helix. As input data, a window of 13 consecutive 
amino acids was used, which was shifted over proteins. For 
each window position and for the amino acid in the mid-
dle of the window, the task was to predict what secondary 
structure it is a part of within the protein. The training/test 
sets contained 18,105/3520 samples. The prediction results 

Table 2   Accuracy on the splice-
junction gene sequences dataset

The best results are given in bold

Study Method Total
%

EI
%

IE
%

Neither
%

[76] Hybrid KBANN – 92.44 91.53 95.38
[77] C4.5 decision-tree 95.7 – – –
[77] C5.0 rules 95.5 – – –
[77] SLIPPER (rules + AdaBoost) 94.1 – – –
[78] kNN Global Alignment k = 5 93.90 – – –
[78] SVM 97 – – –
[79] C4.5 + Boosting (rule-based) 94.7 96.46 92.81 94.84
[80] Naive Bayes 94.80 – – –
[80] General Bayesian network (K2) 96.22 – – –
[81] Convolutional NN 96.18 – – –
[55] HDNA (Encoder II) 93.4 96.7 91.5 92.15
Our Lev kNN k = 27 84.82 88.31 96.75 77.64
Our Sym kNN R = 1 k = 425 96.71 94.16 98.70 96.98
Our Sym kNN R = 1 s = 1 k = 170 90.45 83.77 94.81 91.54
Our Sym kNN R = 2 k = 375 91.24 87.01 97.40 90.33
Our HV + SVM R = 1 BC = KS = 100.0 opt 97.03 98.05 97.40 96.37
Our HV + SVM R = 1 m = 11 std = 0.289 95.63 93.83 97.00 95.82
Our HV + SVM R = 1 m = 111 std = 0.326 95.85 93.32 97.01 96.48
Our HV + Prototypes R = 1 m = 111 std = 0.483 94.09 96.27 98.43 91.06
Our HV + kNN R = 1 k = 425 m = 11 std = 0.333 96.16 95.22 98.56 95.48

4  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Molec​ular+​Biolo​gy+​(Splice-​
junct​ion+​Gene+​Seque​nces).

5  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Molec​ular+​Biolo​gy+​(Prote​in+​
Secon​dary+​Struc​ture).

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Protein+Secondary+Structure
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Protein+Secondary+Structure
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are shown in Table 3. The results of HV and linear SVM for 
R = 1 are at the level of 62.7% [82] obtained by multilayer 
perceptron for the same experimental design. Using R = 2 
slightly improved the results obtained with R = 1.

Note, that the results obtained on this dataset under this 
very setup using other methods are inferior to ours (see, e.g., 
[82]). To improve the results in this and similar tasks, some 
techniques after [82] used additional information, such as 

the "similarity" of amino acids, etc. This information can be 
taken into account in the varied similarity of HVs represent-
ing different amino acids; however, this is beyond the scope 
of this paper (see also Discussion).

The results of this section show that not all string pro-
cessing tasks benefit from accounting for symbol insertions/
deletions (in our approach, regulated by R) and string shifts 
(regulated by s). For instance, for the Splice-junction dataset, 
R > 1 worsened the results, and for the Secondary-structure 
dataset, R = 2 only slightly improved them. However, we see 
that the HV representations provide worthy classification 
results using linear vector classifiers.

The tasks in which the results depend significantly on 
both parameters R and s are considered in the next section.

Modeling Visual String Identification by Humans

Here we present the results of experiments on the similar-
ity of words using their hypervector representation. The 
results are compared to those obtained by psycholinguists for 
human subjects and provided in [24, 26]. Those experiments 
investigated priming for visual (printed) words in humans.

Modeling Restrictions on the Perception of Word Similarity

In [25], the properties of visual word similarity obtained by 
psycholinguists in experiments with human subjects have 
been summarized and classified into 4 types of constraints, 
i.e., stability (similarity of a string to any other is less than to 

Table 3   Prediction accuracy on the protein secondary structure data-
set

The best results are given in bold

Method Total
%

Coil
%

Sheet
%

Helix
%

Backprop 13 amino acids input 
[82]

62.7 – – –

Lev kNN, k = 37 (of 100) 58.72 95.73 21.32 5.614
HV + Prototypes m = 11 R = 1 54.23 50.24 62.02 55.66
HV + SVM R = 1 m = 1 opt 62.78 83.05 45.70 30.08
HV + SVM R = 2 m = 1 opt 63.21 83.05 46.29 31.41
HV + SVM R = 3 m = 1 opt 62.47 82.89 45.23 29.55
HV + SVM, R = 1 m = 11
std

62.67
0.0934

84.53
0.142

44.12
0.265

27.53
0.223

HV + SVM, R = 2 m = 11
std

62.86
0.0567

82.97
0.0781

45.65
0.1432

30.69
0.1457

HV + kNN k = 28 m = 111 R = 1
std

57.39
0.5261

90.68
0.5101

22.32
1.550

11.64
1.011

HV + kNN k = 28 m = 111 R = 2
std

58.36
0.3682

88.49
0.3277

27.68
1.036

15.73
0.8358

Table 4   Constraints on human 
perception of visual word 
similarity that are satisfied by 
various models

The best results are given in bold

Study Method Stability Edge
Eff.

Loc
TL

Glob
TL

Dist
TL

Comp
TL

Dist
RP

Rep
RP

[25] HV BSC Slot coding ✓ – ✓ ✓ – ✓ – –
[25] HV BSC COB ✓ – ✓ – – – ✓ ✓
[25] HV BSC UOB ✓ ✓ ✓ – – – ✓ ✓
[25] HV BSC LCD ✓ ✓ ✓ – – – ✓ –
[25] Spatial Coding – ✓ ✓ ✓ ✓ ✓ ✓ ✓
[25] Seriol ✓ – ✓ – ✓ ✓ ✓ –
[58] HV BSC bin 2X ✓ – ✓ – – ✓ ✓ ✓
[58] HV HRR real 2X ✓ – ✓ – – ✓ ✓ ✓
[58] 1–Lev/AddedLength ✓ – ✓ ✓ – – ✓ ✓
[26] HV HRR Terminal ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Our minus Lev ✓ – – ✓ – ✓ ✓ ✓
Our Sym cos R = 2 s = 2 ✓ – ✓ ✓ – ✓ ✓ ✓
Our Sym cos R = 3 s = 2 ✓ – ✓ – ✓ ✓ ✓ ✓
Our Sym cos R = 2 s = 2 db ✓ ✓ ✓ ✓ – ✓ ✓ ✓
Our Sym cos R = 3 s = 2 db ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Our HV cos R = 2 s = 2 db ✓ ✓ ✓ ✓ – ✓ ✓ ✓
Our HV cos R = 3 s = 2 db ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?
Our HV Simp R = 3 s = 2 db ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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itself); edge effect (the greater importance of the outer letters 
coincidence vs the inner ones); transposed letter (TL) effects 
(transposing letters reduces similarity less than replacing 
them with others); relative position (RP) (breaking the abso-
lute letter order while keeping the relative one still gives 
effective priming).

Table 4 shows which constraints on human perception 
of visual word similarity are satisfied in various models. 
Our results were obtained for simSym and simHV (D = 10,000, 
m = 11, 50 realizations). To reflect the edge effect, we used 
the "db" option: the HVs were formed in a special way 
equivalent to the HV representation of strings with doubled 
first and last letters.

For s > 2, the results coincided with s = 2. The best fit to 
the human constraints was for R = {2,3}, s = 2. For simSym,cos 
and for simHV,Simp all constraints are satisfied for R = 3, s = 2.

For comparison, the results of other models are shown:
Hannagan et al. [25] used the HV representations of the 

BSC model [46], with the following options. Slot: superposi-
tion of HVs obtained by binding HVs of each letter and its 
(random) position HV. COB: all subsequences of two letters 
with a position difference of up to 3. UOB: all subsequences 
of two letters. LCD: a combination of Slot and COB. [25] 
also tested non-hypervector models: Seriol and Spatial [24].

Cohen et al. [58] used the BSC model and real- and com-
plex-valued HVs of HRR [45]. Position HVs were corre-
lated, and their similarity decreased linearly along the length 
of a word.

Cox et al. [26] proposed the “terminal-relative” string 
representation scheme. It used the representation of letters 
and 2-grams without position, as well as the representation 
of the positions of letters and 2-grams relative to the termi-
nal letters of the word. This scheme was implemented in the 
HRR model and met all the constraints from [25].

Modeling the Visual Similarity of Words

In [27], the experimental data on the visual word identifica-
tion by humans were adapted from [24]. 45 pairs of prime-
target strings were obtained, for which there exist the times of 
human word identification under different types of priming.

Figure 4 shows the average value of the Pearson correla-
tion coefficient Corr (between the simHV values and prim-
ing times) vs R for different s (D = 10,000, m = 111, 50 HV 
realizations). It can be seen that the value of Corr depends 
substantially on both R and s. The maximum values were 
obtained at R = 3 and s = 2.

Table 5 shows the Corr between the times of human 
identification and the values of similarity. The results for 
HVs were obtained for R = 3, s = 2 (D = 10,000, m = 111, 
50 HV realizations) and for similarity measures simHV,Jac, 
simHV,cos, simHV,Simp. The db option was used. We also pro-
vide results for distLev and simSym,Simp (R = 3, s = 2) without 
the db option.

The results from [27] are shown as well, where strings 
were transformed to vectors whose components correspond 
to certain combinations of letters, with the following variants. 
Spatial Coding: adapted from [24]. GvH UOB: all subse-
quences of two letters are used. Kernel UOB (Gappy String 
kernel): uses counters of all subsequences of two letters 
within a window. 3-WildCard (gappy kernel): kernel string 
similarity [27] (all subsequences of two letters are padded 
with * in all acceptable positions, the vector contains the 
frequency of each obtained combination of three symbols).

Fig. 4   Mean values of the Pearson correlation coefficient Corr between 
word hypervector similarity values and the times of the word forward 
priming vs R. SimHV,cos, shift configurations s = 1, 2, 3, 4 in (4)

Table 5   The Pearson correlation coefficient Corr between 45 word pairs similarity values and the times of the forward priming

The best result is given in bold

Method Spatial
Coding

GvH
UOB

Kernel
UOB

3Wild
Card

Lev/
max

Sym
Simp

HV
Jac

HV
cos

HV
Simp

Corr 0.732 0.673 0.747 0.797 0.834 0.843 0.831 0.822 0.866
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It can be seen that with the proper parameters, the results 
of hypervector similarity measures are competitive with 
other best results, such as distLev and simSym.

Discussion

The paper proposed a hypervector representation of 
sequences that is equivariant with respect to sequence shifts 
and preserves the similarity of identical sequence elements 
at nearby positions. The case of symbol strings was consid-
ered in detail. We exploited a feature-free approach, as our 
hypervector representations of strings have been formed just 
from the hypervectors of the symbols at their positions and 
without using features such as, e.g., n-grams. We also pro-
posed a similarity measure of symbol strings that does not 
use hypervectors but approximates their similarity.

The proposed methods were explored in diverse tasks 
where strings were used: similarity search in spellchecking, 
classification of molecular biology data, and modeling of 
human perception of word similarity. The results obtained 
were on a par with the results by other methods that, how-
ever, additionally use n-gram or subsequence representations 
of strings or some other domain knowledge. We hope that 
these examples will encourage novel research on other types 
of tasks and applications.

Other Types of Sequence Elements

Our approach allows using various types of sequence elements, 
i.e., the data types for which hypervector representations are 
known can be used. They include numeric scalars or vectors, 
n-grams, other sequences, graphs, etc. Moreover, the proposed 
methods do not demand sequence elements to be in contiguous 
positions, as in strings. These modifications may require some 
method adaptations, such as increasing hypervector dimen-
sionality or/and adjusting parameters and techniques.

Also, our approach can be applied to representing vectors 
with components that are integers in a fixed range (symbols 
would correspond to the components of the vector, whereas 
positions would correspond to the components' values).

Equivariance

The equivariance of representations is a desirable property, 
at least for the following reasons:

•	 In the equivariant representations, the information about 
the transformation S(x) for which the representation is 
obtained is preserved and available for further process-
ing. For example, a hypervector representation equivari-
ant with respect to a sequence shift preserves information 

about the position of the sequence. This contrasts with the 
invariant representation, where such information is lost.

•	 Ensuring equivariance in hypervector representations 
opens up the possibility to perform their further equiv-
ariance-preserving transformations.

•	 From an equivariant representation, an invariant one can 
be obtained. For example, this could be done by superpo-
sition of the hypervectors obtained for all the transforma-
tions with respect to which invariance is required.

•	 The system gets the ability to operate with the trans-
formed internal representations of objects, instead of rec-
reating them from the transformed objects (an analogue 
of “mental transformations” mentioned in “Equivariance 
of Hypervectors with Respect to Sequence Shift”).

•	 Obtaining the hypervector of the transformed object as 
T(F(x)) is computationally more efficient than as F(S(x)), 
if T is easier to calculate than F and there exists previ-
ously obtained object hypervector F(x).

•	 The absence of computation and energy costs for the 
execution of F(S(x)) is important in case of limited 
resources, e.g., in edge computing.

We also foresee other interesting effects from equivariant 
hypervector representations, both in line with DNNs [50] 
and beyond.

Directions for Future Research

In this paper, the proposed approach for hypervector represen-
tation of sequences has been detailed and tested for the case 
of rather short symbolic strings and for the HDC/VSA model 
of Sparse Binary Distributed Representations [23, 37, 43]. 
Areas for further research include the following extensions:

•	 other HDC/VSA models;
•	 long sequences; hierarchical sequences;
•	 other data types (besides sequences);
•	 other types of equivariance (besides shifts);
•	 other types of application tasks;
•	 interplay with DNNs.

Some of these extensions look rather straightforward, 
some will probably require more research and novel solu-
tions. For example, the proposal for the recursive multipli-
cative binding based on the approach from this paper was 
considered in [83].

Concerning further progress in the HDC/VSA field, one 
promising direction is representing different types of data in a 
single hypervector [8, 23]. For example, different descriptors 
for a single image [8] or different modalities of object rep-
resentation [23]. When using permutative hypervector repre-
sentations, this would require applying different permutations. 
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Unlike the formation of distributed vector representations in 
DNNs, no training is needed to form such hypervector rep-
resentations in HDC/VSA. As another prospective research 
topic, let us mention distributed associative memories, along 
the lines proposed in [84], but for sparse hypervectors [85, 86].
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