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Abstract
Recent advancements in the manufacturing and commercialisation of miniaturised sensors and low-cost wearables 
have enabled an effortless monitoring of lifestyle by detecting and analysing physiological signals. Heart rate variability 
(HRV) denotes the time interval between consecutive heartbeats.The HRV signal, as detected by the sensors and devices, 
has been popularly used as an indicative measure to estimate the level of stress, depression, and anxiety. For years, artificial 
intelligence (AI)-based learning systems have been known for their predictive capabilities, and in recent years, AI models 
with deep learning (DL) architectures have been successfully applied to achieve unprecedented accuracy. In order to deter-
mine effective methodologies applied to the collection, processing, and prediction of stress from HRV data, this work presents 
an in depth analysis of 43 studies reporting the application of various AI algorithms. The methods are summarised in tables 
and thoroughly evaluated to ensure the completeness of their findings and reported results. To make the work comprehensive, 
a detailed review has been conducted on sensing technologies, pre-processing methods applied on multi-modal data, and 
employed prediction models. This is followed by a critical examination of how various Machine Learning (ML) models, 
have been utilised in predicting stress from HRV data. In addition, the reported reseults from the selected studies have been 
carefully analysed to identify features that enable the models to perform better. Finally, the challenges of using HRV to 
predict stress are listed, along with some possible mitigation strategies. This work aims to highlight the impact of AI-based 
stress prediction methodologies from HRV data, and is expected to aid the development of more meticulous techniques.
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Introduction

In the human body, numerous receptors such as skin and 
eyes receive external environmental stimuli, transmit the 
signal to the brain for processing, and then produce a 
corresponding response. The harmful stimuli modify the 
human body’s internal or external steady-state conditions 
(both physical and chemical). To correct this imbalance, 
the human body develops stress in order to maintain a 
steady state condition, also known as homeostasis [1]. 
This stress is detected by the body’s sympathetic nervous 
system, which results in the secretion of hormones such 
as cortisol. The stress hormone increases the blood sugar, 
alertness, and blood pressure to supply additional blood 
flow in the body [2].

The heart rate (HR) is defined as the number of heart-
beats per minute. The discrepancy in the time intervals 
between consecutive heartbeats (interbeat intervals (IBIs)) 
is considered heart rate variability (HRV). The autonomic 
nervous system (ANS), a rudimentary nervous system 
component, regulates unconscious body effects such as 
HR, ventilation, metabolism, mental stress, and hyperten-
sion [3]. Non-invasive monitoring of HRV offers a numeri-
cal metric to evaluate blood pressure [4]. Numerous HRV-
derived parameters are used to diagnose mental stress and 
are indeed a critical indicator to evaluate body and mind 
conditions.

The resting HR of a person critically ranges from 60 
to 90 beats per minute. When a person gets stressed, their 
HR rises dramatically. Increased HR causes a considerable 
increase in blood pressure, which is linked to low HRV. 
Thus, low HRV is a well-known indicator of stress. There-
fore, it clearly shows that stress is closely related to the 
neurological system and the balance of the human body 
[5]. A growing amount of data shows a rising incidence of 
stress-related health problems connected to today’s hectic 
lifestyle. Therefore, predicting stress has become a priority 
in order to maintain a productive and healthy lifestyle [6].

There is a growing demand for fast and efficient stress 
detection systems that can effectively help people under-
stand and manage their stress levels. There have been 
many models developed for the prediction of stress from 
physiological parameters (such as electroencephalogram 
(EEG), electrocardiogram (ECG), galvanic skin response 
(GSR), blood pressure (BP), HRV), behavioural features 
(such as facial expression, speech, posture), and self-
reported questionnaires. In addition, current pieces of 
research have emphasised the significance of monitoring 
physiological signals in order to provide user’s brief and 
effective feedback during regular tasks [7].

Collecting relevant data from cell phones is quite con-
venient and straightforward in this age of technological 

progress. Behavioural patterns, as well as physiological 
data (GSR, EEG, HR), can be collected through smart-
phones, and by combining these sensor data and smart-
phone records (calls, locations), stress can be predicted 
[8]. Video cameras, accelerometers, and touch displays 
based on data can also be a stress predictor and used for 
model construction [9]. However, smartphone-based data 
is not that accurate as the sensors are not medical grade. 
Furthermore, only device-based systems have some situ-
ation-based constraints where it gives poor predictions.

Figure 1 shows a possible representation of the AI frame-
work for predicting stress from multi-modal sensor data. The 
EEG parameters and stress questionnaires are the most used 
mental stress detectors for participants in a contained envi-
ronment. The feature sets by combining EEG measurements 
(distraction, levels of engagement, cognitive state) with sta-
tistical characteristics (mean, median, mode, and variance) 
are used to categorise stress levels into high and low catego-
ries [10]. But the heterogeneously collected self-reported 
stress questionnaires are susceptible to missing values and 
the halo effect, which results in a defective prediction model 
[7]. In addition, from a psychological point of view, self-
reports are more related to current feelings.

Figure 2a presents the year-wise, and Fig. 2b shows the 
algorithm-wise distribution of the research works in this 
article.

In order to conduct this review, stress prediction studies 
that incorporate AI-based techniques, which predict HRV, 
were searched in sources such as the IEEE Xplore digital 
library, Science Direct, PubMed, and Google Scholar. For 
this purpose, 242 papers were initially found. After remov-
ing duplicates and reviewing the abstracts, 102 publications 
were chosen for full-text review. After reviewing the entire 
text of these publications, 56 were eliminated since they 
were not stress prediction-focused studies that incorporated 
both HRV and AI. Finally, we have thoroughly reviewed 
43 articles in this research. Figure 3 depicts the process of 
selecting articles for this study.

A population pyramid depicting the distribution of male 
and female participants in available datasets is presented in 
Fig. 4. A word cloud representing the keywords extracted 
from article titles is presented in Fig. 5.

Related Works

Many researchers make use of machine learning (ML) and/
or rule-based (RB) methods to infer the mental state of an 
individual based on HRV. The HRV can be estimated using a 
variety of physiological measures, including heart rate, gal-
vanic skin response, body temperature, and blood pressure. 
In this section, we have presented several works that provide 
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Fig. 1  A possible representation 
of AI framework for predicting 
stress from multi-modal sensor 
data. Data collected from dif-
ferent parts of the human body 
(such as the brain, chest, and 
hands). The prediction model 
receives these data as input 
signals. AI (rule-based, shallow 
machine learning, deep machine 
learning)-based algorithms 
were taken into account in this 
research to detect stress levels
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Fig. 2  a The year-wise distribution of studies. We presented the num-
ber of research papers on stress prediction using AI approaches that 
occurred between 2016 and 2021. b The algorithm-wise distribution 

of the articles. The bar diagram shows the most popular algorithms 
found in the reviewed studies
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a review of HRV-based stress prediction models with ML 
algorithms and rule-based approaches.

Panicker and Gayathri [11] proposed extensive reviews 
on different ML algorithms such as support vector machine 
(SVM), K-nearest neighbour (KNN), multilayer perceptron 
(MLP), long short-term memory (LSTM), decision tree 
(DT), linear discriminant analysis (LDA), Naïve Bayes (NB), 
logistic regression (LR), and probabilistic neural network 
(PNN) to predict various emotions (fear, anger, sadness) and 
stress using physiological data. These data were collected 
using EEG, ECG, GSR, and skin conductivity sensors. They 
investigated the connections between the biological charac-
teristics of persons with emotional and mental stress. The 
authors have ignored different state-of-the-art RB methods 
in their survey. They did not incorporate the pre-processing 

of data properly. These RB systems attracted researchers 
due to their explainability and better performance for the 
small dataset.

Piotrowski and Szypulska [12] provided a comprehen-
sive overview of KNN, NB, and neural network (NN)-based 
drowsiness detection methods relying on HRV data extracted 
from ECG, EEG, and electrooculography (EOG) readings. 
They reviewed several ML techniques as well as pre-press-
ing approaches for this purpose. However, RB techniques 
were not included in their research.

Can et  al. [13] investigated various stress detection 
approaches using data from smartphones and wearable sen-
sors like ECG, EMG, electrodermal activity (EDA), EEG, 
GSR, and PPG. They classified the outputs into stress lev-
els and classes. In their review, the authors focused more 
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Fig. 3  Reviewing research articles, we identified 242 research publications in Science Direct, PubMed, Google Scholar, and the IEEE Xplore 
digital library at first. Ultimately, 43 research articles were chosen for this review after the screening process

Fig. 4  Population distribution 
of datasets from the selected 
articles showing the number of 
male and female participants

5
63
26
17
11
8
23
33
18
17
52
6
5
18
17
23
21
20
14
11
12

0
19
12
8
3
27
11
17
8
7
5
9
5
3
8
19
6
41
13

8

Population Distribution of Datasets

male female



459Cognitive Computation (2024) 16:455–481 

1 3

on multimodal data-gathering approaches for stress detec-
tion. The authors addressed several ML and RB approaches  
like SVM, LDA, LR, AdaBoost, KNN, fuzzy logic, NB, and 
convolutional neural networks (CNN). Smartphone sensors 
and wearable-based data were used only. They avoided 
research challenges and different preprocessing techniques 
for the data.

Bulagang et al. [14] looked into emotion categorisa-
tion based on ECG and EEG sensor data. They also used 
EDA, HR sensor, GSR, etc. and reviewed some ML and 
RB algorithms KNN, SVM, fuzzy logic, and random for-
est (RF) utilising data from numerous sensors. The authors 
considered the utilisation of multimodal physiological sig-
nals. They concentrated their research on several emotion 
categories rather than stress. The paper was also lacking in 
pre-processing methods and data fusion.

Pramanta et al. [15] studied stress identification methods 
to identify stress levels depending only on the HR data. 
The authors investigated various ways of extracting prop-
erties from heartbeat data collected using HRV, GSR, BP 
(blood pressure), and EEG sensors, as well as the perfor-
mance of SVM, RF, NB, DT, and KNN approaches based 
on such data. They concentrated on classification methods 
and overlooked multimodal and fusion-based data process-
ing. Furthermore, RB techniques were not included in their 
research. Both multimodal data and RB techniques can per-
form better when it comes to identification and classifica-
tion tasks.

Katarya and Maan [16] proposed a review of stress detec-
tion using SVM, KNN, LR, RF by GSR, EDA, skin tem-
perature (ST), blood volume pressure (BVP), HR, and HRV 
data collected from smartwatches. They explored various 
smartwatch-based data collection methods and compared 

several ML techniques based on their stress detection abili-
ties for different stress levels. The use of multimodal data 
or RB techniques ignored stress in the detection system. In 
addition, just a few related publications were examined for 
the purpose of comparing ML approaches.

Nath et al. [17] reviewed and discussed stress detection 
techniques which used ML algorithms like SVM, KNN, DT, 
LDA, NB, ANN, and RF. In their review study, the authors 
identified GSR, ANS, EDA, PPG, HR, HRV, EOG, EEG, 
ECG, EMG, EGG, and respiration-based physiological indi-
cators for classifying stress based on subjective and objec-
tive assessments. They compared various ML algorithms’ 
accuracy, classes, and acquisition windows. However, they 
did not mention data pre-processing strategies or the chal-
lenges encountered while doing research. RB procedures 
were not included in their assessment.

Smets et al. [18] compared SVM, LDA, Bayesian net-
works, DT, RF, and LR algorithms for the measurement 
of stress levels based on physiological responses. Their 
research includes data from ECG, GSR, HRV, ST, respira-
tion, and EMG sensors. Rest detection rate, stress detection 
rate, and average detection rate were used to compare accu-
racy. The authors employed questionnaires and sensors for 
data collection, but data was used from one source. They 
tested six alternative ML algorithms but did not incorporate 
multimodal data or RB detection strategies in the detection 
system. Tonacci et al. [19] evaluated physiological data 
linked to ANS activity, along with ECG and GSR; ANS, 
ECG, HRV, HR, and cardiac sympathetic index (CSI) meas-
ures were used. The performances of SVM, KNN, DT, LDA, 
quadratic discriminant, and LR-based algorithms were com-
pared for physiological stress-level detection. The authors 
talked about what the study could be used for in the future 

Fig. 5  The word cloud depict-
ing retrieved keywords from the 
title of the articles
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and what problems other researchers might face. However, 
they ignored RB approaches for their study and only consid-
ered relaxation in place of stress detection.

In earlier review studies, several stress prediction 
approaches based on HRV were explored, which were done 
utilising a variety of ML techniques. The bulk of them were 
targeted at utilising ML to detect and classify stress. In most 
cases, the reviews were limited to ML methods. Only a tiny 
fraction of their research employed RB methods. Although 
pre-processing approaches prepare data for the core clas-
sification, they were mostly discarded in the bulk of the 
literature. For enhanced and more accurate data gathering, 
multimodal and fusion-based sensors are essential. Even so, 
the majority of the studies employed very specific types of 
sensors, and review papers ignored the use of multimodal 
sensors. A common framework for stress detection might  
be beneficial to add in review articles for possible future 
studies. However, none of the studies provided a unified 
framework for detecting stress.

There is no agreed standard for stress evaluation at pre-
sent. This study intended to cover works that provide a basis 
for using HRV as a psychological stress indicator and to pro-
vide a comprehensive analysis of AI-based pre-processing 
and stress prediction models derived from HRV. Table 1 
indicates the characteristics of the already available review 
articles in the field of stress prediction from HRV.

Stress Prediction and Heart Rate Variability

The field of stress research has a wide variety of applica-
tions, as it has the potential to boost learning and increase 
work productivity. The potential applications of stress 
research include the ability to enhance personal, govern-
ment, and industrial operations and the resilience of military 
operations and life support systems [20]. As there may be 
discrepancies between numerical scales suggested by vari-
ous researchers, stress detection systems rely on qualitative 

judgement. To evaluate stress levels, many researchers 
have utilised various sorts of phrases. Some class labels are 
determined only by the presence of stress; others are defined 
by stress and relaxation levels, which can be expressed as 
extremely stressed, mildly stressed, stressed, extremely 
relaxed, relaxed, and so on [11].

For identifying stress, HRV is a crucial feature and indi-
cator for evaluating body and mind states. Therewith, while 
interpreting the relationship between HRV and stress (see 
Fig. 6 for the relationship between brain and HRV), it is 
critical to grasp the entire autonomic context and analyse a 
patient’s medical and psychiatric history due to the diversity 
of possible stressors and individual stress responses [2].

Artificial Intelligence Algorithms

Recently, artificial intelligence (AI) has played a significant 
role in the methodological developments for diverse problem 
domains, including computational biology [21, 22], cyber 
security [23–26], disease detection [27–33] and manage-
ment [34–39], elderly care [40, 41], epidemiological study 
[42], fighting pandemic [43–49], healthcare [50–54], health-
care service delivery [55–57], natural language processing 
[58–62], and social inclusion [63–65].

In this article, we categorised the algorithms found from 
the different review publications as RB approaches, shallow 
machine learning approaches, and deep machine learning 
approaches. This section discusses the basic principle of 
these three approaches and their pros and cons, along with 
all the algorithms we have found being used by different 
articles.

Rule‑Based Approaches

Rule-based approach, often known as expert systems, makes 
judgements or solves issues by using logic and previously 
established rules. These rules are typically created by 

Table 1  Characteristics of 
current review articles

Ref Datatype Sensor Data set Data pre-pro-
cessing

Classification

Multi-
modal

Fusion RB ML DL

[11] ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
[12] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗
[13] ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
[14] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
[15] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
[16] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗
[17] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[18] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
This article ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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experts in the field and are unique to their particular sec-
tors. The system analyses incoming data and produces an 
output or recommendation by abiding by these rules. The 
decision-making process for RB approaches is transpar-
ent. In the majority of instances, the rationale and condi-
tions for RB approaches are clearly stated and transparent.  
Additionally, it is useful for updating guidelines or rules 
of decision-making because they are clear and provide the 
approach flexibility and adaptability. On the other hand, RB 
approaches have limited compatibility in complex domains 
and require manual effort to design the rule bases.

Shallow Machine Learning Approaches

Shallow machine learning, sometimes called traditional 
machine learning or supervised learning, encompasses 
the process of training a model using labelled examples. 
Through this process, the model gains an understanding of 
patterns and relationships within the data, enabling it to pre-
dict outcomes or classify new, unseen data. The emphasis 
lies in extracting relevant features from the input data and 
utilising them to guide decision-making. In shallow machine 
learning, the model is required to be provided with labelled 
examples of inputs and their corresponding outputs. From 
these examples, the model is learned to make predictions 
on new, unseen data. However, shallow machine learning 
models often offer interpretability and take less training time 
than deep machine learning models. Shallow machine learn-
ing models are also easier to implement and debug.

Deep Machine Learning Approaches

Deep machine learning, often referred to as deep learning, is 
a subset of machine learning that uses neural networks with 
multiple layers to learn representations of data. It involves 
training a complex network of interconnected artificial 

neurons to automatically discover and learn hierarchical 
representations of the input data. Deep learning excels in 
tasks such as image and speech recognition, natural language 
processing, and other complex pattern recognition tasks. It 
can automatically extract features from raw data, eliminat-
ing the need for manual feature engineering. However, deep 
learning models often require substantial computational 
resources and often lack interpretability [66–70].

Summary of AI Algorithms

For stress prediction, AI algorithms have been extensively 
used in recent years. Table 2 described the basics of various 
RB and ML techniques extensively used to predict stress 
from HRV.

The AI algorithms which have been used throughout this 
reviewed article are conferred in Table 2. In this section, the 
algorithms, along with their pros and cons with graphical 
representation, have been presented. Figure 7 represents the 
AI algorithms in pictorial form.

AI for Stress Prediction

The widespread adoption of AI can be attributed to several 
factors, two of the most important of which are its remark-
able accuracy and lightning-fast response times. Addition-
ally, it does an excellent job of predicting stress, which is 
essential to living a healthy life.

Rule‑Based Approach

Various types of RB systems, such as fuzzy logic, neuro-
fuzzy systems or fuzzy neural networks [83], and fuzzy 
adaptive resonance theory (ART) [84], are used in clinical 

Fig. 6  The relation cycle of stress with HRV and relation with autonomous nervous system (ANS) is presented
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applications where the knowledge of different experts are 
converted into a set of “if-then” rules. Many researchers 
have utilised fuzzy logic to assess stress from HRV.

Kumar et al. [85] developed a fuzzy theoretic nonpara-
metric deep model for predicting stress based on heartbeat 
analysis. In addition to the stress value, the authors cre-
ated weights for subjective stress evaluation and empirical 
HRV analysis to illustrate the explainability of the pro-
posed model.

El-Samahy et al. [83] proposed Mamdani fuzzy infer-
ence systems to find mental stress using heart rate and 
diameter of the pupil. The authors carried out a closed-
loop experiment between two personal computers, one for 
imposing mental stress and the other for monitoring and 
managing the human mental state.

Ranganathan et al. [86] proposed a stress assessment 
approach that analyses heart rate signals using a wavelet 
transform and a neural fuzzy model. Techniques such as 
wavelet decomposition and reconstruction were employed 
to minimise noise and recover specific time-frequency fea-
tures that were previously lost. It is necessary to apply 
neural fuzzy training in order to recognise spectral fea-
tures, and fuzzy clustering techniques are used to evaluate 
mental stress. They kept track of the heart rate recordings 
and used the wavelet transform to evaluate the data (WT). 
Neuro-fuzzy evaluation approaches were used to improve 
the reliability of HRV analysis and to track the activity of 
the autonomic nervous system (ANS) under a variety of 
stress conditions.

Kumar et al. [87] developed a novel heart rate variabil-
ity analysis technique for measuring mental stress based 
on fuzzy clustering. An accurate and dependable fuzzy 
identification technique was used to deal with the uncer-
tainties created by individual differences in the assessment 
of mental stress levels. Their method requires the con-
tinuous monitoring of heart rate signals over the Internet. 
Later, the signals are processed by means of a continuous 
wavelet transform in order to recover the local features of 
HRV in the time-frequency domain.

Wang et al. [84] presented a pattern recognition sys-
tem for learning complicated HRV-salivary stress cor-
relations. In order to predict salivary response given a 
set of ECG measurements, the researchers used a fuzzy 
ARTMAP (FAM) classifier. They improved FAM utilis-
ing GA ensembles, which improved the training cycle 
order and ARTMAP parameters. They also devised a sys-
tem for simultaneously collecting heart rate and salivary 
data under various stress induction strategies. A sum-
mary of used algorithms, pre-processing, sensors, and 
features by RB stress prediction approaches is presented 
in Table 3.
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Shallow Machine Learning Approaches

In shallow ML, the training process is carried out using data 
with predefined features where it is necessary to perform 
feature extraction by hand, as the use of domain knowledge 
is essential. Shallow ML includes well-known algorithms 
such as RF, NB, DT, SVM, KNN, and LR. This section 

contains a list of studies which utilises shallow ML meth-
ods to predict stress.

Sriramprakash et al. [88] extracted the most important 
and overlapping characteristics from physiological sensors in 
order to identify stress in working individuals. The authors 
extracted time- and frequency-domain features as well as 
physiological features (HR, HRV, GSR, and so on) from the 
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Fig. 7  AI/ML techniques used in recent research. A Fuzzy logic, B fuzzy neural network, C naive Bayes, D logistic regression, E decision tree, 
F random forest, G support vector machine, H K-means cluster, I RNN, J DNN, and K CNN

Table 3  A summary of used algorithms, pre-processing, sensors, and features by rule-based stress prediction approaches

Ref. Model Pre-processing Sensors Features

[85] Fuzzy theoretic nonparametric 
deep model

- PPG R-R Features

[83] Mamdani fuzzy Downsampling Ohmeda 2300 Finap-
ress, Gazepoint GP3 
eye tracker

HRV2, mPD

[86] Sugeno neuro fuzzy Wavelet transformation, noise removal ECG Time-frequency features
[87] Sugeno fuzzy clustering Continuous wavelet transformation Polar S810i HR, Mw, 1/a, p1,p2,p3
[84] Fuzzy ARTMAP Dimensionality reduction, normalisation ECG, microtiter plate 

spectrophotometer
Alpha amylase, cortisol, 

R-R intervals
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physiological data. They employed SVM and KNN classi-
fiers to detect stress and assess the validity of the retrieved 
features for stress detection.

Huang et al. [89] recruited 35 participants who wore 
wearable devices to collect ECG from the participants. 
In this experiment, the authors collected 8 HRV features, 
namely RMSSD, PNN50, TP, HF, LF, VLF, and the LF/HF 
ratio and transmitted these collected data to a smartphone 
via Bluetooth interface. SVM, KNN, NB, and LR were used 
to train the model that automatically detected the fatigue 
state.

Wu et al. [90] attempted to overcome the challenge of 
identifying physiological stress caused by engaging in physi-
cal activities. They used wristband sensors to capture biosig-
nals. GSR, BVP, HR, ACC, and ST sensors were employed 
to acquire physiological data in this investigation. The 
authors utilised KNN, SVM, DT, NB, ensemble learning 
(EL), and DL models to categorise physical activities and 
acute physical stress.

Sevil et al. [75] reported models to detect stress and 
awareness levels in knowledge workers using biometric 
sensors. The authors used wristbands to collect biosignals 
like GSR, BVP, ST, and HR from knowledge workers. For 
the purpose of detecting stress levels and awareness, they 
used ML models, such as KNN, SVM, NB, DT, and DNN. 
The performance of these algorithms was compared with the 
state-of-the-art techniques.

Pourmohammadi and Maleki [91] compare the efficacy 
of the EMG signal and the ECG signal in detecting mental 
stress. This work examines the EMG signal of the right and 
left trapezius and the right and left erector spinal muscles 
in depth for multi-level stress recognition. To create stress 
in the laboratory, mental arithmetic, the Stroop colour word 
test, time constraints, and a stressful atmosphere were used. 
The effectiveness of EMG signals for stress detection was 
tested using an ECG signal.

Maldonado et al. [92] introduced an expert system that 
used an SVM-based features selection method to analyse 
the mental workload of individuals while performing daily 
tasks. The authors used multiple mobile devices to capture 
HR, blood oxygen saturation (SpO2), and temperature to 
construct a system for mental stress analysis.

Pluntke et al. [93] introduced a framework that uses HRV 
analysis to detect and classify physical and mental stress 
in real time without interfering with the person’s activities. 
HRV data was labelled and gathered in controlled situations 
where subjects were subjected to physical, psychological, 
and combination stressors. They used SVM and C5 DT to 
segregate and identify distinct stress kinds and the relation-
ship between HRV data and stress levels.

Giannakakis et al. [94] examines the effects of stress on 
HRV parameters and seeks to discover the best mix of HRV 
features for reliably detecting stress. In order to account for 

the individualised baseline of each phase in developing the 
stress model, the retrieved HRV features were converted cor-
respondingly using the pairwise transformation.

Castaldo et al. [95] used linear and non-linear HRV char-
acteristics extracted during an oral test (stress) and during 
rest after a holiday to detect mental stress. They showed 
that nonlinear ultrashort-term (3 min) HRV features might 
automatically predict mental stress in healthy participants. 
ECG sensor data was used to extract HRV features, which 
were then evaluated using Kubios software tools. Following 
that, the HRV properties were applied to statistical and data 
mining analysis.

Delmastro et al. [96] examine the impact of a specific 
training procedure on the cognitive function and stress 
response of a group of MCI-fragile older persons. They 
tested a stress detection system based on different ML algo-
rithms to see how well they performed on a real-world data-
set. They also proposed a mobile system architecture for 
online stress monitoring that can infer the amount of tension 
during a session.

Lima et  al. [97] developed a model that can predict 
how people will react using HRV characteristics and EDA 
signals, which were extracted using a wearable device to 
provide continuous monitoring. Participants were placed 
through a mental arithmetic stress test to extract the HRV 
and EDA characteristics.

Yu et al. [98] propose a new way to track office work-
ers’ behaviour and HRV. They used ML techniques to create 
a classification model that could distinguish distinct work 
behaviours (moving the body, typing, talking, and reading) 
from sensor data. The system utilised a lightweight EMFi 
sensor for measuring the changes in pressure induced by 
human motions and heartbeat in office chairs.

Padmaja et  al. [99] proposed a model based on four 
major well-being dimensions. The stress level of a person 
is determined by combining their HRV, sleeping pattern, 
social behaviour, and physical activity. They developed 
DetectStress, a cognitive stress-level detection system that 
uses smartphone daily activity data and data from a wireless 
physical activity tracker to evaluate an individual’s stress 
levels in an unobtrusive manner (FITBIT).

Can et al. [100] developed an autonomous stress detection 
system that relies on physiological information collected 
from discreet smart wearable gadgets that people can take 
about with them. This system has modality-specific artefact 
removal and feature extraction techniques for real-world 
settings.

Chen et al. [101] investigated consumer-grade wrist-based 
PPG sensors, which are as cheap, convenient, and accurate 
as consumer ECG sensors. They created an individual stress 
prediction model to assess the performance of different PPG 
LED lights and the suitable window widths. To extract ten 
HRV characteristics, the authors utilised half-overlapping 
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moving windows (1/3/5 min). They find that a 3-min interval 
is adequate to distinguish between a stressful mental state 
and illustrate how to utilise ML methods to combine HRV 
features for reliable stress identification.

Koldijk et al. [102] discover that addressing individual 
variations is especially important when assessing mental 
states. The authors explored several ML techniques for infer-
ring working circumstances and mental states from a mul-
timodal set of sensor data, including computer logs, facial 
expressions, posture, and physiology. They discovered that 
sensor data can better predict the subjective variable “mental 
effort” than it can predict “felt stress”.

Ciabattoni et al. [103] proposed a smart-watch-based sys-
tem for collecting and analysing biosignal data in order to 
detect mental stress in the course of daily activities. Using 
data from a commercial wristwatch, they classified stress 
using GSR, RR interval, and body temperature (BT). Data 
from smartwatches is filtered and adjusted to smooth down 
noise and motion distortions.

Attaran et al. [104] presented a design for a multi-modal 
stress monitoring system. They extracted 17 different fea-
tures from ECG, accelerometer, SpO2, EDA, and respira-
tory sensor to explore them for maximising the detection 
accuracy of SVM and KNN classifiers. Finally, they used 
the results to implement a low-power-consuming ASIC 
implementation of the SVM classifier in stress monitoring. 
Castaldo et al. [105] suggested a method using mental stress 
assessment to identify the extent of ultra-short HRV as a 
valid replacement for short HRV features. They extracted 
23 ultra-short HRV features and used SVM and DT classi-
fiers to identify their validity in the case of automatic stress 
assessment.

Hantono et al. [106] targeted to analyse the stress level 
of people while using smartphones. They used PPG heart 
rate sensing on mobile devices to record the heart rate of the 
subjects while they were doing different tasks. Finally, they 
compared NN, discriminant analysis, NB, and KNN algo-
rithms while doing time- and frequency-domain analysis-
based classifications.

Tiwari et al. [107] explored an SVM-based prediction 
model of mental stress and workload. The authors extracted 
HRV and breathing signals for computing ultra-short-term 
segments of the signals to use them as features. The system 
was developed to provide a fast prediction of stress and men-
tal workload depending on frequency- and time-domain fea-
tures from less than 5 min segments of the sensor readings.

Clark et al. [108] presented an RF classifier-based model 
for the prediction of people’s stress levels at least one minute 
prior to the event. They extracted 42 features from GSR, 
respiration, and ECG sensors and expanded to 252 features. 
These features were used to identify whether the stress level 
of the subject would rise to a higher level in the coming 
scenarios.

Ahmad et al. [109] reported a study on stress-level assess-
ment in virtual reality environments. They collected ECG 
signals from subjects under VR influence. They transformed 
the collected data into 1-D and 2-D forms to create a mul-
timodal fusion of ECG data. Using this multimodal deep 
fusion model and RF, KNN, SVM, and XGBoost classi-
fier (XGB) algorithms, they evaluated the performances for 
stress-level detection from 1-s windows.

Dalmeida and Masala [110] developed a comparative 
study that tests the compatibility of HRV features as physi-
ological data to accurately classify the level of stress. This 
was achieved by extracting HRV parameters from ECG sen-
sor data and selecting the more relevant features using Pear-
son’s correlation, recursive feature elimination (RFE), and 
extra tree classifier. They used different ML methodologies 
such as KNN, SVM, MLP, RF, and gradient boosting (GB) 
to test and develop the best model for the purpose.

Sandulescu et al. [111] presented an SVM-based stress 
detection approach from data collected through wearable 
sensors on people. They collected the PPG value, PPG auto-
correlation value, HRV value, and EDA value for each state 
to be determined. The model they proposed was demon-
strated to detect real-time stress levels in people.

Munla et  al. [112] investigated stress-level detection 
of drivers in a real-world driving situation. The authors 
extracted HRV features using domain analysis approaches 
such as time, frequency, time-frequency, or non-linear meth-
ods using wavelet and STFT. They built a feature vector out 
of the extracted parameters and tested KNN, RBF, and SVM 
ML approaches. A summary of used algorithms, pre-pro-
cessing, sensors, and features by shallow ML-based stress 
prediction approaches is presented in Tables 4, 5, 6, and 7.

Deep Machine Learning Approaches

de Vries et al. [113] used learning vector quantisation (LVQ) 
to classify stress and relaxation from different physiological 
signals. To create the stress classifier, the authors collected 
features from ECG, GSR, and RSP data and observed car-
diac activity. To train the LVQ classifier, the authors experi-
mented with different very high-frequency band features in 
addition to common properties of these signals.

Son [114] created a model to forecast mood changes con-
nected to LSTM, RNN, and LSTM-RNN in order to provide 
a framework that will estimate the mood based on a particu-
lar detail of people’s qualitative ability to adapt. Variations 
in moods, such as his cognitive activity in response to his 
activities, surroundings, environment, HR, HRV, and other 
states, might be easily justified with this feature-rich wear-
able device in a consecutive time domain.

Rastgoo et al. [115] assessed a driver’s critical situa-
tion, and the authors utilised CNN and LSTM. To construct 
this predictor, parameters were taken from ECG, vehicle 



467Cognitive Computation (2024) 16:455–481 

1 3

characteristics, and relevant information and then input into 
separate CNNs as the driver’s stress-level components were 
classified into low, medium, and high categories and then 
merged into a two-layer LSTM.

Akbulut et al. [116] provided a model to allow the simu-
lation of stress as well as a variety of mood shifts based 
on physiological factors. The researchers used ECG, GSR, 
body temperature, blood pressure, glucose level, and SpO2 
information to construct this framework, along with observ-
ing changes in behaviour and quantifying HRV according 
to stress levels. In addition to determining similar traits of 
these signals, the authors examined other often quite fre-
quency band features as well as time-domain and variational 
analytic factors.

Coutts et al. [117] used an LSTM system to capture HRV 
signals from a wrist device that can monitor inter-beat inter-
vals using mean, standard deviation, and root mean square 
successive difference. Physiological signals and character-
istics were acquired to use this sensor reading device. The 

spectrum properties were determined in a comprehensible 
fashion of frequency domain to construct the frequency-
based ML technique.

He et al. [118] used CNN technique on various physio-
logical signals to assess chronic perceptual anxiety and tran-
quillity. To construct this model, the researchers analysed 
characteristics from ECG, EEG, and EMG readings, along 
with observed heart activity. The scientists used several 
really quiet frequency band components as well as common 
aspects of these transmissions to develop the CNN-based 
analyser.

Qin et al. [119] assessed the BP feed-forward approach 
for the relaxed state, low stress, medium stress, high stress, 
and other metabolic variables. The authors had to obtain 
information from GSR or skin temperature and BVP to 
design an assessment technique to determine HRV charac-
teristics. HRV features obtained from time- and frequency-
domain evaluation of R-R intervals recorded during the 
enhanced practice session are the most efficient and precise 

Table 4  A summary of used algorithms, pre-processing, sensors, and features by Shallow ML-based stress prediction approaches

In pre-processing column: PPG-PD PPG peak detection, HR heart rate, RR-ISF RR-interval series filtering, HRV and EDA electrodermal activ-
ity features extraction, BCG ballistocardiography, SG-Filter Savitzky-Golay filter, BWF Butterworth filter, ANC adaptive noise cancellation, 
EMD empirical mode decomposition, FIR finite impulse response, IIR infinite impulse response, LPF low pass filter, CDA continuous deconvo-
lution analysis
In sensor column: SCR skin conductance response, SCL skin conductance level, RiseT rise time, ST skin temperature, ECG ecocardiogram, GSR 
galvanic skin response, ACC  accelerometer

Ref. Model Pre-processing Sensors Features

[88] SVM, KNN - Kinect 3D sensor, ECG sensor RMSSD, AVNN, SDANN, SDNN, 
NN50, PNN50, LF, HF, LF/HF

[89] SVM, KNN, NB, LR - ECG NN.Mean, PNN50, rMSSD, TP, 
LF, HF, VLF, LF/HF

[90] k-NN, SVM, DT, NB SG-filter, BWF, ANC algorithm GSR, BVP, ST, 3-D ACC, HR Time-domain, frequency-domain, 
and distribution features of BVP, 
ACC, GSR, and HR

[75] KNN, SVM, NB, DT and DNN - Biometric Sensors Statistical Features of RR
[91] SVM FIR filters, IIR filters, EMD and 

DWT
ECG v.12 devices, SX230 sur-

face electrode, Skintact F-55 
electrode

Statistical and time-domain fea-
tures of RR

[92] SVM Canny’s edge detection algo-
rithm, LPFr

Pulse oximeter, ST, ECG, and 
eye tracker

HRV, HR, PS, temperature, SpO2

[93] SVM, C4.5 DT 3-sigma rule ECG, Polar H7 chest strap Statistical features of RR; 
frequency-domain features of RR

[94] RF, SVM time series polynomial fit and 
bandpass filtered

ECG Time-domain features of RR, HRV 
triangular index, ECG envelope, 
frequency-domain features of RR

[95] NB, SVM, MLP, AB, C4.5 DT QRS detector, PhysioNet’s 
WAVE

ECG Statistical features of RR, absolute 
power, frequency-domain fea-
tures of RR, SampEn, D2, fa1, 
dfa2, ShanEn

[96] BN, SVM, k-NN, C4.5 DT Lomb-Scargle algorithm, LPF, 
CDA

Zephyr BioHarness34, Shim-
mer3 GSR + Development 
Kit5

Statistical features of RR, tot spec-
trum power, frequency-domain 
features of RR, Amps, ISCR, 
mean SCL, mean EDA, max 
EDA deflection
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indicators of ANS at the time of constructing the artificial 
neural network algorithm.

Ding et al. [120] proposed a study that uses multimodal 
measurements to measure mental workload and validates 
the features for mental workload estimation. The authors 
created a backpropagation neural network (BPNN) classifier 
to evaluate the workload using physiological data (HR, HRV, 
EMG, ETA, and respiration), subjective ratings of mental 
exertion (NASA Task Load Index), and task performance 
metrics. They compared the BPNN’s performance against 
KNN, SVM, medium tree, and LDA algorithms.

Kalatzis et al. [121] conducted a study that determines 
stress levels of older adults from ECG signals while 

performing a hand grip strength task. The author extracted 
time- and frequency-domain features of HR and HRV to 
perform the identification of stress and no-stress states. They 
proposed an optimised ANN model to identify the states 
and proposed the effects of this model for a better stress 
management system.

Dhaouadi and Ben Khelifa [122] utilised LSTM and deep 
neural networks (DNN) to assess legitimate anxiety levels as 
well as detect other lifestyle patterns in young gamers based 
on physiological measurements. To establish such models, 
researchers gathered the required characteristics from ECG, 
EEG, EDA, and EMG recordings and estimated emotional 
state variations. As a result, to construct the frameworks 

Table 5  A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

In pre-processing column: PPG-PD PPG peak detection, HR heart rate, RR-ISF RR-interval series filtering, HRV and EDA electrodermal activ-
ity features extraction, BCG ballistocardiography, BWBPF high-order Butterworth bandpass filter
In sensor column: SCR skin conductance response, SCL skin conductance level, RiseT rise time, GSR galvanic skin response, PPG photoplethys-
mogram, EDA electrodermal activity, EMFi electro-mechanical film

Ref. Model Pre-processing Sensors Features

[97] SVM; LR; RF PPG-PD; HR; RR-ISF; HRV; EDA DA wrist, PPG, Spare, TVOC, CO2, 
TEMP

Statistical features of RR, SCR, SCL; 
RiseT

[98] SVM; KNN; EnL BCG processing EMFi sensor Statistical features
[99] NB; DT Normalization and transformation Fitbit Tracker Number of calls, duration, no. of SMS, 

the app usage information
[100] PCA, SVM, 

KNN, LR, RF, 
MLP

Artefact-(interpolation/removal) 3D accelerometer (ACC), PPG, EDA Statistical and frequency-domain 
features of RR

[101] RF Filtering using BWBPF Wristband device, Polar H10 SD1, SD2, RMSSD, SDNN, MHR, 
MRRI, TP, VLP, LF, HF

[102] NB, SVM, KNN, 
Bayes Net, RF; 
DT; MLP

- ECG and skin conductance Facial expressions, head orientation 
action units, emotion, body postures, 
joint angles, HR, HRV, skin conduct-
ance

[103] KNN Artefacts and noise removal HR, GSR and BT RR, GSR, BT

Table 6  A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

In pre-processing column: HR heart rate, RR-SE RR-interval series extraction, Corr correlation, BPF bandpass filter, BWF Butterworth filter
In sensor column: SCR skin conductance response, HR heart rate, ECG ecocardiogram, PPG photoplethysmogram, EDA electrodermal activity, 
Resp respiration

Ref. Model Pre-processing Sensors Features

[104] KNN, SVM HR, accelerometer, 
EDA, Resp. Rate, 
SpO2

Statistical features of HR and RR, mean SpO2

[105] SVM, DT RR-SE and Corr ECG Statistical features of NN, dfa1, dfa2, RPlmean, RPlmax, REC, RPadet, 
ShanEn

[106] NN, KNN, DA, NB Corr PPG mHR, RR, SDHR, SDRR, CVRR, RMSSD, pRR20, and pRR50. ULF, 
VLF, LF, HF

[107] SVM BPF (5–25 Hz) BioHarness 3, Zephyr Time-domain and frequency-domain features of HRV
[108] RF classifier Normalising, BWF GSR, ECG, Resp Time-domain and frequency-domain features of GSR respiration: the 

mean and variance time-domain and frequency-domain features of 
HRV
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(LSTM and DNN), the scholars had to conduct several inves-
tigations and frequency variations to determine the frequent 
and unusual properties.

Stewart et al. [123] suggests neural processes as a tech-
nique for developing personalised models and addressing 
individual interactions with physiological processes. They 
used standard ML models (such as SVM, KNN) and neural 
processes to develop stress classifiers which were compared 
on two datasets using leave-one-participant cross-validation.

Silva et al. [124] compared baseline and stress situations 
to look at HR and HRV indicators. The authors used sev-
eral statistical tests and ML models, both shallow (which 
includes SVM, KNN, and RF) and deep, to build a predictive 
model for stress monitoring, evaluation, and chronic stress 
prediction.

A summary of used algorithms, pre-processing, sensors, 
and features by deep ML-based stress prediction approaches 
is presented in Tables 8 and 9.

Performance Analysis and Discussion

Rule‑Based Approaches

Kumar et al. [85] addressed the issue of explainability of 
fuzzy theoretic nonparametric deep model applications in 
biology and medicine. They used one previously studied 
dataset of 50 subjects and a new dataset of 100 subjects 
and obtained (Pearson’s correlation coefficient (r): 0.8162 
(old dataset) vs 0.6809 (new dataset), RMSE: 6.8382 (old 
dataset) vs 9.4872 (new dataset)).

El-Samahy et  al. [83] found a close match between 
the measurement of the proposed system and the actual 
measurements acquired from human volunteers. The sys-
tem was built and evaluated using heart rate and pupil 
diameter data collected from 5 people. To compare the 
achievements of subjects 1 and 2, an evaluation index (EI) 

Table 7  A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

In pre-processing column: SW squaring and window integration, LS-method Lomb-Scargle method
In sensor column: EMG electromyography, HR heart rate, ECG ecocardiogram

Ref. Model Pre-processing Sensors Features

[109] RF, KNN, SVM, and XGB LS-method ECG, EMG, PPG Time-domain and frequency-domain 
features of HRV

[110] KNN, SVM, MLP, RF, and GB WQRS tool PhysioNet HRV 
toolkit, pyhrv, data normali-
zation

Apple watch HR, AVNN, SDNN, RMSSD, pNN50, TP, 
and VLF

[111] SVM Downsampling, noise removal BioNomadix module from 
Biopac, model BN-
PPGED

ppgt, ppgaut, HRV t, EDA t

[112] SVM, KNN Filtering, derivative, SW inte-
gration, QRS detection

ECG sensor Time-domain and frequency-domain 
features of RR

Table 8  A summary of used algorithms, pre-processing, sensors, and features by deep ML-based stress prediction approaches

In pre-processing column: SCRG  SCRGauge method, HR heart rate, RR-SE RR-interval series extraction; Corr correlation, BPF bandpass filter, 
BWF Butterworth filter; DWT discrete wavelet transformation, IBI inter-beat interval
In sensor column: GSR galvanic skin response, HR heart rate, ECG ecocardiogram, RSP respiration

Ref. Model Pre-processing Sensors Features

[113] LVQ R-PD, IBI outlier removal, and SCRG 
method

ECG, GSR, RSP Time-domain, frequency-domain, and 
distribution features of ECG, GSR, RSP

[114] LSTM-RNN All features are normalised into a range 
of [-1,1]

A Tizen component on smart-watch HR avg, HRV arg, HR min, HR max, 
SDHR, SDHRV, hr diff avg, hr diff var

[115] CNN-LSTM A Butterworth band-pass filter (5–15 
Hz), R-peaks are extracted, Pan-Tomp-
kins algorithm

ECG Mean, standard deviation, mean of the 
first difference of HRV, average normal-
to-normal (NN) and intervals, SDNN, 
RMSSD, PNN50

[116] FFNN DWT, Pan-Tompkins algorithm, down 
sampling

CVDiMo wearable sensor Statistical and frequency-domain features 
of RR

[117] LSTM Noise filtering The bio beam band Statistical and frequency-domain features 
of RR

[118] CNN Bandpass filter ECG HR, LH, SDNN, SD2, pQ
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was produced for each of them. During levels 1–3, subject 
1 had a high EI of over 90%. On the other hand, subject 2 
showed an EI between 60 and 90% throughout the whole 
experiment, which means the levels of mental stress will 
be unchanged.

Ranganath et al. [86], using their proposed wavelet trans-
form and neuro-fuzzy inference system, evaluate stress using 
HRV. To investigate the activity of the ANS, the authors 
performed a time-frequency analysis (TFA) of HRV, which 
can be used to quantify mental stress. The authors studied 
20 physically fit adults at two points in time: before and after 
they began smoking and acquired a spectral decomposition 
of HRV. These were used to build the proposed NF-based 
model.

Kumar et al. [87] proposed a fuzzy clustering method 
which helped to quantify mental stress and demonstrate 
a direct functional link between ANS activities and men-
tal stress. The researchers used NASA Task Load Index 
to examine subjective ratings of mental workload in 38 
physically fit volunteers in air traffic management task 
simulations.

Wang et al. [84] provided a way for utilising HRV to cor-
relate the human body’s salivary response to stress. They 
used 176 ECG recordings and 264 salivary samples from 
22 people. They have generated six datasets (3-amylase, 
3-cortisol) using alpha-amylase and cortisol measurements 
to label ECG feature vectors. The final classifier system cor-
rectly classified salivary cortisol based on ECG characteris-
tics with an accuracy of 80%, compared to 75% for salivary 
alpha-amylase. A summary of used algorithms, datasets, 
evaluation metrics, and obtained outcomes of RB stress 
prediction research is presented in Table 10.

Shallow Machine Learning Approaches

Sriramprakash et al. [88] used ECG, skin conductance, and 
Kinect 3D sensor to collect data from selected individuals. 
The SWELL-KW dataset was used for classification (149 
features and 2688 instances in total) and got accuracies: 
66.52% (KNN) vs 72.83% (SVM-RBF kernel).

Huang et al. [89] demonstrated that the mental fatigue of 
the samples could be accurately identified with a wearable 
ECG device. They collected 58 samples of ECG signals and 
compared SVM, NB, KNN, and LR algorithms to obtain 
accuracy (57.08% 9(SVM) vs 48.84% (NB) vs 65.37% 
(KNN) vs 59.71% (LR)) and area under the curve (AUC) 
(0.68 (SVM) vs 0.64 (NB) vs 0.74 (KNN) vs 0.65 (LR)). 
Wu et al. [90] combined HRV sensors and accelerometers 
to develop a model for monitoring the perceived stress levels 
in daily life. They collected data from 8 participants for their 
daily life in about 2 weeks and compared the performances 
of NB, J48, RF, and bagging algorithms where accuracy 
0.730 (NB) vs 0.819 (J48) vs 0.832 (RF) vs 0.8392 (bagging) 
were obtained.

Sevil et al. [75] addressed the problem of detecting psy-
chological stress (APS) using data collected from wrist-
bands. They collected data from 34 samples doing 166 
clinical experiments and compared different classification 
algorithms: KNN, SVM, DT, NB, EL, LD, and DL, where 
SVM had the highest accuracy of 99.1%.

Pourmohammadi and Maleki [91] collected EMG and 
ECG signals concurrently from 34 healthy students (23 
females and 11 males, ages 20 to 37). They used LIBSVM 
(a library for SVM) with RBF (radial basis function) ker-
nel for training the model. Sequentially, stress identification 

Table 9  A summary of used algorithms, pre-processing, sensors, and features by deep ML-based stress prediction approaches

In pre-processing column: HR heart rate, WD wavelet denoising, BPF bandpass filter, BWF Butterworth filter, WT wavelet transformation, HT 
Hamilton-Tompkin, HP high pass, LP low pass;
In sensor column: GSR galvanic skin response, HR heart rate, ECG ecocardiogram, EMG electrmyogram, EDA electrodermal activity, PPG pho-
toplethysmogram

Ref. Model Pre-processing Sensors Features

[119] NN - Pulse oximeter MEAN, SDNN, SDANN, RMSSD, TF, 
VLF, LF, HF, LF/HF

[120] BPNN, SVM, KNN WD and HP, LP, 
and RMS filtering

ECG, EDA, EMG, respiration sensors AVHR, LF/HF, Yrm, MF, SC mean, 
respiration

[121] ANN WT ECG probe, BIOPAC ECG100C Time-domain and frequency-domain 
features of NN

[122] LSTM, DNN Transfer function, 
biosppy and pyhrv 
libraries

Polar H10, Actigraph wGT3X-BT HR and HRV features

[123] NP, SVC, KNN HT algorithm, BWF ECG, GSR Time-domain and frequency-domain 
features of HR, time-domain features of 
GSR

[124] LR, NB, NN, SVM, RF, KNN - PPG Mean RR, Min RR, Max RR, Median RR, 
SDNN, RMSSD, pNN50
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accuracy was 100%, 97.6%, and 96.2 % for the two, three, 
and four levels. Maldonado et al. [92] collected data from 
50 engineering students in Chile, with a total of 33 men and 
17 women aged 22.4 ± 2.8 years. They took HR, SpO2, and 
temperature readings to utilise in their SVM model, which 
yielded an AUC of 0.994 with a variable collecting cost of 
16.

Pluntke et al. [93] acquired HRV data from subjects in a 
laboratory setting, and SVM and DT were used to train the 
model. A set of labelled RR-interval signals was collected as 
a training set. They used an H7 chest strap sensor to collect 
data from 26 male and female participants ranging in age 
from 23 to 59. A precision, recalling, and F-score of almost 
90% were shown in the best model based on a DT of C5.

Giannakakis et al. [94] evaluated 24 participants and 11 
tasks, performing a research protocol for about 45 min. They 
used KNN, generalised linear model (GLM), NB, linear dis-
criminant analysis (LDA), SVM, and RF classifiers, where 
RF excels with a classification accuracy of 75.1% above any 
other classification method. 84.4% classification accuracy in 
a 10-fold method is the best result in the proposal of stress 
recognition simply by using hRV characteristics.

Castaldo et  al. [95] used a 3-lead electrocardiogram 
(ECG) to collect data from 42 students on two distinct days, 
including during an oral examination (stress) and during rest 
following a holiday. They employed five distinct algorithms 
(NB, SVM, MLP, AB, and C4.5 (DT)). With sensitivity, 
specificity, and accuracy rates of 78%, 80%, and 79%, cor-
respondingly, the C4.5 tree algorithm was the best ML tech-
nique for distinguishing between stress and rest.

Delmastro et al. [96] collected data conducting a ran-
domised cross-over observational study where Zephyr Bio-
Harness34 device was used for ECG monitoring and Shim-
mer3 GSR+Development Kit5 for EDA. Some algorithms 
(BN, SVM, k-NN, C4.5 DT, AB) were used where RF and 

AB learning schemes outperform the other classifier learn-
ing methods (accuracy: 87% for RF and 88.2% for AB).

Lima et al. [97] gathered information using some sen-
sors (such as PPG, Spare, TVOC) from a group of willing 
participants (15 participants, ranging in age from 21 to 55 
years old (9 females and 6 males)). While under stress, the 
model had an accuracy of about 80% in terms of HRV fea-
tures in baseline and about 77 % in terms of HRV and EDA 
simultaneous baseline characteristics.

Yu et al. [98] used the ensemble learning technique to 
create a classifier that incorporates three separate work 
activities: body movement, typing, and browsing. These 
can be identified with 94.2%, 93.2%, and 91.2% accuracy, 
correspondingly. They gathered information from ten office 
workers, all of whom were around 31 years old.

Padmaja et al. [99] collected data from a smartphone and 
a Fitbit and then preprocessed and normalised it. They used 
NB (accuracy: 72%) and DT (accuracy: 62%) for classifica-
tion. DetectStress has a 72% accuracy rate in recognising 
perceived stress utilising data from both smartphones and 
wireless fitness trackers.

Can et al. [100] collected physiological signal and ques-
tionnaire data from the 21 participants by using Samsung 
Gear S and S2 and Empatica E4 sensors. From HR and ACC 
signals acquired using Empatica E4, the MLP algorithm 
produced the best results (92.19%), while the RF algorithm 
produced the best classification accuracy (88.26%) with HR 
and ACC data collected from all devices.

Chen et al. [101] collected data from PPG and Polar 
H10 sensors, used RF as a classifier, and compared it 
with the SVM, Naïve Bayes, and MLP model. In the 
PPG dataset, their approach obtains an overall leave-
one-participant-out F1-score of 80%, while the ground 
truth ECG scores 79.7%. Koldijk et al. [102] used the 
SWELL-KW dataset (149 features and 2688 instances in 

Table 10  A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of rule-based stress prediction research

In evaluation metrics column: PCC Pearson’s correlation coefficient, EI evaluation index
In performance column: PCC Pearson’s correlation coefficient, EI evaluation index

Ref. Models Dataset Evaluation metrics Performance

[85] Fuzzy theoretic nonpara-
metric deep model

Private/100 subjects RMSE PCC: 0.8162 (old dataset) vs 0.6809 (new dataset), RMSE: 6.8382 
(old dataset) vs 9.4872 (new dataset)

[83] Mamdani fuzzy model Private/3 subjects 
for training and 
2 subjects for 
testing

EI EI = 2.9412 (Subject 1), 1 (Subject 2)

[86] Sugeno neuro-fuzzy model Private/20 subjects - Established a direct functional relationship between heart rate vari-
ability and mental stress

[87] Sugeno fuzzy clustering Private/26 males, 
12 females, aged 
18–29 years

- Minimised the worst-case influence of uncertainty on fuzzy param-
eter identification performance

[84] Fuzzy ARTMAP Private/22 subjects Acc Acc = 80% (ECG characteristics),75% (salivary alpha-amylase)
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total) and compared SVM (accuracy: 90.0298%) with 7 
other algorithms, which includes NB (64.7693%), K-star 
(65.8110%), Bayes net (69.0848%), J48 (78.1994%), IBk 
(nearest neighbour with euclidean distance (84.5238%)), 
RF(87.0908%), and MLP (88.5417%).

Ciabattoni et al. [103] utilised KNN to classify stress 
using uniform precedence probability and Euclidean dis-
tance metrics with one neighbour. An accuracy of 84.5% 
has been determined altogether. In recognition of stress, 
a 26% misclassification error was detected when the indi-
vidual was calm.

Attaran et  al. [104] utilised the ThreatFire belt for 
data collection and employed several physiological and 
behavioural factors with both SVM and KNN classifiers 
to increase the detection accuracy. The best classification 
accuracy to identify stress was observed for the heart rate 
(HR) and accelerometer characteristics. For hardware 
implementation, the SVM classification was utilised, and 
this system has an overall classification accuracy of 96%.

Castaldo et al. [105] collected 23 ultra-short HRV fea-
tures from 42 healthy subjects. They found six out of 23 
ultra-short HRV features (MeanNN, StdNN, MeanHR, 
StdHR, HF, and SD2) displaying consistency in the detec-
tion of stress. The authors employed 5 ML algorithms and 
found their accuracies: MLP (98%) vs SVM (88%) vs C4.5 
DT(94%) vs IBK (94%) vs LDA (94%).

Hantono et al. [106] recorded heart rate data using PPG 
sensors in smartphones from 41 subjects. They analysed 
the data and extracted HRV features to detect mental 
stress. The authors employed NN, KNN, DA, and NB algo-
rithms to find the accuracies: NN (73%) vs KNN (82%) vs 
DA (66%) vs NB (60%).

Tiwari et al. [107] collected ECG and breathing data 
from 27 police trainees over the course of 15 weeks. They 
extracted ultra-short-term HRV and breathing features 
from the data and predicted stress. Results suggested that 
ultra-short-term analysis for stress prediction results in 
performance losses lower than 7% when compared to 
short-term analysis. They used an SVM classifier with 
RBF kernel, resulting in 80% performance accuracy.

Clark et al. [108] proposed a model for driver stress 
prediction. They collected data from 17 subjects using 
ECG, GSR, and respiration sensors after they completed 
a 20-mile drive. The authors extracted 42 features from the 
data to use in an RF classifier which achieved an average 
accuracy of 94%. Ahmad et al. [109] collected the dataset 
named Ryerson Multimedia Research Laboratory (RML), 
which was recorded by physiological signals using 9 par-
ticipants and measured ECG, GSR, and respiration signals. 
They used raw data, which is procured from the ECG sig-
nal. For the proposed fusion model, they got 66.6% and 
72.7% in the RML and WESAD datasets, respectively.

Dalmeida et al. [110] investigated the role of HRV fea-
tures stress predicted from ECG, EMG, GSR, and respira-
tion sensor data. They used a dataset collected by MIT and 
available in Physionet. They tested different ML models such 
as KNN, SVM, MLP, RF, and GB. MLP was considered 
an appropriate stress classification method with an 80% 
sensitivity score. HRV features such as the AVNN, SDNN, 
and RMSSD were found to be relevant aspects for stress 
identification.

Sandulescu et al. [111] present an SVM-based approach 
for stress prediction by collecting PPG, HRV, and EDA sen-
sor data from 5 participants. The results showed 82% accu-
racy on two participants and more than 80% precision level 
for all the participants.

Munla et al. [112] intended to study stress-level detec-
tion from HRV features extracted from 16 different subjects 
from the Stress Recognition in Automobile Driver database 
(DRIVEDB). They used three ML models and achieved 
accuracies: KNN (66.66%) vs SVM (83.33%) and SVM with 
RBF kernel (83.3%).

A summary of used algorithms, datasets, evaluation met-
rics, and obtained outcomes of shallow ML-based stress pre-
diction research is presented in Tables 11, 12, and 13.

Deep Machine Learning Approaches

de Vries et al. [113] collected GSR, RSP, and ECG sensor 
data from 61 participants from the age of 18 to 28 years 
to perform stress and relaxation classification. They used 
learning vector quantisation to achieve an accuracy of 88% 
for the classification.

Rastgoo et al. [115] collected ECG, vehicle, and envi-
ronmental data from 27 participants in a vehicle simulator. 
They proposed a CNN and LSTM-based multimodal fusion 
model, which showed an accuracy of 92.8%, sensitivity of 
94.13%, specificity of 97.37%, and precision of 95.00%.

Akbulut et al. [116] developed a stress model that incor-
porates an algorithm for detecting affective states based on 
HRV analysis, emotion recognition, and other statistical 
data. They collected the dataset conducted with 30 volun-
teers and named it CVDiMo. In categorising the stress levels 
of all patients, their suggested method had a 90.5% accuracy 
rate. The average success rate of MES patients was found 
to be 92%, which is greater than the general performance of 
healthy people.

Coutts et al. [117] recorded HRV features from 652 par-
ticipants using a wearable sensor. They employed an LSTM 
network for the detection of stress, anxiety, and depression 
levels, finding 85% classification accuracy.

He et al. [118] used ECG sensor data from 20 partici-
pants to extract six HRV features (HR, LH, pQ, SD2, SDNN, 
Comb). They used SVM, LDA, and CNN-based models 
to detect cognitive stress from these models, where CNN 
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Table 11  A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

In evaluation metrics column: Acc accuracy, AUC  area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-
tivity, Spe specificity
In performance column: Acc accuracy, AUC  area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensitivity, 
Spe specificity

Ref. Models Dataset Evaluation metrics Performance

[88] SVM and KNN SWELL-KW Acc Acc of 0.9275
[89] SVM, KNN, NB, and LR Private/35 participant (mean age 

of 23 ± 4 years and a male-to-
female ratio of 1:1.3)

AUC Acc = 0.755 AUC = 0.74

[90] NB, J48, RF and bagging Private/8 participants Acc prediction Acc = 0.857
[75] KNN, SVM, DT, NB Private/34 participants Acc Acc = 0.991
[91] SVM Private/34 students (23 females and 

11 males, aged 20–37 years)
Acc The accuracies two level = 1.0, 

three level = 0.976, and four 
levels were 0.962

[92] SVM Private/50 participants (33 men & 
17 women)

AUC, variable collection cost AUC = 0.994, Vcost = 16

[93] SVM, C5 DT Private Pre, Rec f1, Acc 88% Acc, all
[94] RF, SVM Private/24 participants ageing 

47.3±9.3 years
Acc Acc = 0.844

[95] NB, SVM, MLP, AB, Dt C4.5 Private/42 participants Sen, Spe and Acc Sen=0.78, Spe=0.80 and Acc 
rate=0.79

[96] BN, SVM, k-NN, C4.5 DT, AB Private/9 older adults Acc; Pre; Rec; AUPRC RF (Acc =87.0%; Pre =92.4%; 
Rec=88.2%; AUPRC =0.97) and 
AB (Acc=88.2%; Pre =92.3%; 
Rec=92.0%; AUPRC =0.92)

Table 12  A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

In evaluation metrics column: Acc accuracy, AUC  area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-
tivity, Spe specificity
In performance column: Acc accuracy, AUC  area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensitivity, 
Spe specificity

Ref. Models Dataset Evaluation metrics Performance

[97] SVM, LR, RF Private Acc 80% accuracy for HRV features 
in baseline and about 77% for 
HRV and EDA simultaneous 
features

[98] SVM, KNN, and EnL 15 office workers (five female, 
five males, age: 31 ± 5.3)

Acc Accuracies of up to 91%

[99] NB, DT 35 young adults Sen, Spe, Acc, Pearson’s cor-
relation

NB classifier has 72% accuracy

[100] PCA, SVM, KNN, LR, RF, 
MLP

21 participants (18 males and 3 
females with an average age 
of 20)

Acc, f-Measure, Pre, Rec Obtained 92.15% accuracy maxi-
mum three-level classification

[101] RF 6 healthy participants ages 
21–40 years old

Acc 10-fold accuracy of stress state is 
98%, and F1-score reaches 80%

[102] NB, SVM, KNN, BN, RF, DT, 
MLP

25 participants (8 female, aver-
age age 25, stdv 3.25)

Acc Best results were obtained 
with an SVM (RBF kernel): 
90.0298%

[103] KNN Private/10 young subjects (mean 
age 24; 5 female)

Acc, Error Acc = 0.845, misclassification 
Error = 0.26

[104] KNN, SVM Private Acc The overall classification accu-
racy of this system is 96%
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(17.3%) outperformed LDA (25.1 ± 14.2%) and SVM (24.5 
± 13.2%) according to detection error rate.

Qin et al. [119] used 10 HRV features extracted from 
56 samples of R-R intervals recorded during the modified 
Stroop test. They used 40 samples as training data and 16 as 
testing for a stress evaluation system based on the BP neural 
network, which could detect different levels of stress with an 
accuracy rate of 93.75%.

Ding et al. [120] recruited 18 healthy individuals to col-
lect heart rate, heart rate variability, electromyography, 
electrodermal activity, and respiration physiological data 
to measure changes in physiological activity with varied 
levels of tasks. While combining physiological signals and 
task performance, their classification models could achieve 
accuracy at 96.4% but 78.3% when taking physiological fea-
tures only.

Kalatzis et al. [121] recruited 57 participants to extract 
time- and frequency-domain features of HR and HRV using 
ECG sensors. They used an ANN-based model to classify 
stress and no-stress states, achieving a 90.83% accuracy 
level.

Qin et al. [119] used 10 HRV features extracted from 
56 samples of R-R intervals recorded during the modified 
Stroop test. They used 40 samples as training data and 16 as 
testing for a stress evaluation system based on the BP neural 
network, which could detect different levels of stress with an 
accuracy rate of 93.75%.

Ding et al. [120] recruited 18 healthy individuals to 
collect heart rate, heart rate variability, electromyography, 
electrodermal activity, and respiration physiological data 
to measure changes in physiological activity with varied 
levels of tasks. While combining physiological signals and 
task performance, their classification models could achieve 

accuracy at 96.4% but 78.3% when taking physiological 
features only.

Kalatzis et al. [121] recruited 57 participants to extract 
time- and frequency-domain features of HR and HRV 
using ECG sensors. They used an ANN-based model to 
classify stress and no-stress states, achieving a 90.83% 
accuracy level.

Dhaouadi and Ben Khelifa [122] used ECG, EDA, and 
EMG measures taken by wearable devices from 15 young 
gamers in order to stress monitoring in real time. They 
explored LSTM and DNN networks where the DNN model 
obtained the best accuracy of 65% at 15 and 30 epochs, 
but LSTm achieved the best accuracy of 95% at 30 epochs.

Stewart et al. [123] used two publicly available data-
sets, which include drivedb and WESAD. Data was col-
lected from both datasets using multiple sensor recordings, 
including ECG and GSR. They used shallow ML models 
(such as KNN, SVM, and LR). Neural processes mod-
els outperformed those models (WESAD: 0.957 (average 
precision), drivedb: 0.804 (average precision)) and had 
the best performance when using periods of stress and 
baseline as context.

Silva et al. [124] monitored the stress of 83 medical stu-
dents by comparing stress levels during academic exams 
and a regular week. Data was collected from wearable sen-
sors such as Microsoft Smart band 2 and PPG. The neural 
network revealed better performance (model-1: sensitiv-
ity, 75.2%; specificity, 77.9%. Model-2: sensitivity, 74.2%; 
specificity, 78.1%.) where two models were established to 
predict stress comparing shallow ML algorithms (such as 
SVM, KNN, LR, RF). A summary of used algorithms, data-
sets, evaluation metrics, and obtained outcomes of deep ML-
based stress prediction research is presented in Table 14.

Table 13  A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

In evaluation metrics column: Acc accuracy, AUROC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen 
sensitivity, Spe specificity, BAC balanced accuracy

Ref. Models Dataset Evaluation metrics Performance

[105] SVM, DT ECG from 42 healthy subjects (19 
female, 23 male)

AUC, Sen, Spe, Acc Achieved good performance accu-
racy above 88%

[106] NN, KNN, DT, NB 41 students AUC, ROC, Acc, confusion 
matrix

-

[107] SVM Data was collected from 27 (6 
females) police

BAC In HRV segments BAC =0.579 for 
300 s window duration

[108] RFr Private Acc Acc = 94%
[109] RF, KNN, SVM, XGB RML, WESAD Acc., precision, recall, F1-Score Acc. = 66.6 (RML dataset), Acc. = 

72.7 (WESAD dataset)
[110] KNN, SVM, MLP, RF, GB PhysioNet AUROC MLP, RF and GB yielded an 

AUROC of 83%, 85%, and 85%, 
respectively

[111] SVM Private/5 participants aged 18 
to 39

Acc, Pre Best Acc and Pre for P3:83.08(Acc) 
& 83.87(Pre)

[112] SVM-RBF, KNN DRIVEDB Acc Acc = 83%
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Discussion

Stress can lead to a variety of psychological issues. Many 
disorders are more likely to develop in a stressful environ-
ment, particularly if the stress is intense and long-lasting 
[125]. Therefore, being able to predict stress in an effective 
manner is a crucial fact. In this research, we observed HRV 
characteristics as physiological indicators for stress detection 
based on a review of 43 studies published between 2016 and 
2021. RMSSD, SDNN, pNN50, and AVNN are determined 
to be the most often utilised HRV features in our tables. 
ECG, PPG, and GSR are the most deployed sensors for data 
collection.

In AI, accuracy is one of the most important performance 
indicators. The present research has been examined in this 
article in order to provide a full understanding of the field 
of stress prediction via HRV.

According to Fig. 8 displaying the performance compari-
son of the papers based on accuracy level, only one article by 
Wang et al. [84] employed accuracy as a performance meas-
ure for RB techniques. Using the fuzzy ARTMAP classifier, 
they explored the stress association between HRV and sali-
vary, achieving an overall accuracy of 80% for ECG records.

In the case of shallow ML approaches, Sevil et al. [75] 
achieved the highest accuracy among the 21 studies utilising 
accuracy as a performance measure. They used wristband data 

to quantify psychological stress and attained 99.1% accuracy 
using the SVM classifier, which is also the highest among all 
the publications reviewed in this review article. For deep ML 
techniques, Ding et al. [120] used a BPNN classifier to assess 
stress based on physiological activity with varying levels of 
tasks and achieved high accuracy. Their classification models 
have a 96.4% accuracy rate.

Another performance metric for assessing classification 
errors is the AUC. This review article contained 5 studies that 
employed the AUC measure, a two-dimensional area beneath 
the ROC curve. The highest AUC value for deep ML tech-
niques was attained by Akbulut et al. [116], as shown in Fig. 9. 
They created a stress model based on HRV analysis, emo-
tion recognition, and other statistical data from the CVDiMo 
dataset, which includes an algorithm for recognising affective 
states. Using FFNN, they were able to attain an AUC of 0.97. 
Maldonado et al. [92] used shallow ML to get the best AUC 
value of 0.99 for stress detection, which is significantly higher 
than other models that use AUC as a performance indicator.

Challanges and Future Scope

Due to a lack of quality data, data collection procedures, 
detection methodology selection, and other factors, research 
for predicting and detecting mental stress confront numerous 

Table 14  A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of deep ML-based stress prediction research

In evaluation metrics column: Acc accuracy, AUC  area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-
tivity, Spe specificity, FAR false acceptance rate, FRR false rejection rate

Ref. Models Dataset Evaluation metrics Performance

[113] LVQ Private/61 (20 male, 41 female) Acc RSP = 0.71, ECG = 0.834, Acc = 0.877
[115] LSTM-RNN Private/a group of Vietnamese students Framework proposed -
[114] CNN-LSTM Private/27 participants aged 21–40 years 

(55% male)
Acc Sen Spe: Pre Acc: 0.928, Sen: 0.9413, Spe: 0.9737 and 

Pre: 0.95
[116] FFNN CVDiMo/conducted with 30 volunteers AUC, Acc AUC = 0.978, Acc= 0.92
[117] LSTM Private/for trial-1: 91 participants (62% 

female, 38% male); for trial-2: 600 (72% 
female, 28% male)

ACC Acc = 0.85

[118] CNN Private/20 healthy subjects, aged from 18 
to 35

ER, FAR, and FRR CNN ER=17.3 FAR= 0.01 FRR = 32.1

[119] NN 56 samples Acc 93.75% accuracy
[120] BPNN, SVM, KNN 18 right-handed, healthy individuals, 20.1 ± 

0.94 years
Acc, Rec, Pre Accuracy can reach 96.4% and 78.3%

[121] ANN Private/57 participants, and all are above 65 
years

acc Acc = 90.83%

[122] LSTM, DNN Private/15 gamers Age of 10 to 22 acc Acc = 64% (DNN) vs 92% (LSTM)
[123] LR, SVM, KNN Drivedb, WESAD Avg precision, AUC WESAD: 0.957 average precision, same-

participant vs 0.780 other-participant, 
drivedb: 0.804 vs 0.757

[124] LR, NN, NB, SVM, 
RF, and KNN

Private/63 (76.8%) were female, and 19 
(23.2%) were male aged 17 to 38 years

Sen, Spe For Model 1, Sen = 0.752 and Spe = 0.779. 
For Model 2, Sen = 0.742 and Spe = 
0.781
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challenges. In this section, we will discuss the difficulties 
that stress researchers face and how to overcome them, 
which might be very useful for future researchers. 

1. Effect of individual moods and health 
  HRV is very much dependent on the change in ANS 

activity. In fact, HRV is controlled by ANS, a primi-
tive part of the nervous system. As a result, individuals’ 
native mood and health issues like blood sugar, hor-

mones, and blood pressure largely affect the measure of 
HRV. So, the consideration of baseline mood and health 
issues of the individual under observation needs to be 
considered during data collection.

2. Controlled environment and biased dataset
  Most of the datasets for stress prediction from HRV are 

collected inside a controlled environment inside the labo-
ratory setup, and as a result, the effect of real-life scenarios 
is missing, which can be overcome by collecting data from 
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the real-world office or driving situations. Moreover, the 
dataset largely comprises male participants. As a result, 
the data are more biased towards male participants and 
can show poor performance in female-centric data.

3. Lack of large benchmark dataset
  Much research included in this article has used its own 

dataset, but most of which is not publicly available. But 
datasets that were publicly available were collected from 
a small number of participants. As a result, the data is 
not that generalised. So, there is not really a benchmark 
dataset that can be used for all AI approaches to make a 
performance comparison among them.

4. Sensor quality and multimodal sensors
  Data collection is the most important part of any 

research process. For HRV-based stress prediction, 
ECG, EMG, GSR, etc., sensors are used in different 
articles reviewed earlier, but the quality of sensors used 
and fusion of the right sensors are very important in 
this case. A multimodal dataset with data collected from 
high-quality and suitable sensors can produce a better 
and more fitting dataset for future research.

5. Real-time stress monitoring 
  In real life, stress has been described in various ways, 

but it has been established that any stress leads to an 
unbalanced bodily and mental situation. This can lead 
to productivity loss, diminished work abilities, and a 
slew of other health issues. However, a real-time stress 
monitoring system is rarely investigated. As a result, a 
real-time stress monitoring system could be a promising 
future study topic.

6. Fusion of hybrid architectures
  Many ML and DL approaches have been used in the 

reviewed research in this article, but there have not been 
cases where hybrid architecture has been used to develop 
the stress detection or prediction model. Even though 
hybrid architectures can be a promising future prospect 
for accurate results.

7. Exploration of HRV features
  The majority of datasets utilised in recent studies have 

employed the same HRV features to identify stress in 
individuals, more or less. However, more noteworthy 
statistical, frequency-domain, and time-domain features 
could be investigated to provide effective stress predic-
tion datasets.

8. Less use of rule-based approaches 
  Throughout stress-related research, very rarely fuzzy 

and researchers have used other RB approaches to 
develop stress prediction systems. But due to human-like 
inference ability and understandability, RB approaches 
can be applied to develop a more suitable decision 
support system. So, fuzzy-based stress management 
and decision support systems can be a possible future 
research topic.

9. Differences in evaluation metrics
  Researchers have utilised a variety of metrics to demon-

strate the performance of their stress prediction or detec-
tion system in various studies. As a result, new research-
ers and explorers in this sector are finding it increasingly 
difficult to compare these approaches to find one more 
appropriate. Setting a very acceptable and benchmark 
evaluation metric could be a solution to this issue.

Conclusion

Stress has become an inevitable element of our daily rou-
tines. It has resulted in an alarming scenario for adolescent 
and juvenile mental health throughout the world. Controlling 
stress has become a critical issue since it directly impacts 
physical and mental health. It has a negative influence on a 
country’s socioeconomic condition. The growing AI disci-
pline can provide effective solutions for stress prediction. 
In this study, we have conducted a comprehensive survey of 
the sensors employed for acquiring HRV data and their fea-
tures, AI models applied on those data and their performance 
assessed using avialable evaluation metrics, pre-processing 
methods applied on multi-modal data, and existing datasets. 
The identified approaches have been summarised in tables 
and explored and their results were compared in depth. 
Stated outcomes of the methodologies, used datasets, and 
applied evaluation criteria were also presented. 
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