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Abstract
The unprecedented growth of computational capabilities in recent years has allowed Artificial Intelligence (AI) models to 
be developed for medical applications with remarkable results. However, a large number of Computer Aided Diagnosis (CAD) 
methods powered by AI have limited acceptance and adoption in the medical domain due to the typical blackbox nature of these 
AI models. Therefore, to facilitate the adoption of these AI models among the medical practitioners, the models' predictions must  
be explainable and interpretable. The emerging field of explainable AI (XAI) aims to justify the trustworthiness of these  
models' predictions. This work presents a systematic review of the literature reporting Alzheimer's disease (AD) detection using  
XAI that were communicated during the last decade. Research questions were carefully formulated to categorise AI models into 
different conceptual approaches (e.g., Post-hoc, Ante-hoc, Model-Agnostic, Model-Specific, Global, Local etc.) and frameworks 
(Local Interpretable Model-Agnostic Explanation or LIME, SHapley Additive exPlanations or SHAP, Gradient-weighted Class 
Activation Mapping or GradCAM, Layer-wise Relevance Propagation or LRP, etc.) of XAI. This categorisation provides broad 
coverage of the interpretation spectrum from intrinsic (e.g., Model-Specific, Ante-hoc models) to complex patterns (e.g., Model-
Agnostic, Post-hoc models) and by taking local explanations to a global scope. Additionally, different forms of interpretations 
providing in-depth insight into the factors that support the clinical diagnosis of AD are also discussed. Finally, limitations, needs 
and open challenges of XAI research are outlined with possible prospects of their usage in AD detection.

Keywords  Alzheimer’s Disease Classification · Ante-hoc · Blackbox Models · Explainable Artificial Intelligence · 
Intrepretable Machine Learning · Model-Agnostic · Model-Specific · Post-hoc · XAI

Alzheimer’s Disease (AD) is an untreatable, life-changing 
neurological sickness affecting the elderly population, lead-
ing to several hardships for the patients [1, 2]. According 
to the latest World Alzheimer Report [3], about 55 million 
clinically diagnosed AD patients live worldwide, with an 
estimated rise of cases to 139 million by 2050 [3]. The report 
also quotes a staggering 75% issues that go undiagnosed 
for several reasons. AD patients will have to endure many 
difficulties, such as memory loss, behavioural disturbances, 
vision, and mobility complications that interfere with daily 
routine tasks [1, 4, 5]. These sufferings will increase to the 
extent of interfering with one’s ability to lead a self-reliant 
personal and social life and causing numerous tribulations 
for the caretaking family members [2, 6].

Of late, Artificial Intelligence (AI) techniques involving 
machine learning (ML) and deep learning (DL) algorithms 
have contributed to diverse application domains includ-
ing: anomaly detection [7–9], biosignal and image analy-
sis [10–21], neurodevelopmental disorder assessment and 
classification focusing on autism [22–32], neurological 
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disorder detection and management [2, 33–44], supporting 
the detection and management of the COVID-19 pandemic 
[45–52], elderly monitoring and care [53–56], cyber security 
and trust management [57–62], various disease diagnosis 
[63–69], smart healthcare service delivery [70–72], text and 
social media mining [73–76], personalised learning [77–80], 
earthquake detection [81, 82], etc.

Part of these methods has significantly boosted clinical 
diagnosis of AD in an incredibly accurate, fast, and efficient 
manner using compound medical data (2D or 3D MRI, PET, 
CT, etc) [83–85]. This success can be attributed to several 
factors, such as certain algorithmic advancements and the 
availability of powerful GPUs, which come pre-loaded with 
a spectrum of open-source computational tools [84, 85]. 
These have facilitated the accurate identification of AD in a 
remarkable manner. The AI-driven AD prediction is based 
on the concept that systems can identify stages of dementia 
by learning patterns through the input data so that optimal 
decisions can be made with minimal human intervention 
[86, 87]. The contemporary ML and DL algorithms for AD 
detection have achieved highly admirable results on various 
scales of metrics [34, 85].

However, these AI models are considered mainly as 
blackbox models by medical practitioners due to the inabil-
ity to derive justifiable reasons (explainability) for the pre-
dictions delivered by them, leading to ambiguity [88]. The 
high opaqueness of these modern AI techniques often poses 

difficulty for even skilled medical experts to comprehend 
the solutions [89]. For this reason, it will lead to a trade-off 
of accuracy over trustworthiness by decision-makers [90]. 
Consequently, stakeholders and policymakers often prefer 
responsible and reliable decision-making instead of accu-
rate decision-making. This lack of explainability keeps the 
medical field reluctant to deploy AI-driven computer-aided 
diagnosis (CAD), despite proven accuracy demonstrated in 
the recent literature [91].

In the last decade, several ML and DL algorithms have 
achieved breakthrough results in various AI-based decision-
making, such as disease prognosis and prediction [92], drug 
discovery and development [93], solid-state material science 
[94] and machine fault analysis [95]. Furthermore, applica-
tions of DL are found in biomedicine [96], biology [96], 
and speech recognition, synthesising and audio processing 
in [97]. Sometimes these performances surpassed human-
level accuracy.

Such blackbox models will often lead to unclear circum-
stances such as "Why did you predict/classify that as class x, 
why not class y?", "When will you succeed or fail ?", "How 
to correct the wrong feature selection?", "Which dominant 
feature are you looking to train the model?", "Can I rely on 
the prediction you gave?" and so on [89] (see Fig. 1). On 
the contrary, the Explainable AI (XAI) models can deliver 
reassuring outcomes to the user, such as "I know why you 
are classifying that as class x and why not as class y", "I 

Fig. 1   A Typical AI systems (Top) and Explainable AI systems (Bottom)
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know to rectify the wrong feature selection", "I can rely on 
the prediction you gave" and alike. Hence, XAI is crucial if 
AI-based CAD are to be reliably deployed.

XAI or interpretable AI are convertible terms that refer 
to an emerging sub-field of AI [98]. The XAI is a series 
of features that interprets how a blackbox model is con-
structed, perform predictions and get humans to trust and 
use the system efficiently [99, 100]. The need for a model 
to be explainable is to justify the model output, make the 
functioning of the blackbox models transparent, gain new 
knowledge for smarter decision-making to improve model 
performances and increase trust by users in the model result 
[98]. It aims to produce methods and tools to make the AI 
systems’ decisions, recommendations, or guidance under-
standable for decision-makers. For instance, in an AI sys-
tem for classifying MRI images in early AD diagnosis, XAI 
can explain the model’s working and synthesise influential 
factors considered for prediction [101]. Furthermore, if the 
model generates an adverse result, then with XAI’s inter-
pretability, the model will be able to identify and rectify the 
errors [102]. Explanation and interpretation of the model’s 
output are therefore required to bring fidelity, trust and use 
in clinical applications [88, 100, 102]. The stakeholder’s 
trust at every level is needed to maximally leverage these AI 
solutions, which is possible only through XAI. In addition to 
providing advanced insights into AI solutions, XAI can also 
deliver new opportunities. For instance, involving a human 
in the decision is a typical medical scenario, where AI solu-
tions and human expertise go in tandem to tackle complex 
situations where neither can provide a satisfactory solution 
[103]. Figure 2 shows a general outlook of translating the 
blackbox model to an explainable model.

There is often a trade-off between model accuracy and 
associated explainability [104]. Linear regression models or 
decision tree(DT) models are intuitive, inherently interpret-
able, and easy to validate and understand by a novice in AI. 
This increases the trust in such models. However, to solve a 
complex problem, ML algorithms may derive a non-linear 
model which would yield good results but compromises on 

explainability. For instance, Convolutional Neural Network 
(CNN) often performs the best but is least explainable [105]. 
Figure 3 shows that ML models with high explainability are 
less accurate but more intuitive to humans. As the model 
complexity and performance increase, leading to more 
accuracy in results, explainability decreases. In healthcare 
systems, predictive accuracy is the most important meas-
ure of clinical validation. From the patient’s perspective, 
there is more trust in the clinician and less tolerance for the 
machine, which naturally raises the importance of explain-
ability, allowing more complex models and functions to be 
explainable.

In the last couple of years, XAI has gained paramount 
importance in the AI community not only because they are 
used in high-stake decisions but also because companies are 
held accountable by regulators for the decisions made by 
their AI models. It has grown exponentially in a short time 
span, potentially transforming how AI is seen and deployed 
in real-time in the coming days. Several diverse fields 
have embraced the explainable component of AI, prioritis-
ing trustworthiness over accuracy. XAI has been applied 
in drug discovery [106, 107], industrial applications [108, 
109], gaming [110, 111], neurological disorders [112–114], 
neuroscience [115, 116] and recommender systems [117, 
118]. This tremendous growth has led to several XAI-based 
review articles in the healthcare domain in the past years.

The interpretability of ML algorithms was the subject of a 
comprehensive survey by Tjoa and Guan [119]. The findings 
were further categorised into different groups by the author. 
These categorisations are studied from the perspective of 
application in the medical field. Authors in [89] have sur-
veyed the progress of XAI in healthcare applications. They 
have also introduced solutions for XAI leveraging the fusion 
of data from multi-centric data with different modalities. 
The results of which were analysed and subsequently vali-
dated in two real clinical scenarios. In the review presented 
by Loh et al. [99], a detailed review of areas of healthcare 
deserving more attention of XAI was presented by consid-
ering three major healthcare datasets: clinical, textual, and 

Fig. 2   A general outlook of explaining models
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high-dimensional data. Nazar et al. [91] have discussed the 
XAI from the perspectives of Human-Computer Interac-
tion (HCI) models. The authors focused on using AI, HCI, 
and XAI in healthcare. There have been several notewor-
thy applications of XAI in AD classification too [120–134] 
However, an exclusive systematic review article on XAI for 
AD classification that points to various XAI frameworks and 
blackbox models used inside these frameworks is yet to be 
proposed by the research community.

Also, a wide spectrum of XAI reviews involve crucial 
components such as various blackboxes considered for 
interpretation, XAI frameworks, XAI methods, and various 
output forms of interpretation. Other components include 
open-source XAI tools, their implementation platform, and 
associated datasets. Addressing blackboxes interpreted in 
AD studies alone will only provide partial coverage of this 
spectrum. Hence, it is essential to fully comprehend the 

complete XAI for the AD platform to do any worthwhile 
research in the future. The novelty of this review article is 
that it covers the entire XAI spectrum in interpretability of 
blackbox models used for AD detection. To the best of our 
knowledge, this is among the first attempts to review the 
XAI models in the context of AD diagnosis. The nomencla-
ture used in this article is listed in Table 1.

The primary contribution of this work can be outlined as 
follows: 

1.	 A systematic review adhering to the guidelines proposed 
by both Kitchenham [135] and PRISMA [136].

2.	 Formulation of essential research questions (RQ) cover-
ing the entire spectrum of XAI for AD classification.

3.	 Collection of different XAI techniques with their GitHub 
links used in interpreting blackbox models applied for 
AD detection.
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Table 1   Nomenclature

Abbreviation Description Abbreviation Description

18F-FDG 18F-Fluorodeoxyglucose LR Logistic Regression
3D CNN Three-dimensional Convolutional Neural 

Network
LRP Layer-wise Relevance Propagation

3D ResAttNet 3D Residual Attention Deep Neural Network Ma Model agnostic
3D VGG16 three-dimensional Visual Geometry Group 16 MCI Mild Cognitive Impairment
AD Alzheimer’s Disease mdDem Mild Dementia
AdaBoost Adaptive Boosting ML Machine Learning
ADNI Alzheimer’s Disease Neuroimaging Initiative MLP Multilayer Perceptron
ADReSS Alzheimers Dementia Recognition through 

Spontaneous Speech
MMSE Mini-Mental State Examination

Ah Anti-hoc MoCA Montreal Cognitive Assessment
AI Artificial intelligence moDem Moderate Dementia
AIBL The Australian Imaging, Biomarker & Lifestyle 

Flagship Study of Ageing
MPRAGE Magnetisation Prepared - Rapid Gradient Echo

aMCI amnestic Mild Cognitive Impairment MRI Magnetic Resonance Imaging
ANN Artificial Neural Network Ms Model specific
ApOE Apolipoprotein E. NGLY1 N-Glycanase 1
AUROC Area Under the Receiver Operating 

Characteristic
NLP Natural Language Processing

BERT Bidirectional Encoder Representations from 
Transformers

noDem No Dementia

bvFTD Behavioural Fronto Temporal Dementia nWBV normalised Whole Brain Volume
CAD Computer Aided Diagnosis OASIS Open Access Series of Imaging Studies
CDRSB Clinical Dementia Rating Sum of Boxes OCM Occlusion Sensitivity Mapping
CDT Clock Drawing Test PCA Principal Component Analysis
CNN Convolutional Neural Network PCR Prediction basis Creation and Retrieval
CSF Cerebrospinal Fluid PET Positron Emission Tomography
CT Computerised Tomography Ph Post-hoc
D-BAC DCGAN-based Augmentation and Classification pMCI progressive Mild Cognitive Impairment
DCGAN Deep Convolutional Generative Adversarial 

Network
PRISMA Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses
DL Deep Learniing Py Python
DT Decision Tree R R Language
EEG Electroencephalogram RAVLT-perc-for-getting Rey’s Auditory Verbal Learning Test
EMCI Early Mild Cognitive Impairment ResAttNET Residual Attention Network for Image 

Classification
FDG Fluorodeoxyglucose ResNetGAP Residual Network Global-Average-Pooling
FTD Fronto Temporal Dementia RF Random Forest
GAN Generative Adversarial Networks RNN Recurrent Neural Network
GAP Global Average Pooling RQ Research Question
Gl Global SHAP SHapley Additive exPlanation
GNNExplainer Generative Adversarial Networks Explainer SM Saliency Map
GradCAM Gradient-weighted Class Activation Mapping sMCI stable Mild Cognitive Impairment
HAM High-Resolution Activation Mapping SMILE Statistical Machine Intelligence and Learning 

Engine
HC Healthy Controls sMRI Structural Magnetic Resonance Imaging
HCI Human-Computer Interaction SVC Support Vector Classifier
HTR1F Hydroxytryptamine Receptor 1F SVM Support Vector Machine
ICE Individual Conditional Expectation SVM-SMOTE Support Vector Machines -Synthetic Minority 

Oversampling Technique
IML Interpretable Machine Learning T-GNN Transferable Graph Neural Network
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4.	 A survey of  XAI methods  for AD classification 
reported  in the last ten years, with critical analysis 
of findings, results, abilities, and limitations.

5.	 Identification of  the XAI models'  strengths for AD 
detection to ensure their reliability and trustworthiness 
for adoption by clinicians.

6.	 A focused discussion on current XAI research, it's ben-
efits, limitations, and challenges along with future direc-
tions.

These significant findings will help the research community 
fill various research gaps, instigating new models that assist 
clinicians in elucidating the perception of an AI system.

The rest of this article is structured as follows: "Con-
cepts and Background" provides necessary concepts and 
background in XAI. The data synthesis needed for the sys-
tematic review is detailed in "Search Strategy". The find-
ings for the research questions are discussed in "Results 

and Discussions", and concluding remarks are drawn in 
"Conclusion".

Concepts and Background

This section provides a succinct background to different XAI 
methods in general (XAI Methods). It also provides a brief 
overview of popular XAI frameworks used in the AD predic-
tion (XAI Frameworks). The primary aim of this section is 
to provide a comprehensive background helpful for discus-
sions in later sections.

XAI Methods

The XAI methods can broadly be classified into four cat-
egories [98], as shown in Fig. 4, based on: i) scope of expla-
nations, ii) stages of implementation, iii) applicability to 
models, and iv) forms of explanation.

Table 1   (continued)

Abbreviation Description Abbreviation Description

IoT Internet of Things TADPOLE The Alzheimer’s Disease Prediction Of 
Longitudinal Evolution

UBAC2 Ubiquitin-Associated Domain-Containing protein 
2

kNN k-Nearest Neighbours VGG16 Visual Geometry Group 16
LDELTOTAL Logical Memory Delayed Recall Total vmDem very mild Dementia
LGBM Light Gradient-Boosting Machine WMH White Matter Hyperintensities
LIME Local Interpretable Model Agnostic Explanation XAI Explainable Artificial Intelligence
Ll Local XGBoost Extreme Gradient Boosting
LMCI Late Mild Cognitive Impairment XGNN Explanations of Graph Neural Networks

Fig. 4   Classification of XAI 
Methods
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XAI Methods Based On Scope

The explainability scope is the extent of explanations gen-
erated by the XAI method. It can interpret either an entire 
model or a specific instance of the model based on input test 
data. Accordingly, the explainability of a model can be either 
local or global. A global method explains the whole model 
by considering the entire inferential data set of the model. It 
gives a general perspective of the relationship of the model 
with all input instances. The popular DT algorithm can be 
intrinsically global in nature because the decision-making 
for all input data instances can be easily explained by visu-
alising in a tree form.

On the other hand, the goal of a local method is to 
explain only a few instances of test data to the user. Local 
explanations help understand why certain decisions were 
made and can increase user confidence in specific exam-
ples. In the case of DTs, a local explanation can corre-
spond to a single branch in the tree. It is worth noticing that, 
combining local inferences made through different input 
instances can yield global insights for the model. Pictorial 
representation of local vs global explanation can be repre-
sented as shown in Fig. 5.

XAI Methods based on Stages of Implementation

An XAI method can generate explanations for a model 
either during or after the training of the model (see Fig. 6). 
Based on these two ways, XAI methods are further classified 
as Ante-hoc and Post-hoc [98]. Ante-hoc is a Latin word 
that literally translates into before-this. Hence, the goal of 
ante-hoc XAI methods is to provide explainability before 
the beginning of model training. Such Ante-hoc methods 
are transparent and self-explanatory and make the model 
explainable naturally while maintaining optimal accuracy 
[98]. ML algorithms that are ante-hoc in nature are linear 
regression, DT, and Bayesian models. These models are also 
referred to as white box or glass box models.

The Latin word Post-hoc translates to after-this. Such 
methods aim to provide explainability after a model has 
been trained. An external explainable model, called a sur-
rogate model, is augmented to provide explanations for a 
trained blackbox model. Generally, support vector machines 
(SVM), and CNN are the ones where the inference mecha-
nisms remain completely unknown to users that necessitate 
post-hoc models. Gradient-weighted Class Activation Map-
ping (GradCAM) [137], Layer-wise Relevance Propaga-
tion (LRP) [138] and Local Interpretable Model Agnostic 
Explanations (LIME) [100] are some common examples of 
XAI frameworks that can be applied on surrogate models for 
generating explanations.

XAI Methods based on Applicability of Models

Applicability of models refers to a concept of XAI where 
explainable methods are restricted to particular models 
or applied to any model as a post-process. The former is 
called model-specific, and the latter is a post-hoc approach 
called model-agnostic. Model-specific is an intrinsic 
approach where explainability is integrated into the model 
architecture and is not transferable to any other model 

Fig. 5   XAI Explanation: Local vs. Global

Fig. 6   XAI Explanation: Ante-hoc vs. Post-hoc
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architecture. For instance, interpreting a neural network 
model’s weight or activation values is specific to that neu-
ral network learning approach. Model-specific approaches 
for deep neural networks work by traversing the path of 
CNN in reverse order highlighting specific regions of the 
input image that majorly contributed to the decision. The 
guided backpropagation [139] and LRP [138] are example 
model-specific approaches.

On the other hand, model agnostic methods do not con-
sider any of the internal components like weight or activa-
tion values and can be used with any learning approach. 
They extract explanations by causing perturbation and 
mutation to the input data and subsequently observing the 
sensitivity of the performance compared to the original 
data. In other words, by perturbing the input or weights 
of important features we can measure how much it has 
influenced the model performance. This will provide val-
uable insights into a localised region of input data that 
underwent perturbation. Alternative methods used are 
Occlusion Sensitivy analysis [134], GradCAM [137] and 
Feature Importance [126]. Some popular model-agnostic 
approaches are LIME [100] and SHapley Additive exPla-
nations (SHAP) [140]. Figure 7 depicts a few key differ-
ences between these two types of XAI methods.

XAI Methods‑based on Forms of Explanation

The classification model for images can differ substantially 
from those that classify using text, categorical, or temporal 
data such as speech. Therefore, the input formats (numerical, 
visual, textual or temporal) for a model can play a vital role 
in framing different forms of explanations for XAI methods. 
The interpretations of predictions can be in many forms and 
depend on the end users’ needs and concerns. There are four 
forms of explanations commonly used to interpret a predic-
tion: numerical, visual, rule-based, and textual [98].

The numerical explanations generated by models are 
usually a measure of the input variables that contribute to 
the model’s outcome. They represent numerical formats 
like values, vectors of numbers, or matrices. A numerical 
explanation can also be a probability measure assigned 
to a neural network layer. Visual explanations are the 
most common way to explain the functioning of a model 
in a graphical way. For example, heatmaps can highlight 
important areas of an image that are influential for the 
decision. A visual explanation can be easily understood 
by novice end users of the AI model. Textual explana-
tions are precise and specific and generally used for 
individual predictions. It is not a commonly used form 

Methods that can be used for
various types of ML

SHAP Anchors LIME Counter
factuals InTrees Distillation

for NN DeepRED

Explores inner-working of a model,
applicable for a single model type

Model-agnostic Model-specific

What?

Examples

Mechanism

Applicability

Explainability
Type

Ease of Use

Any model

Based on inputs, outputs &
approximations

Widely used libraries

Specific models only

Customised, simpler &
deeper explanations

Fewer libraries

Fig. 7   XAI Explanation: Model Specific vs. Model Agnostic
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of explanation due to its high computational complexity 
requiring natural language processing (NLP). However, 
they are easily understandable to humans and are mostly 
generated for local scope. Rule-based explanations are 
simple and basic forms of explanation which are more 
structured than visual and textual explanations. They are 
intuitive to humans and can be used to explain the predic-
tion of models using IF-THEN rules or trees with AND/
OR operators [98]. This type of explanation is mainly 
utilised for ante-hoc methods and interprets models with 
global scope. A detailed discussion of these forms of 
explanations is dealt with in "XAI Frameworks for AD 
Detection" and "Benefits of using XAI Methods for AD 
Detection" in the context of AD.

XAI Frameworks

Local Interpretable Model‑Agnostic Explanations

LIME is an open-source tool used to generate expla-
nations for a single instance instead of the entire data-
set, hence the term local. LIME provides explanations 
by perturbing the model’s input data, creating a sur-
rogate model, and observing the changes in prediction 
and selecting the top significant features [100]. Due to 
agnosticity of the LIME model, it is used after the model 
has been trained for prediction and can be used for any 
blackbox model. For blackbox explanations, LIME can 
interpret image classifications, explain text-based models 
and tabular datasets in either textual, numeric or visual 
form (for more details, see section XAI Frameworks for 
AD Detection).

SHapley Additive exPlanations

SHAP is an XAI technique that assigns a weight, called 
Shapley value, to each feature of a trained model [140]. 

These features with an assigned weight are observed for all 
possible weighted input combinations. The contribution 
of each of the Shapley value-added features, for all pos-
sible weighed input combinations, is observed based on its 
efficiency, symmetry, features with no zero contributions 
and cumulative contribution of a feature with sub-parts. 
SHAP shows performance consistency and provides good 
accuracy for predictions in the local scope. In this review, 
SHAP was commonly used in conjunction with numerical 
data to provide a visual analysis of blackbox models (see 
Figs. 15, 16, and 26).

Gradient‑weighted Class Activation Mapping

GradCAM is a technique used to make CNN models more 
transparent by identifying the important regions of an input 
image for predictions [146]. GradCAM is applied using gra-
dient information of the output layer of the CNN model to 
produce a localisation map representing crucial regions in 
an image. This is achieved by assigning important value for 
each neuron for making specific decisions. Therefore, the 
final output of GradCAM is a coarse heatmap that highlights 
important regions suitable for prediction and explanation 
(see Fig. 19).

Layer‑wise Relevance Propagation

LRP is another tool like GradCAM that generates a heat-
map with highlighted regions of an image [138]. LRP is 
used in CNN where inputs can be images or videos. LRP 
assigns relevance scores to all neurons of a specific output 
for the last layer of a CNN. LRP then propagates in reverse 
until the input layer by computing scores for every activa-
tion unit (neuron) in each layer. Using the final relevance 
score, a heat map is generated by LRP as an explanation that 
can be used to identify influential regions in the prediction 
(see Figs. 17 and 18).

Table 2   Popular XAI Frameworks in the AD Classification

Legends: Ll–Local; Gl–Global; Ah–Ante-hoc; Ph–Posthoc; Ms–Model Specific; Ma–Model Agnostic; T-Textual; V–Visual; N–Numeric; Py–
Python; JS–Java Script; R – R programming; Lang – Programming Language

XAI Ll Gl Ah Ph Ms Ma Forms GitHub link Lang Frameworks

LIME [100] ✓ ✓ crossmark ✓ crossmark ✓ T,V https://​github.​com/​marco​tcr/​lime Py, JS
GradCAM [137] ✓ ✓ crossmark ✓ crossmark ✓ V https://​github.​com/​leftt​homas/​GradC​AM Py
LRP [141] ✓ ✓ crossmark ✓ ✓‘ crossmark V https://​github.​com/​chr5t​phr/​zennit Py
XGNN [142] ✓ ✓ crossmark ✓ ✓ crossmark V https://​github.​com/​divel​ab/​DIG Py
SM [143] ✓ ✓ crossmark ✓ crossmark ✓ V https://​github.​com/​ragha​kot/​keras-​vis Py
Occlusion [144] ✓ ✓ crossmark ✓ crossmark ✓ V https://​github.​com/​deel-​ai/​xpliq​ue Py
Sensitivity ICE [145] ✓ ✓ crossmark ✓ crossmark ✓ V https://​chris​tophm.​github.​io/ R, Py
SHAP [140] ✓ ✓ crossmark ✓ crossmark ✓ N,V https://​github.​com/​slund​berg/​shap Py, C++, JS

https://github.com/marcotcr/lime
https://github.com/leftthomas/GradCAM
https://github.com/chr5tphr/zennit
https://github.com/divelab/DIG
https://github.com/raghakot/keras-vis
https://github.com/deel-ai/xplique
https://christophm.github.io/
https://github.com/slundberg/shap
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Individual Conditional Expectations

ICE is an extension of Partial Dependence Plot (PDP) that 
is used to produce visual explanations for blackbox models 
[145]. PDP is a visualisation obtained by plotting the aver-
age predicted outcome of a model by varying the value of 
one feature of interest and keeping the other feature values 
constant. ICE disaggregates the PDP by creating individual 
plots for each instance of blackbox model predictions by 
altering the value of a feature of interest and leaving other 
feature values unchanged [126]. The outcome can be visu-
alised as a line plot which is a set of points for an instance 
with the altered feature value and the respective predictions 
(see Fig. 20).

Occlusion Sensitivity Analysis

In an image predicting AD, it is necessary to explain or 
identify areas in the image that contribute to AD classifica-
tion. OSA is a technique initially proposed by Zeiler and 
Fergus [144]. In this technique, portions of the input image 
are occluded or hidden with a grey or black patch, creat-
ing a heatmap. The variations in the output probability of 
the occluded image are observed [147]. The most critical 
region, if occluded, will have the highest impact with low 
probability. An occlusion sensitivity map is therefore used 
to locate important patches of the image responsible for AD.

Saliency Map

The SM is another important concept of deep learning, 
which was first introduced by Simonyan et al. [148]. Unlike 
an occlusion map where portions of the input image are 
hidden with a black patch and creating a heatmap, in SM 
each pixel of an AD-classified image is removed and sub-
sequently processed. The heatmap obtained is checked for 
probability variations where a low probability indicates that 
the removed pixel plays a vital role in AD classification 
[149]. Therefore the output heatmap that undergoes the Sali-
ency technique has all important pixels in the image eligible 
for explaining the disease.

Table 2 provides XAI framework categorisation based 
on scope, applicability, implementation and interpretable 

forms for some popular XAI tools used in the literature. 
The table also provides links to GitHub repositories for rapid 
reproducibility.

Search Strategy

This section presents the overall steps involved in search-
ing and identifying relevant papers needed for conducting a 
systematic review. Figure 8 depicts the total stages involved.

This review aims to investigate research articles that use 
XAI in diagnosing/early detection and thereby interpret the 
reasons for classifying. To locate contributions and summa-
rise the results, published articles on the subject of artificial 
intelligence and its associated fields are examined.

The prime aim of this review is to identify research gaps 
that would instigate XAI-based research for AD detection.

We adopted concrete guidelines proposed by PRISMA 
[136] and Kitchenham [135] to retrieve relevant papers 
for this systematic review. The overall process can be 
outlined below:

•	 Formulating the research questions.
•	 Framing search strings.
•	 Identifying the digital libraries and conducting searches.
•	 Choosing the relevant inclusion/ exclusion criteria and 

filtering the papers based on their relevance to the study 
topics.

•	 Extracting necessary information from the selected 
articles.

•	 Investigating research questions allowing critical analy-
ses to perform a thorough study of the existing methods 
and their benefits, future needs and limitations.

Research Questions

The main goal behind framing research questions is to lay 
out a well-defined plan to retrieve papers exclusively from 
the focused areas of consideration. This way, the reader 
can apprehend the knowledge disseminated more compre-
hensively. Table 3 lists the research questions that were 
addressed in this paper.

Fig. 8   Sequence of Steps in Search Strategy to Identify Relevant Papers
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Identification of Articles

One of the challenging tasks for a comprehensive and inclusive 
systematic review is to select the appropriate search strings. 
For this work, the search strings were carefully picked so that 
they are not too generic to avoid irrelevant papers and not too 
narrow to lead to missing relevant articles [136]. After several 
trials of combinations and permutations of relevant keywords, 
we arrived at the search strings as shown in Table 4.

Research papers were selected from widely accessed 
databases, as shown in Table 5. Apart from these, we have 
also considered some books and other online resources that 
satisfied our research questions.

Screening of Articles

A consolidated output of the individual searches produced 
a total of 1551 records of publications (ACM  Digital 
Library=206, IEEEXplore=147, SpringerLink=158 Pub-
Med=780, ScienceDirect = 260). We decided to include 
all research articles from the past decade until June 2023. 
The records were then pruned with duplicates and all those 
records published before 2012.

In the following task, we screened the identified articles 
using the inclusion-exclusion criteria shown in Table 6. To 
begin with, we examined and marked all duplicate records 
from each of the database search collections. The records 
after duplication from each collection are combined into 
a single collection, and duplicates are removed. The task 
resulted in 928 unique records. We then examined publica-
tion titles and abstracts and removed pilot studies, editorials, 
non-journal articles, conference proceedings, books, posters, 
and studies published before 2012. The process effectively 
reduced the number of articles to 73 eligible records.

Furthermore, we excluded inaccessible records, studies 
that presented only discussion without evidence of model 
performances and results, and studies that did not relate 
to the previously framed research questions. The result-
ing records were then screened for articles relevant to the 
research questions. Additionally, understanding the accu-
racy, specificity, sensitivity, and AUROC metrics of ML or 
DL models is crucial for this review study. We, therefore, 
excluded studies that did not provide model performances. 
Overall, this step resulted in 37 credible research articles 
from quality journals in accordance with our framed RQs. 
Figure 9 shows a proper understanding of the steps taken in 
the process. Figure 10 depicts the source and Fig. 11 shows 
the year-wise statistics of articles considered in our study. 
These numbers make it clear that XAI’s scientific research 
for AD is limited and has only grown rapidly in the last few 
years. To our knowledge, this review can be considered as 
unique as there were no articles found exclusively on XAI 
with AD.

Results and Discussions

In this section, we present our findings by extensively 
reviewing the 37 articles through the RQs shown in Table 3.

XAI‑based AI Systems for AD Research

This section aims addressing RQ1: What AI systems are 
available for AD research that incorporate XAI?

The focus on AI in disease diagnosis and treatment 
began in the early 1970 [84] and has achieved signifi-
cant momentum over the years. Research in AI-based AD 

Table 3   Research Questions

Sr.No Research Questions Motivation

RQ1 What AI systems are available for AD research that 
incorporate XAI?

To know the blackbox models for AD detection that uses XAI 
for enhanced clinical fidelity.

RQ2 What different XAI methods are used for blackbox 
interpretability to detect AD?

To find the number and type of blackbox models that are 
interpretablity for AD, to know the preliminary steps taken to 
be post-hoc, ante-hoc, model agnostic, model specific, etc and 
whether it opens further avenues.

RQ3 What XAI frameworks are available in the literature which are 
used in AD detection in healthcare in general?

To discover different XAI frameworks and tools relevant to AD 
detection for the last decade.

RQ4 What are the proven benefits of using XAI in AD? To know the distinction and applicability of using XAI tools/
methods in explaining AD predictions and implications in the 
medical community.

RQ5 What are the limitations, challenges, needs, and prospects of 
XAI in AD detection and healthcare in general?

To grasp fundamental capabilities and limitations of existing 
XAI approaches in AD detection, to identify research gaps 
instigating further research.
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prediction did not involve XAI until the recent decade 
[150]. Although the time has not yet come for computers 
to replace doctors, XAI has recently been incorporated 
into AI-based AD prediction due to a growing demand for 
transparency and explainability in healthcare and medical 
practice.

Several studies for AI-based AD detections incorporating 
XAI have been identified [see Table 7]. Many studies have 
used datasets of numeric data type for training AI models 
and obtained explainable results. El Sappagh et al. [122] 
have developed and utilised a multi-layered multi-model sys-
tem for an accurate and explainable AD diagnosis. Lombardi 
et al. [151] present a robust framework for classification 
between Healthy Control (HC), Mild Cognitive Impairment 
(MCI), and AD and interpret the predictions with XAI meth-
ods. Xu and Yan [152] propose a reliable multi-class clas-
sification model supported by XAI methods to explain the 
predictions accurately. A computer approach called Systems 
Metabolomics utilising Interpretable Learning and Evolu-
tion (SMILE) is proposed by Sha et al. [153]. This article 
involves a supervised metabolomics data analysis and uses 
the XAI method to learn and identify the most informative 
metabolites to understand and diagnose disease development 
and progression. Hammond et al. [154] analyse Beta-amy-
loid, tau, and the neuro-degenerative biomarkers, for AD 
classification. Additionally, the author uses XAI methods to 
identify the biomarker that is most influential in AD detec-
tion. The research article used a numeric data type dataset 
as input for subjects of different categories like HC, MCI, 
or AD selected from the Alzheimer’s Disease Neuroimaging 

Initiative dataset (ADNI). Bloch and Friedrich [123] state 
that the diverse causes of AD can lead to inconsistencies 
in disease patterns, protocols used for acquiring scans, and 
preprocessing errors of MRI scans resulting in improper ML 
classification. This study investigates whether selecting the 
most informative participants from the ADNI and Austral-
ian Imaging Biomarker and Lifestyle (AIBL) cohorts can 
enhance ML classification using an automatic and fair data 
valuation method based on XAI techniques.

Hernandez et al. [155] compare the performances of the 
best three models from 'The Alzheimer’s Disease Prediction 
of Longitudinal Evolution’ (TADPOLE) challenge concerning 
prediction and interpretability within a common XAI frame-
work. Based on interpretable machine learning, Lai et al. [156] 
investigate the Endoplasmic Reticulum (ER) stress-related 
gene function in AD patients and identify six feature-rich 
genes (RNF5, UBA C2, DNAJC10, RNF103, DDX3X, and 
NGLY1) that enable accurate prediction of AD progression. 
An XAI method can now illustrate which feature-rich gene 
will influence the prediction output for an ML model. The 
datasets are chosen from an indigenous Gene expression data-
set having numeric measures for genes. Chun et al. [126] try 
to improve the predictive power of progression from amnestic 
MCI to AD using an interpretable ML algorithm. This study 
uses datasets of numeric input values of neuropsychological 
and apolipoprotein test data. Sidulova et al. [157] propose a 
novel approach for classifying Electroencephalogram (EEG) 
signals to provide early AD diagnosis. The XAI method used 
in the study provides quantitative features that help arrive at 
the prediction using EEG recordings obtained from individuals 
with probable AD, MCI, and HC.

Many of the research articles have utilised datasets that 
include ADNI, OASIS, and Kaggle data for training AI-based 

Table 4   The Search Strings

Sl.No Search Strings

1 "Alzheimer" explainable AI
2 "Alzheimer" interpretable AI
3 "Alzheimer" explainable ML
4 "Alzheimer" interpretable ML
5 "Alzheimer" explainable DL
6 "Alzheimer" interpretable DL
7 "Alzheimer" post hoc explainable AI
8 "Alzheimer" blackbox explainable AI
9 "Alzheimer" XAI

Table 5   The databases considered

Sr. No Database

1 IEEEXplore (https://​ieeex​plore.​ieee.​org/)
2 ScienceDirect (https://​www.​scien​cedir​ect.​

com/)
3 SpringerLink (https://​link.​sprin​ger.​com/)
4 ACM Digital Library (https://​dl.​acm.​org/)
5 PubMed (https://​pubmed.​ncbi.​nlm.​nih.​gov/)

Table 6   Inclusion-Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Studies related to AD diagnosis using AI techniques. Studies related to Explainable 
AI for AD prediction.

Pilot papers, Editorials, proceedings, magazines. Articles 
not related to AI-based AD and AD disease diagnosis

Studies related to performance results of ML/DL models for AD Article on AD but not on detecting it (Eg: supportive care).

https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://link.springer.com/
https://dl.acm.org/
https://pubmed.ncbi.nlm.nih.gov/
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AD detection models with MRI as input data. From Table 7, 
the articles [101, 121, 130, 158, 159], and [132] propose clas-
sifiers of deep neural networks for prediction and classifica-
tion between HC, MCI and AD. All these articles use data-
sets from ADNI and choose MRI as input. According to the 
prominence and severity of dementia in the available MRI, Jain 
et al. [160] offer a DCGAN-based Augmentation and Clas-
sification (D-BAC) model strategy to identify and categorise 
dementia into several categories. The MRI scan datasets for the 
purpose are collected from Kaggle. Shad et al. [128] experi-
mented with neural network models for early AD detection by 
employing classification approaches utilising a hybrid dataset 
from Kaggle and OASIS. Bloch and Friedrich [161] propose 
a machine learning workflow to train and interpret different 
blackbox models and to compare its performance. All models 
were trained and evaluated on ADNI, AIBL and OASIS data-
sets. Deep learning models have been created by Ruengchai-
jatuporn et al. [124] to classify MCI and AD utilising tasks like 
the traditional clock drawing, cube-copying, and trail-making 
test. Multiple drawing task images are used as input and have 

proved to have significantly improved the classification per-
formance between HC and AD. By combining an interpretable 
graph neural network with the dataset collected from ADNI, 
Kim et al. [129] bridge the gap between efficiently integrating 
longitudinal neuroimaging data and biologically meaningful 
structure and knowledge to develop precise and understandable 
systems. García-Gutierrez et al. [162] present a Python-based 
computational tool to deal with the data obtained during clini-
cal diagnosis. The tool integrates data processing, designing 
predictive models and features of XAI for explainability. Yang 
et al. [150] have developed three approaches for generating 
visual explanations from 3D CNN for AD classification and all 
the approaches identify important brain parts for AD diagnosis. 
For all the approaches the models were trained with brain MRI 
scans from the ADNI database.

Some of the articles have used hybrid datasets as input for 
the training of AI models. Kamal et al. [127] have used images 
and gene expression to classify AD and also explained the 
results. Another article by Ilias et al. [131] has used speech 

Fig. 9   PRISMA chart showing 
the identification, screening and 
inclusion of articles
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recordings and associated transcripts from the ADReSS Chal-
lenge dataset to detect AD.

The sunburst chart in Fig. 12 reveals a significant involve-
ment of XAI methods for AD detection with ML techniques. 
A vast number of DL classifiers, such as CNN, VGG16 etc. are 
frequently utilised for classifying AD with subsequent expla-
nations. Intuitively, Figs. 11 and 12 also establish that more 
research is dealt with within the area of ML, which utilises RF, 
XGBoost, SVM and many other classifiers. It is also to be noted 
that each research article under ML uses multiple classifiers, 
whereas articles under DL use very few classifiers. Therefore 
Fig. 12 shows a comprehensive coverage for ML-based studies.

XAI Methods for Interpreting Blackbox Models 
to Detect AD

This section addresses the RQ2: What different XAI meth-
ods are used for blackbox interpretability to detect AD?

This research question is devised to find the num-
ber and type of XAI methods currently available for the 
blackbox interpretability in AD detection. It provides 
essential details such as understanding primary steps 
taken to be local/global, posthoc/ante-hoc, and model 
agnostic/model-specific in the XAI context of AD detec-
tion studies. While finding answers to this RQ, below 
additional questions were raised:

1.	 Why are the scope of some explanations local AND 
global, local only, global only?

2.	 Why are some blackbox models, Random Forest (RF) 
for instance, present in different XAI method categories?

3.	 Why is CNN considered both in Model Agnostic and 
Model Specific contexts?

4.	 Why would an XAI method be considered Posthoc and 
Model-Agnostic simultaneously?

5.	 Why would an XAI method be considered Antehoc and 
Model-Specific simultaneously?

We answer these questions to provide enhanced clarity 
for addressing research question 02.

(a)	 Why are some explanations local AND global, local 
only, global only?

	   Some of the XAI methods behave either in a local 
interpretable format or global. However, it is the pre-
rogative of the researcher to use those methods to inter-
pret globally by aggregating the local explanations. 
Therefore, there is no fixed distinction between saying 
that model can only be local or global. For instance, 
the XAI framework SHAP is predominantly used for 
local interpretation. However, SHAP can also be used 
to interpret a global population. Similarly, the LIME 
which is a local explainer method can also be used for 
global understanding by aggregating local explana-
tions.

(b)	 Why are some blackbox models, RF for instance, pre-
sent in different XAI method categories?

	   The blackbox models LGBM and XGBoost are 
tree-based models where the classification in LGBM 
is done branch-wise, while in the XGBoost, it is done 
level-wise. Therefore, the scope of explainability for 
LGBM can be local as a branch-wise classifier. Sub-
sequently, local results can be aggregated to estab-
lish global explanations. Since XGBoost is classified 
level-wise, it can achieve a local description at each 
tree level, and the final path to the last level can be 
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considered a global explanation. Hence, LGBM and 
XGBoost, though blackbox models, can be aggregated 
locally and globally. The case is similar to that of RF 
as it is a collection of DTs where the above description 
that we have provided fits into each tree either locally 
or globally in a similar manner. Therefore, the same 
blackbox model is aggregated in different XAI method 
categories based on the nature of explanations provided 
in the respective study.

(c)	 Why is CNN considered both in Model-agnostic and 
Model-specific contexts?

	   Contrary to the widespread understanding of CNNs 
being considered for model-agnostic interpretation, 
some of the CNNs could be interpreted in a model-spe-
cific manner. For instance, a model-agnostic approach 
can explain the prediction of a CNN model without 
affecting the internal layers (e.g., kernel SHAP). On the 
other hand, a model-specific system can give perturba-
tions to each layer of a CNN and back-propagate to the 
input to achieve feature-rich values for better explain-
ability (e.g., LRP) [105].

(d)	 Why would an XAI method be considered Post-hoc and 
Model-Agnostic simultaneously?

	   Post-hoc models are primarily applied to such black-
box models where the inner workings of these models 
remain untouched. The prediction thus obtained must 
undergo an XAI method for producing explainability-
this concept can be termed both post-hoc and model-
agnostic. Hence, some blackbox model is both Post-hoc 
and Model-Agnostic.

(e)	 Why would an XAI method be considered Ante-hoc 
and Model-specific simultaneously?

	   The Ante-hoc model is where the essential details 
of a training model are inherently available. To derive 
explainability out of an ante-hoc model, a model-spe-
cific or a model-agnostic XAI method can be employed. 
However, a model-specific XAI method necessitates 
the inner working details to integrate explainability 
during the training of an ante-hoc model.

With this backdrop, we now answer the main RQ. The 
XAI-based AD papers in our study are broadly classified 
under three main categories:

1.	 Local, Global, Post-hoc, Model-agnostic
2.	 Local, Post-hoc, Model-agnostic
3.	 Global, Post-hoc, Model-agnostic

Local, Global, Post‑hoc, Model‑agnostic

El-Sappagh et al. [122] have proposed a multimodal prediction 
and detection of AD in two stages. In the first stage, the model 
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performs a multi-class classification for the early diagnosis of 
AD. A binary classification model will follow in the second 
stage to detect possible MCI to AD progression. The authors 
have utilised 11 different modalities: PET, MRI, cognitive 
scores, genetic data, demographic, and other clinical data. The 
classification was done using the RF algorithm resulting in an 
overall F1-score of 93.94% and 87.09% in two classification 
stages. The authors have used explainers based on the DT and 
fuzzy rule, providing complementary justifications for every 
prediction made in each stage.

Authors in [125] provided local and global interpretation 
in the conversion of Dementia to MCI using the XGBoost 
algorithm. They have utilised multimodal data (personal 
information, gene expression, PET and MRI measures, cog-
nitive score) in the four-way classification of stages of AD 
progression. The model achieved an accuracy of 84.0%. The 
interpretation methods provided insights about data modal-
ity influential in each stage of AD progression.

Yang et al. [150] provided visual explanations for the deep 3D 
CNN in AD classification. The authors have utilised the brain 
MRI scans from the ADNI dataset for AD vs. HC classifica-
tion using ResNet and VGG16 architectures. The authors also 

proposed a variant of ResNet architecture called ResNetGAP, 
where the Global Average Pooling(GAP) layer was introduced in 
the original ResNet architecture instead of the conventional Max-
pool layer. The approach yielded an overall accuracy of 76.6% 
and an AUC of 0.863. Regarding interpretability, the authors 
could produce visual explanations for AD prediction using the 
network weight map from three different network architectures. 
The visual interpretation highlighted the cerebral cortex, lateral 
ventricle, and hippocampus regions in the 2D slices of the brain 
MRI.

In another study [133], authors used RF and XGBoost 
algorithms in the HC vs. AD classification using socio-
demographic data, medical history, and lifestyle parameters 
(daily activity and smoking). The study developed an ensem-
ble-based ML model to predict AD and explained the pre-
diction in local and global contexts. The study also includes 
feature importance analysis and ranked the dominant fea-
tures influential in AD. The top 7 features considered by 
both classifiers (RF and XGBoost) in AD prediction were 
the same. The feature importance analysis also found the 
least suspected risk factors driving the risk of AD.
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Fig. 12   Sankey diagram of various AI models that incorporate XAI for AD detection
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Local, Post‑hoc, Model‑agnostic

Ilias and Askounis [131] have proposed transformer-based 
models for the identification of Dementia using voice tran-
scripts as data modality. This is the only work found in the 
review that uses voice with associated text as data modality 
in Dementia identification and subsequent interpretation. The 
study involves the identification of Dementia in the first stage 
(HC vs. AD), followed by identifying the severity of Dementia 
in the second stage. The authors have employed Bidirectional 
Encoder Representations from Transformers (BERT). To distin-
guish between the languages used by AD patients and non-AD 
patients, word symbols were colour-coded for interpretation.

Another study [157] identifies MCI and AD patients 
(3-way classification HC vs. MCI vs. AD) using 90 sec-
onds recording of resting state EEG. The study compares 
the performance of classification using three classifiers: 
SVM, ANN, and CNN. The explainable component in this 
study aimed to highlight the brain region most indicative 
of the onset or progression of MCI/AD.

Lombardi et al. [151] used multimodal data for AD vs. MCI 
vs. HC classification using the RF classifier. The clinical and 
neurophysiological indices were used to train the RF classifier 
in the AD classification. The authors explored various neuro-
physiological data’s capabilities in predicting different degrees 
of cognitive impairment. The dominant features used by the clas-
sifier for prediction have been enriched with explainable values.

Authors in [153] have used a metabolomic dataset to 
identify the key metabolites and their interaction associ-
ated with AD. The authors have used SVM and RF as clas-
sifiers. The model interpretation was provided by ranking 
significant metabolite features in the prediction based on 
the Gene importance. The authors claimed that the study 
provided explanations that could give additional back-
ground for the metabolomic backdrop of AD.

Rieke et al. [134] have used 3D CNN in the binary classi-
fication task (AD vs. HC) using structural MRI scans of the 
brain. The authors emphasised the importance of applying 
different visualisation methods for identifying various brain 
regions. For instance, a particular visualisation method could 
highlight the temporal lobe, whereas other techniques could 
focus on cortical areas. Such details obtained from different 
visualisation methods help find the distribution of relevant 
patterns which could vary across patients.

Global, Post‑hoc, Model‑agnostic

Bloch and Friedrich [161] used Shapley values to interpret 
XGBoost, SVM, and RF blackBox models using the ADNI 
dataset. The study considered MRI volume features, cogni-
tive test results, sociodemographic data, and Apolipoprotein 
alleles. The Shapley values were employed to visualise the 
feature association in the blackbox classification. The models 

were trained individually using separate data modalities. The 
examination found a biological correlation and enhanced 
results when these models included cognitive test results.

Ruengchaijatuporn et al. [124] proposed a two-way clas-
sification for differentiating MCI vs. HC patients using the 
VGG16 and custom CNN architecture incorporating a self-
attention mechanism (Conv-Att). The authors considered 
digital drawings (clock, cube, and trail making) collected 
from HC and MCI patients to train the models. The VGG16 
model interpretability was provided using the GradCAM, 
and custom CNN has a built-in self-attention mechanism to 
offer visual cues. Clinical experts validated the visualisation 
produced by the GradCAM and the Conv-Att model using 
a simple rating mechanism. The authors concluded that the 
heatmap produced by the Conv-Att model was better aligned 
with the expert’s clinical experience. However, a serious limi-
tation of this study is the non-consideration of a biomarker.

Another study [101] utilised the CNN architecture using 
18F-FDG PET images to classify AD vs. MCI vs. HC. The 
model achieved AUC scores of 0.81, 0.63, and 0.77 for HC, 
MCI, and AD cases. For explanations, heatmaps were gener-
ated and registered with the Talairach atlas (3-dimensional 
coordinate system of the human brain), indicating each vox-
el’s importance for the final classification decision.

Table 8 provides a complete summary of XAI methods 
used in the blackbox interpretability for AD detection. The 
chart in Fig. 13 provides a clear perspective of research 
using different XAI methods. In particular, we find that 
studies conforming to the concepts of Local (Ll), Post-hoc 
(Ph), and Model-agnostic (Ma) make up the totality of the 
volume. In this context, most of the studies have been con-
centrating on classifiers under DL, of which a majority study 
deals with CNN. Furthermore, it is clear that a subsidiary 
part of the research focuses on Global, Post-hoc, and Model-
agnostic, where classification techniques are widely used 
within the framework of ML approaches. Cumulatively, it 
can be understood that the Model agnostic approach covers 
31 out of 37 studies considered in our review.

XAI Frameworks for AD Detection

This section addresses RQ3: What XAI frameworks are 
available in the literature which are used in AD detection?

This RQ aims to identify the XAI frameworks and tech-
niques used in the studies to interpret AI-based AD classifi-
cation. The discussions in this area will encourage research-
ers, developers, and subject matter experts to comprehend 
the inner workings of a machine-learning model. Explain-
able embedded machines, especially in healthcare, can 
significantly reduce the time medical professionals spend 
on recurrent patient studies and spend time concentrating 
on interpreting disease diagnoses. Many XAI frameworks 
exist to help tackle the problem of blackbox models where 
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predictions are highly accurate, and the inner workings are 
hidden. We have identified popular XAI frameworks like 
LIME, SHAP, and GradCAM, among many others, that are 
extensively used in AD and of interest to RQ3. The meth-
ods are classified as follows: Tables 9, 10, 11, and 12 are 
presented as a list of the studies that have attempted to use 

the methods LIME, SHAP, LRP, and GradCAM, respec-
tively. Table 13 lists studies that have used a combination of 
explainable methods, for instance, LIME and SHAP, where 
one algorithm gives a local explanation and global for the 
other.

Table 8   Summary of XAI methods used for blackbox interpretability to detect AD

Ll Local, Gl Global, Ph Post-hoc. Ah Ante-hoc, Ma Model-Agnostic, Ms Model-Specific, RF Random Forest, LR Logistic Regression, EA Evo-
lutionary Algorithm, BC Bayesian Classifier, DT Decision Trees, TGNN Temporal Graph Neural Network, D Demented, ND Non Dememted, 
VDM Very Mild Demented, MiD Mild Demented, MoD Moderate Demented 

XAI Method Ref Classifier Blackbox Classification Task Input Data Modality

Ll, Gl, Ph, Ma [122] ML RF HC vs MCI vs AD Numeric, Image
[156] ML AdaBoost AD vs HC Gene Expression Data
[125] ML XGBoost HC vs EMCI vs LMCI vs AD Sociodemographic, Gene 

Expression, PET, MRI Features, 
Neurophysiological

[130] DL 3D VGG16 AD vs HC sMRI
[133] ML RF HC vs AD Sociodemographic, Clinical, Life 

Style
[150] DL 3D CNN HC vs AD Normalised, Masked, N3-Corrected 

T1 MRI
Ll, Ph, Ma

[121] DL CNN AD vs HC sMRI
[151] ML RF HC vs MCI vs AD Clinical, Neurophysiological Data
[158] DL CNN AD vs HC T1-Weighted, Preprocessed, 

Baseline MRI
[127] DL SpinalNet ND vs VMD vs MiD vs MoD T1-Weighted MRI, Gene Expression 

Data
[128] DL VGG16 ND vs VMD vs MiD vs MoD T1-Weighted MRI
[157] DL ANN HC vs MCI vs AD Resting State EEG
[164] DL VGG16 ND vs VMD vs MiD vs MoD MRI Scan
[165] DL EfficientNet ND vs VMD vs MiD vs MoD MRI Scan
[131] DL BERT AD vs HC Voice Transcripts
[153] ML EA HC vs MCI vs AD Metabolomic Dataset
[162] ML BC HC vs AD PET, Neurophysiological Data
[132] DL CNN HC vs AD T1-Weighted MRI
[134] DL 3DCNN HC vs MCI vs AD MRI, PET, Biological Marker, 

Clinical and Neurophysiological 
Assessment

Gl, Ph, Ma [123] ML RF sMCI vs pMCI Sociodemographic, 
Neurophysiological Data

[124] DL VGG16 HC vs MCI Digital Drawings of Clock, Cube, 
Trail Making

[155] ML XGBoost HC vs MCI vs AD Neurophysiological Data
[160] DL CNN ND vs V vs MiD vs MoD MRI Scan
[129] DL TGNN HC vs MCI vs AD T1-Weighted MRI
[152] ML SVM-SMOTE HC vs MCI vs AD Clinical Data
[101] DL 3DCNN HC vs MCI vs AD 18F-FDG PET Scans
[161] ML XGBoost HC vs MCI vs sMCI vs pMCI vs 

AD
MRI Features, Sociodemographic, 

Clinical, Neurophysiological Data
[154] ML RF HC vs LMCI vs AD Sociodemographic, 

Neurophysiological Data
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The LIME is a popular method for simple human interpreta-
tions of predictive models. The studies in Table 9 use LIME to 
interpret the predictions from a wide range of ML/DL classi-
fiers, including CNN, SpinalNet, kNN, XGBoost, SVM, and 
transfer-based model BERT. In the studies, the classifiers have 
used datasets of the type, including MRI, gene expressions, 
EEG signals, and linguistic or textual data. Kamal et al. [127] 
propose a study of four-way classification between mild demen-
tia, moderate dementia, no dementia, and very mild dementia 
using MRI scans and gene expression. The author uses LIME to 
obtain local explanations of AD classifications from MRI with 
CNN and gene expressions with kNN and XGBoost. LIME 
proved instrumental in identifying and ranking the significant 
sets of features based on probability values responsible for an 
AD patient. Figure 14 illustrates how LIME selects the most 
critical genes from the gene expression data and interprets the 
predicted genes that are critically responsible for an AD patient. 
In Fig. 14, a ranking of the genes is shown based on probabil-
ity values of prediction and separated into AD and non-AD 
categories. LIME allows users to understand which features 
contribute positively and negatively to the prediction. Though 

XA
I M

et
ho

ds
: 3

3

DL: 18

ML: 15

Ll, Ph, Ma: 15

Ll, Gl, Ph, Ma: 9

Gl, Ph, Ma: 9

VGG16: 3

CNN: 10

T GNN: 1

3D VGG16: 1

3D CNN: 2

SpinalNet: 1

ANN: 1
EfficientNet: 1

BERT: 1

RF: 5

XGBoost: 3

SVM-SMOTE: 1

AdaBoost: 1

EA: 1
NB: 1

AI Model Types XAI Methods Blackbox Models

Fig. 13   Sankey diagram of XAI methods for different classifiers used in AD Detection. Legends Ll–Local; Gl–Global; Ph–Post-hoc; Ah–Ante-
hoc; Ma – Model-Agnostic; Ms – Model-Specefic

Alzheimer’sNon
Alzheimer’s OR8B8

ATP6V1G1
FZD4
ATP6AP1
HTR1F
OR6B2
OR51B6

TGFBRAP1
GALNT6

OR5R1

OR8B8

HTR1F

OR6B2

GALNT6

ATP6V1G1

FZD4

ATP6AP1

OR51B6

TGFBRAP1

OR5R1

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.01

0.01

0.00

-1.10
-1.20
2.41
-1.25
1.95
-0.89
1.02
-2.12
-1.37
-1.39

Fig. 14   LIME Explanation. Reproduced with permission from [127]



23Cognitive Computation (2024) 16:1–44	

1 3

trust is not inherently quantified the trust in the explanation 
can be explained based on the probability values. For instance, 
LIME interprets OR8B8 and ATPV1G1 as the most significant 
genes for AD and HTR1F and OR6B2 of a lower significance.

Illias and Askounis [131] undertake a thorough linguistic 
analysis from a medical transcript dataset using the transfer 
learning model, BERT, with the co-attention mechanism 
to classify between control and dementia patients. Sub-
sequently, personal pronouns, interjections, adverbs, and 
past tense verbs are all used by AD patients, according to 
LIME. Healthy controls, on the other hand, employ present-
tense verbs, nouns, and determiners. The studies in Table 9 
show how LIME creates local explanations for any machine 
learning classifier by constructing a trainable interpretable 

model on data that recognises differences in classification 
performances.

SHAP is model-agnostic and utilises an approach of game 
theory for explaining the output of any machine learning 
model. In this review, it was found that SHAP is another 
XAI framework that is being used frequently. The papers in 
Table 10 use SHAP to explain classifications from machine 
learning models, including RF, XGBoost, SVM, and Logistic 
Regression(LR). Most studies use datasets of type, including 
demographic data, Apolipoprotein measures, Mini-Mental 
state examinations, Clinical Dementia ratings, and other 
volumetric measurements of MRI and PET scans. The funda-
mental principle of SHAP is to determine the Shapley values 
for each sample feature that needs to be understood. Each 
Shapley value reflects the influence of the corresponding 

Fig. 15   SHAP Explanation – Force Plot. Reproduced with permission from [122]

Fig. 16   SHAP Explanation – Summary Plot. Reproduced with permission from [122]
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feature on the prediction. It is possible to obtain sample fea-
tures with high and low Shapley values. Both sets of features 
are visualised with Shapley plots to understand the impact 
of the features on a specific sample for a given prediction. 
Bloch and Friedrich [123] propose a study that compares the 
classification using RF and XGBoost for volumetric meas-
urements of MRI scans of control and dementia patients. 
Shapley values are obtained for features of both the classi-
fiers and ranked accordingly. The effect of the attributes on 
AD prediction is then displayed using Shapley plots, namely 
force plots and summary plots. Figure 15 is an example of a 
force plot that shows features that had the most influence on 
the model’s prediction for a single observation. Figure 16 is 
an example of a SHAP summary plot used to show the con-
tribution of all features for every instance. Similar approaches 
are handled in their studies by Bogdanovic et al. [125] and 
Danso et al. [133]. SHAP force and summary plots are not 
explicitly quantified to show trustworthiness. However, the 
visual representations show quantifiable insights based on 
the magnitude of feature importance.

Table 11 lists XAI studies that use the LRP model-spe-
cific interpretation tool. Complex deep neural networks 
with video, or picture inputs can now be explained using 

LRP [138]. The prediction is transmitted back through the 
neural network using local propagation rules. The decisions 
made by CNN using AD-based MRI data are visualised 
using LRP by Böhle et al. [121]. LRP creates a heatmap 
that explains the significance of each voxel that contributes 
to a specific classification. The study also computes a sum 
of all layerwise relevance metrics of the MRI that helps to 
identify critical areas of the image. Based on trained CNN, 
the author’s individual categorisation choices for AD and 
HC are explained using LRP.

Pohl et al. [132] propose LRP with multiple rules, also 
known as composite LRP. On the contrary, LRP with a sin-
gle rule, also known as uniform LRP, uses a single rule for 
interpretation. LRP of both uniform and composite forms are 
used in this study to compare the evaluation measures quan-
titatively. Figure 17 shows a comparison of interpretations 
for AD classification, termed positive evidence, between 
uniform LRP and composite LRP. The study proves that the 
composite LRP rule, compared with the uniform rule, gives 
a more focused visualisation of only the relevant regions of 
the brain for positive AD by filtering out the least relevant 
ones. The advantage of composite LRP is visualised from 
the last column in Fig. 17 where a predominant relevance 

Fig. 17   LRP Explanation. Reproduced with permission from [132]
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can be observed from the heatmap. Additionally, Fig. 18 
shows that in the visualisations of non-AD outcomes (nega-
tive evidence), composite LRP proves beneficial. The figure 
shows negative visualisation for both classes - HC and AD. 
In Fig. 18 the last column visualises the positive contribution 
to the HC class (shown in red) and the negative contribution 
to the AD class (shown in blue). As a result, the LRP studies 
in Table 11 have a good chance of helping doctors by outlin-
ing the neural network decisions used to diagnose AD and 
other disorders using structural MRI data.

The GradCAM is a model-agnostic XAI tool used by 
studies in Table 12. GradCAM is typically used to produce 
visual explanations of the key input regions for predictions, 
increasing the transparency of CNN-based models. Using a 
gradient of the localised classification score for the features 
selected by the network, this technique can identify the areas 
of the image that are most crucial for prediction [166, 167]. 
Combining the localised scores creates a high-resolution 
and class-discriminative visualisation. Ruengchaijatuporn 
et al. [124] use images of bedside tasks like clock draw-
ing tests, cube-copying and tail-making tests to classify 
between HC and AD patients in a deep neural network. For 

improving interpretation, convolutional self-attention and 
output of class probability as a soft label are applied with 
the GradCAM tool to visualise the model for essential input 
regions. The author also compares the CNN outputs with 
VGG16 with the explanation of the visuals using GradCAM. 
Figure 19 is an example of the visual explanation obtained 
from the multi-input VGG16 model with GradCAM and the 
author-proposed (Conv-self-attention, soft label) model for 
an AD test sample. The last column in Fig. 19 depicts the 
crucial regions of interest to be classified as AD compared to 
the HC column when used with GradCAM. Jain et al. [160] 
construct a heatmap emphasising the characteristics discov-
ered from the input MRI scan for each layer of the CNN 
model using GradCAM. Then they combine it for a final 
interpretation. Though GradCAM provides qualitative visu-
alisations and does not offer quantitative metrics for trust, it 
indirectly supports the quantitative analysis by assessing a 
model’s attention and localisation. GradCAM can comple-
ment trust assessment by offering visual insights into the 
model’s attention. Additionally, Zhang et al. [130] employ 
GradCAM to produce heatmaps or visual explanations 

Fig. 18   LRP Explanation. Reproduced with permission from [132]
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from a 3D ResAttNet (Residual Attention network) that 
will emphasise the features discovered from the input MRI 
scans for each layer. GradCAM can be used with multimodal 
inputs without architectural changes or re-training and pro-
vides visual explanations by measuring their ability to dis-
criminate between classes. The tool inspires trust in humans, 
particularly in the healthcare domain.

The review also identified several other XAI frameworks 
such as GNNExplainer (GNNE), ICE, OCA, and SM (see 
Table 13). Without needing to change the underlying GNN 
architecture, GNNE is a model-agnostic method that is used 
to deliver trustworthy justifications for predictions made by 
any Graph Neural Network (GNN) based ML task [129]. The 
explanation pinpoints a subgraph structure and a selection 
of node attributes for a specific instance that are essential 
for accurately forecasting the GNN in a local scope [168]. 
The GNNE can also produce global explanations for a whole 
group of instances. By successfully combining longitudinal 
neuroimaging and biologically significant data, Kim et al. 
[129] offer an interpretable GNN model for AD prediction. 
GNNE is used to find significant nodes that contribute to the 
prediction. This tool creates a subgraph structure and a sub-
set of node attributes crucial to the prediction. The ability to 

display syntactically relevant structures and interpretations 
and the capacity to get insight into faulty GNNs are two fea-
tures that make GNNE useful.

Chun et al. [126] in their paper provides a local explana-
tion for the prediction of conversion from amnestic MCI 
(aMCI) to dementia or AD using ICE and SHAP for each 
patient. The XGBoost has shown the best performance for 
prediction in the paper. ICE show plots for each individual 
instance with a variation of values for a feature of inter-
est and keeping values of other features constant. Figure 20 
shows ICE plots of eight important features - Age, Con-
trolled Oral Word Association (COWAT), Education, Mini-
mental State Examination (MMSE), Rey-Osterrieth Com-
plex Figure Test (RCFT) with delayed recall, RCFT with 
copy time, Clinical Dementia Rating- Sum of Boxes (CDR-
SOB) and Seoul Verbal Learning Test  (SVLT) for six 
patients numbered 1 to 6 in different colours. For instance, 
for the feature Age, line plots for each patient are drawn by 
varying the Age feature values and keeping values of other 
features constant [126].

Bordin et al. [165] use the Occlusion Sensitivity method to 
reveal the relevant measure of white matter hyperintensities 
lesions with healthy lesions. Understanding which elements 

Fig. 19   GradCam Explanation. Reproduced with permission from [124]
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of a picture are most crucial for a deep network’s classifica-
tion can be done simply using occlusion sensitivity analysis. 
By eliminating a patch from an image’s input dimension and 
comparing the output, the study determines an image’s sus-
ceptibility to occlusion in various image regions. The removed 
patch is important for classification if the variation is signifi-
cant. The authors have successfully classified the brain areas 
that mainly contribute to the classification using the Occlu-
sion sensitivity technique. As a result, occlusion sensitivity 
aids in gaining a high-level knowledge of the image attributes 
that a network employs to produce a specific classification 
and sheds light on why a network could misclassify an image. 
Rieke et al. [134] also use the Occlusion sensitivity method to 
visualise heatmaps that classify HC and AD. Figure 21 shows 
the brain area occlusion for AD and HC where the red area 
indicates the importance of the classification decision.

Saliency Map (SM) is another XAI tool in which 
an image voxel brightness represents the voxel’s sali-
ency. SMs are also called heat maps; they refer to those 
regions of the image that significantly impact predicting 
the class to which the object belongs [169]. Volumetric 
18F-Fluorodeoxyglucose (FDG) PET scans were used by 
De Santi et al. [101] to train a CNN that conducts a mul-
ticlass classification task (HC, MCI, AD) and explains 

using two different post-hoc explanation strategies, SM 
and LRP. While maintaining a constant overall relevance 
across all layers, the authors used LRP to break down the 
output of the network into individual contributions of 
input neurons. The authors then created unique heat maps 
for each input image using SM to show the significance 
of each voxel for the categorisation process. Figure 22 is 
an example of an SM plot showing the evaluation of the 
averages in each brain region. SM measures the influence 
of the output on changes in the input image.

We understand from this RQ that a wide range of input 
parameters, like visual features and volumetric measure-
ments of CT, MRI, and PET scan images and clinical data 
have been used to train ML and DL models. From Fig. 23, 
it is evident that SHAP has occupied a predominant posi-
tion in interpreting AD diagnosis. It is also to be noted that 
SHAP is employed only on ML techniques. As can be seen 
from the figure, LIME, DT, GradCAM, and other XAI tools 
have been used in many other research studies. Furthermore, 
several XAI frameworks identified in the review prove to 
reduce model biasing, increase the system’s confidence, and 
try to bridge the gap with the healthcare domain. The RQ 
also reveals many limitations, including a lack of ground 
rules for explanations, data imbalance, non-availability of a 

Fig. 20   ICE Explanation. Reproduced with permission from [126]
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Fig. 21   Occlusion Sensitivity Mapping. Reproduced with permission from [134]
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comprehensive dataset, and non-inclusiveness of a profes-
sional from the healthcare domain. Section "Limitations, 
Challenges, Needs, and Prospects of XAI in AD Detection" 
for RQ5 elaborates on the future needs and limitations of 
AI-based AD detection with XAI.

Benefits of using XAI Methods for AD Detection 

This section addresses the RQ4: What are the proven bene-
fits of using XAI in AD detection and healthcare in general?

In this review, studies have reported several benefits of 
using the concept of XAI in AI-based AD detection. Most 
studies have tried to report model accuracy, fairness, and 
transparency. They have highlighted the importance of XAI 
in fostering confidence and trust when using AI models for 
prediction, particularly in the medical industry. Independent 
studies have shown benefits, demonstrating a responsible 
approach to the development of AI with XAI. In this section, 
we categorise the benefits from the selected studies based 

on the four forms of explanation - Numeric, Rule-based, 
Textual, and Visual. This classification will help research-
ers to decide appropriate explanations to be sought based on 
available data modality. While most studies using XAI tools 
produced explanations in visual form, nominal studies have 
interpretations in textual, rule-based, and numeric outcomes.

Textual

The field of dementia detection using transcripts with the 
transformer-based network - BERT by Ilias et al. [131] pro-
duces promising classification results. The authors illus-
trate how transcripts using LIME explain the classification 
between dementia and non-dementia patients. Figure 24 
shows texts in different colours to identify between the 
labels AD and HC. The tokens or textual forms in tran-
scripts are assigned different colours, indicating which 
tokens indicate a control group. The intensity of colours 
for the tokens indicates the importance of these markers 
for the final transcript classification.
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Numeric

In another study, Salih et al. [159] try to develop a proxy 
that will check for stability in the explanation by choosing 
the proper XAI method, classifier, and available data. The 
authors have used Principal Component Analysis (PCA) 
to verify the stability of the identified predictors with the 
chosen explainer by quantifying (in numeric form) the 
informative predictors. In this study, the measure asso-
ciated with predictors using SHAP and the proxy PCA 
produces uncorrelated variables that give stable ranking 
for most classifiers. Figure 25 shows a correlation score of 
different models for identified features. Due to the wide-
spread use of XAI in delicate fields, including the prog-
nosis of long-term mortality, admission to critical care 
units, and extubation failure, the results are beneficial to 
the medical community.

Rule‑based

We found two articles in our review that obtain explana-
tions in the form of rules. One study integrates the Internet 
of Things (IoT) and AI agents to remotely monitor seniors’ 
health status. Khodabandehloo et al. [163] offer a novel 
HealthXAI system that employs a DT regression method to 
aid in the early identification of cognitive decline and give 
caregivers high-level numerical scores reporting inappropri-
ate behaviours and explanations of the forecasts in natural 
language. The decision rule predicts the value of the target 
variable and interprets it with a natural language description 
as either HC or AD. The suggested strategy addresses the 
problem of ongoing remote monitoring of elderly individu-
als to aid in the early identification of cognitive decline and 
to better assist clinicians in reaching a diagnosis. In another 
study, García-Gutierrez et al. [162] proposed a diagnostic 
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tool that uses a DT that provides a simple and unambiguous 
set of decision rules to provide capabilities to clinicians to 
give insights into the pathophysiology of AD and behav-
ioural Fronto Temporal Dementia (bvFTD). This paper is 
beneficial for early detection and diagnosis in the medical 
field because it outlines all the processes needed to evaluate 
the datasets, including data preparation, selection of fea-
tures using an evolutionary approach, and in the creation of 
a model for the disease discussed in the paper.

Visual

The data models in the studies that use LRP as an AI 
explainer include CNN and 3D CNN. LRP provides visual 
explanations as heat maps of significant areas of the brain 
in identifying brain atrophy. The studies’ significant features 
recognised for interpretation by LRP include the hippocam-
pus, entorhinal cortex, and amygdala. Böhle et al. [121] dis-
cuss using LRP with guided backpropagation in discovering 

Table 10   Studies incorporating SHAP framework for explaining model predictions

Ref. Classification  
Task

Data Type Significant Features Classifier Blackbox

[122] HC vs sMCI vs 
pMCI vs AD

Numeric Cognitive, PET, MRI, Neuropsychological battery, ML RF

Genetics, Medical history, CSF data, Other Accuracy: Cross Validation
Individual modalities First Layer - 93.95%

Second Layer - 87.08%
[123] HC vs MCI vs AD Numeric Volumetric measurements, Demographic features, ML RF

Cognitive tests, ApoE allele XGBoost
[151] HC vs MCI vs AD Numeric Demographic, Clinical, Neuropsychological ML RF

Accuracy: 75%
[155] HC vs MCI vs AD Numeric Clinical history, Cognitive features, ApoE4, ML XGBoost

Summary anatomical Metabolic features, RF
Cerebrospinal fluid biomarkers SVM

[156] HC vs AD Numeric Endoplasmic Reticulum stress ML
related differentially expressed LGBM
genes measures SVM

Accuracy: SVM - 80.8%
[125] HC vs erMCI vs Numeric CDRSB, Age, MMSE, RAVLT, FDG, MRI whole brain ML XGBoost,

ltMCI vs AD Categorical measure, MRI hippocampus measure, MRI middle RF
temporal artery measure, MRI entorhinal measure, Accuracy: 84.2%
Gender, ApoE

[126] aMCI vs AD Numeric Clinical, Demographic, ApoE ML RF, SVM,
genotype, Neuropsychological features XGBoost

Accuracy: 80.7%
[152] HC vs MCI vs Numeric CDRSB, MMSE, EcogSPTotal, ML Random Seeds and Nested Cross-

RAVLT-perc-for-getting, LDELTOTAL, Validation, SVM, SVM-SMOTE,
FAQ, ADAS11, MOCA RF

[159] HC vs erMCI vs Numeric MRI Volumetric measures, Age, ML LGBM
ltMCI vs AD Categorical Gender, Education, ApoE RF, SVC

[161] HC vs sMCI vs Numeric MRI Volumetric measures, Socio-demographic ML XGBoost, RF, SVM
pMCI vs AD data, ApoE4 alleles, Cognitive test results

Accuracy: 92.6%
[133] HC vs AD Numeric Socio-demographic data, Self-reported ML RF

medical history, Life Style measures XGBoost
[154] HC vs ltMCI 

vs AD
Numeric Amyloid beta features, glucose uptake features, ML RF

MRI Volumetric measures, Phosphor tau
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the heat maps with relevant significant features. Pohl et al. 
[132] state that they have discovered similar significant 
features by using composite LRP, using many propagation 
rules. The author also identifies that damage to the left and 
right temporal lobes causes problems with verbal semantic 
memory and visual memory, respectively. Both authors con-
tribute these findings to the benefit of clinicians and radiolo-
gists in diagnosis and building trust in the system.

Several studies use the GradCAM XAI tool for a visual 
explanation of the predictions of a DL model. Ruengchai-
jatuporn et al. [124] use GradCAM to visually explain pre-
dictions from a VGG16 deep learning model. The DL model 
has three types of neuropsychological test inputs: clock 
score prediction, cube-copying drawing, and trail-making 
inputs. However, the authors prove the benefit of using a 
CNN model with self-attention work more efficiently than 
VGG16 with GradCAM. The heat maps proved beneficial 
to experts with clinical experience and are rated far superior 
to the baseline model. The authors also claim the model 

yields better classification performance and interpretabil-
ity and benefits the domain community. In another study 
by Jain et al. [160], GradCAM was materialised to show 
heat maps of a four-way classification of AD predicted 
using a Generative Adversarial Network (GAN) model. 
Differently coloured heatmaps obtained from the system 
help inform predictions of the early onset and severity of 
dementia. The system has proved beneficial in accurately 
distinguishing between different classes and making appro-
priate early predictions. The research community benefits 
from the authors’ use of GAN to create a newly balanced 
dataset and their awareness of the serious issue with unbal-
anced datasets. The coloured heat map in the article, which 
showed the advanced characteristics of various stages of 
dementia, would aid medical professionals in making judg-
ments. By proposing a 3D Residual Attention Deep Neural 
Network (3D ResAttNet) that is easy to understand, Zhang 
et al. [130] have developed an innovative computer-aided 
technique for the early diagnosis of AD. The authors assert 

Table 11   Studies incorporating 
LRP framework for explaining 
model predictions

Ref. Classification  
Task

Data Type Significnt Features Classifier Blackbox

[121] HC vs AD Image Structural MRI data (T1-weighted DL CNN
MPRAGE) Neurobiological data Specificity - 94%

[164] HC vs vmDem Image CNN’s feature map DL VGG-16, CNN
vs MCI vs Accuracy - 78.12%
moDEM

[170] HC vs AD Image CNN’s heatmaps DL CNN
[132] HC vs AD Image Back propagating the DL 3D CNN

network architecture in the
input feature map

[171] HC vs AD Image Clinically-guided prototype learning DL XADLiME

Table 12   Studies incorporating GradCAM framework for explaining model predictions

Ref. Classification Task Data Type Significant Features Classifier Blackbox

[124] HC vs MCI Image Clock drawings, DL CNN with self
Cube copying, attention mechanism
Tail-making VGG-16, CNN

Accuracy: 81%
[160] HC vs aMCI vs Image CNN models are DL CNN

pMCI vs AD visualised for their Accuracy: VGG16 - 87%
features CNN - 82%

[130] HC vs AD and Image CNN’s feature DL 3D ResAttNet
pMCI vs aMCI map CNN

Accuracy: VGG16 - 80.7%
ResNet - 85.1%
ResAttNet - 86.0%

[172] HC vs MCI vs AD Image LEAR - learn-explain-reinforce DL CNN
 [173] HC vs AD Image CNN intra-slice features DL 3DCNN and BRNN
[174] HC vs AD Image Occlusion maps for feature extraction DL CNN
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that the 3D ResAttNet enhances the diagnostic performance 
and interpretability of MRI with GradCAM by capturing 
local, global, and spatial information. The study offers an 
entire end-to-end learning system for automated disease 
diagnosis. Furthermore, the suggested approach’s explain-
able process can identify and emphasise the role that cru-
cial brain regions like the hippocampus, lateral ventricle, 
and most of the cortex play in transparent decision-making. 
Another study by Yang et al. [150] used different 3D-CNNs 
for classification and AI explainers, including 3D Grad-
CAM. Experts in medicine can gain from the heat maps 
because they demonstrate how vital the lateral ventricle and 
most cortical regions are in classifying AD.

Most visualisation techniques consider only the last 
convolutional layer that extracts global features of patho-
logical abnormalities but do not consider the small sub-
jects and discrepancies. The research by Yu et al. [158] 
used the High-Resolution Activation Mapping (HAM) 
approach, which created high-resolution visual explana-
tions that take into account values from the last convo-
lutional layer and intermediate features. Compared to 
the previous efforts, high-quality heatmaps that display 
discriminative localisation of brain anomalies perform bet-
ter. The authors validated the model’s effectiveness with 
good diagnostic accuracy and insightful explanations, 
which affirm fidelity in clinical applications.

Table 13   Studies incorporating a combination of XAI frameworks for explaining model predictions

Ref. Classification  
Task

Data Type XAI Framework Significant Features Classifier Blackbox

[120] HC vs AD Numeric LIME, Normal Whole brain volume, ML
Categoric SHAP Years of Education, SVM with radial

Socio-economic status, basis kernel, kNN,
Age, MMSE, Gender, Total MLP
intracranial volume,
Atlas Scaling factor Accuracy:

SVM - 85.9%
KNN - 87.27%
MLP - 91.94%

[158] HC vs AD Image HAM,  Salient features related DL CNN
PCR to AD (e.g., atrophy of cerebral Accuracy - 95.4%

cortex and hippocampus
[129] HC vs MCI vs Image GNNExplainer Volume, area of cortical DL

AD region, average and standard Graph Neural
deviation of vertex-based Network (GNN)
thickness measures of cortical Accuracy: 53.5 ± 4.5%
region

[165] HC vs AD Image Occlusion Sensitivity White Matter Hyperintensities DL EfficientNet-B0
Mapping, (WMH) Accuracy - 80.0%

[101] HC vs MCI vs Image Saliency Map, MRI, 3D PET, Biological DL 3D CNN
AD LRP markers, clinical and neuro-

psychological assessments
[162] AD vs FTD Image DT Demographic data, Cognitive ML Bernoulli NB,

(Frontotemporal and Brain metabolism data SVM, kNN, RF,
Dementia) AdaBoost, Gradient

Boosting (GBoost)
Accuracy - 91.0%

[150] HC vs AD Image 3D Ultrametric Contour Features of 3D MRI DL 3D CNN
Map, 3D Class Activation Accuracy - 76.6%
Map, 3D GradCAM

[134] HC vs MCI vs Image Sensitivity Analysis Features of 3D Image DL 3D CNN
AD Occlusion Accuracy - 77.0%
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Bordin et al. [165] created heatmaps using the occlu-
sion sensitivity method by occluding a section of the input 
image with a black patch. The model’s brain regions con-
tributing to the classification decision were easily discern-
ible from fluctuations in the output probability predictions. 
The authors identified and reinforced the relevance of 
white matter hyperintensity as a neuroimaging biomarker 
for dementia. One of the studies used LRP to decompose 

the output score of the network with input 18 FDG PET 
images into individual contributions while maintaining the 
conservation principle and heat map produced. Using a 
Saliency map, the study also generates a voxel-wise heat 
map for each contribution. In their work, De Santi et al. 
[101] establish that the colour distribution, as opposed to 
LRP, emphasises a higher variation among the classes in 
the saliency map. This study demonstrates that the sali-
ency map regarded the frontal-temporal space of the brain 
as a vital region for classifying all the classes. The occipi-
tal lobe, however, was the area that mattered most in LRP. 
In both studies, their finding proves significant clinical 
relevance and, in the long run, leads to increased trust and 
use of AI models.

The study proposed by Kim et al. [129] uses an interpret-
able Graph Neural Network (GNN) for classifying AD and 
MCI. Using GNNExplainer, the proposed model’s predic-
tions are explained in light of the actual and predicted labels 
for HC, MCI, and AD. GNNExplainer visualises nodes of 
importance with a high region of interests representing a 
high contribution to the classification. The authors found that 

Fig. 24   LIME Explanation – Textual Explanation. Reproduced with permission from [131]

Model DT LGBM LR RF SVC
DT 1

LGBM 0.84 1
LR 0.62 0.62 1
RF 0.78 0.90 0.66 1

0.31 0.09 0.02 0.64
0.44 0.74 0.01

0.48 -0.08
-0.19

SVC 0.50 0.30 0.43 0.45 1

Fig. 25    Correlation Score – Numeric Explanation. Reproduced with 
permission from [159]
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GNNExplainer gives encouraging interpretable results. Also, 
the explainer can capture the predictor’s neuro-anatomical  
contribution, giving more biological interpretations to better 
understand AD progression. The authors find the GNNEx-
plainer beneficial as it outperforms other competing models 
(i.e., DNN, SVM) concerning prediction accuracy.

Several articles considered in the review have used LIME 
to visualise the explanations of AD predictions. Kamal et al. 
[127] have used LIME to discover the critical genes respon-
sible for AD. The genes OR8B8 and ATP6V1G1 are found 
to be very important for AD by the authors. HTR1F and 
OR6B2 are therefore discovered to be important character-
istics of HCs. The predictions about the likely outcome of 
the generated data are visualised using LIME by Shad et al. 
[128] and Sidulova et al. [157]. Coloured areas are used to 
denote the places that prompt models to classify images to 
make appropriate predictions.

The RF model has been used in numerous research to 
classify AD ([122, 123, 151, 154]) using SHAP to depict 
the explanations using force, summary and violin plots (see 
Figs. 15, 16 and 26 respectively). According to the study in 
[122], the output decision is supported by several compli-
mentary, credible, and visible justifications. Additionally, the 
model displays a significant accuracy-interpretability tradeoff 
due to the accurate outcomes and great interpretability it pro-
duced. The proposed model is accurate and understandable, 

according to the authors. In [123], the author displays SHAP 
force plots that can explain specific model predictions widely 
used in clinical practice. The model displays the most sig-
nificant features that are learned and show an acceptable 
relationship. The absolute value of each SHAP score reflects 
how much each attribute contributes to the final prognosis, as 
shown in [151] by the authors. The internal workings of the 
RF classifier that are trained with cognitive and clinical data 
are explained by SHAP, demonstrating a potential connection 
between feature relevancy patterns and diagnosis. In a differ-
ent study [154], the authors demonstrate models with great 
prediction accuracy because they merge many DTs to create a 
single global forecast. Additionally, it repeated the study using 
the SHAP method and returned feature ranking results that 
agreed with those from RF. The study used AD biomarkers 
strong enough to predict HC, LMCI, and AD correctly and 
ranked biomarkers according to their significance. The paper 
also shows that the Amyloid beta (A), tau (T), and neurogen-
erative biomarkers(N) have different importance in predicting 
dementia. The study also establishes that the amyloid beta 
and tau status throughout disease progression plays a more 
significant role in predicting early cognitive impairment. The 
study also demonstrates that glucose consumption is more sig-
nificant in predicting future cognitive impairment. The study 
incorporates biomarkers from all A, T, and N framework arms 
into a single integrated analysis, utilising RF to categorise 

Fig. 26   SHAP Explanation – 
Violin Plot. Reproduced with 
permission from [155]



37Cognitive Computation (2024) 16:1–44	

1 3

dementia status and rank biomarker characteristics in order 
of relative importance.

XGBoost and RF are used in the study by Bogdanovic 
et al. [125] for AD classification and interpreted with SHAP. 
The classification model proves beneficial in obtaining 
exactness and validity in prediction results. The SHAP force 
plot in either model indicates that the feature clinical demen-
tia rating scale has the highest impact. The features of gen-
der and apolipoprotein, as seen from the SHAP force plot, 
have the most negligible impact and are not decisive factors 
for having an AD diagnosis [125]. On the other hand, the 
study also reveals that mini-mental state examination val-
ues impact mainly healthy subjects, and age influences the 
LMCI class. Danso et al. [133] also go through the benefits 
of the tree-based approach and how it can give details on 
decisions made concerning forecasts. The research created a 
machine-learning model with multiple classifiers to predict 
AD at both global and local levels. Traits such as education, 
hypertension, hearing loss, smoking, obesity, depression, 
physical inactivity, diabetes, and infrequent social interac-
tion were highlighted as potential modifiable risk factors in 
the report and were among the best-ranked predictive model.

In their study, Hernandez et al. [155] compare XGBoost, 
RF, and SVM models to understand how to quantify each 
feature’s contribution and achieve the best accuracy. With 
the help of SHAP violin plots, the study identifies the best 
models that use information coherent with clinical knowledge. 
Figure 26 illustrates a violin plot that shows the important 
features based on the XGBoost classifier for the complete test 
samples. In Fig. 26 the feature values for various test samples 
are shown by a colour code, which helps to relate whether a 
specific feature value favours the high or low probabilities 
predicted by the model. Blue hues indicate low values, while 
red hues indicate high values on the colour scale. The author 
employs a similar justification to demonstrate the utility of the 
features in distinguishing between the classes.

Lai et al. [156] make use of learning models AdaBoost, 
LR, LGBM, DT, XGBoost, RF, kNN, Naive Bayes, and SVM 
along with SHAP to generate force plots to illustrate profiles 
of the afflicted patient and normal subjects. In this study, the 
authors found six genes that could accurately predict AD pro-
gression and used SHAP to explain the decision-making pro-
cess of the model used. The study offers fresh perspectives on 
the function of ER stress-related genes in AD heterogeneity 
and the creation of brand-new immunotherapy targets for AD 
patients. The work of Chun et al. [126] uses learning models 
RF, SVM, and XGBoost. The study is significant because it 
shows that the Interpretable Machine Learning (IML) method 
can calculate the individual probability of dementia conver-
sion for each MCI patient. This study’s fundamental discovery 
is that the IML, consisting of ICE, SHAP, and BreakDown 
plots, enabled the interpretation of variables crucial in each 
patient’s conversion to dementia. The authors affirm that a 

model using any IML techniques enables predicting patients’ 
conversion from amnestic MCI to dementia.

The study of Xu et al. [152] involves deep learning mod-
els that include Random Seeds and Nested Cross-validation, 
SVM-SMOTE, and RF for a three-way AD classification. 
Using SHAP, the paper identifies the feature RAVLT-perc-
forgetting, and an explanation force-plot for every instance is 
obtained. The explanations of each instance of the test set can 
be rotated ninety degrees. Subsequently, the rotated instances 
are finally stacked horizontally, producing a SHAP summary 
plot [152]. They consequently provide the doctors with an 
understanding of how and why the model makes judgements. 
SHAP is used by Salih et al. [159] and Bloch et al. [161] to 
determine the order of informative predictors in test data. ML 
models and their relationships were also visualised and ana-
lysed using SHAP summary plots. SHAP force plots exam-
ined the individual forecasts of chosen individuals, and the 
summary plots of those models primarily displayed biologi-
cally conceivable outcomes. Moderate to significant correla-
tions were found when comparing the relevance of natural and 
permutational features to SHAP values.

To summarise, the LIME explainer interprets transcripts 
predicted by BERT to predict textual tokens. SHAP was 
used to produce probabilistic prediction in numeric format, 
DTs produced rule-based ante-hoc interpretations, and other 
explainers like LRP and GradCAM supported the AD diag-
nosis by visualising heatmaps showing significant features. 
A total of 28 research articles out of 37 resorted to visual 
form representation, one article each for numeric and textual 
form, and the remaining two explained using the rule-based 
technique. This research question helped us bring to light the 
different forms of explanation for AD prediction and will be 
of significant use for future research.

Limitations, Challenges, Needs, and Prospects of XAI 
in AD Detection

This section addresses the RQ5: What are the limitations, 
challenges, needs, and prospects of XAI in AD detection in 
general?

In the last few years, several studies have been proposed 
using the XAI concept to better explain AI systems’ deci-
sions. Easy access to several XAI frameworks with readily 
available source code and the availability of high-perfor-
mance computers has enabled effortless integration of these 
explainers into standalone AI systems. Unsurprisingly, these 
efforts have several limitations despite the promising results 
demonstrated by independent studies. Here, we list several 
limitations and research gaps in XAI-based AD detection 
intending to instigate further research in this field. 

	 1.	 XAI researchers often resort to self-intuition to deter-
mine what establishes a good explanation without vali-
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dating with a professional from the medical domain 
[175]. Also, the derived AI explanations are mainly 
data-driven without domain experts’ input. Deliver-
ing maximum benefit to stakeholders necessitates a 
concurrent involvement of medical and AI experts in 
ascertaining the interpretability evolved by the XAI 
framework. None of the papers considered in our study 
has this distinct aspect.

	 2.	 One of the significant drawbacks of XAI-based AD 
diagnosis is the absence of ground truth data [176]. 
Several neuroimaging and clinical biomarker datasets 
exist for AD, but none provide ground truth to vali-
date the explainability elicited by XAI models. For 
instance, in the case of visual explainers (GradCAM, 
LRP, SM, etc.), heatmaps are often visually assessed. 
Heatmaps highlight voxels based on classifier deci-
sions without stating underlying atrophy or shape dif-
ferences in brain regions. This dilutes the heatmap 
interpretation to a mere indication of where the trained 
model sees the evidence. Sometimes, heatmaps and the 
presence of actual biomarkers may be uncorrelated in 
the case of a poorly trained classifier. Hence, there is 
a need for rationalising visual assessments in the case 
of explainers with visual outputs through appropriate 
ground truth [121].

	 3.	 Furthermore, the influences of XAI explanations dramat-
ically vary when delivered to people with varying levels 
of domain expertise [121]. When people observe expla-
nations contradicting their own intuition, a confusing 
situation arises, questioning the counterintuitive relation-
ship delivered by the XAI systems. Such situations lead 
to further doubting the correctness of the model even 
though the model delivers a valid explanation [121]. The 
only way to circumvent such a situation is to have ground 
truth where one can objectively validate the explanation 
against the ground truth data without challenging the 
decisions made by the XAI systems.

	 4.	 Confidence measures are crucial in computer-aided 
diagnosis, where a wrong prediction is almost always 
life-threatening. When the system cannot deliver a con-
fident prediction, it must warrant a manual intervention 
to arrive at an appropriate decision. Hence, XAI methods 
must also incorporate a confidence score to identify situ-
ations when the classifier is incorrect before providing 
explanations. Otherwise, the end user may create false 
trust in the system [177]. Therefore it is vital to evaluate 
not only whether an explanation is intuitive to the user 
but also to arrive at an optimal decision[177].

	 5.	 Some papers used multiple XAI frameworks for 
enhanced explainability. It may be good from an aca-
demic standpoint but contributes to added opaqueness 
in real-time. For instance, LIME and SHAP frameworks 
were used jointly in one study [120]. The feature rank-

ings derived by these individual frameworks did not cor-
relate with each other. The Mini-Mental State Examina-
tion (MMSE) significantly contributes to SHAP, whereas 
normalised Whole Brain Value (nWBV) dominates the 
LIME features [120]. In yet another study [161], SHAP 
was used with other methods to validate the interpret-
ability. Again, a weaker correlation was found between 
feature rankings of the SHAP values and other models. 
Such scenarios lead to ambiguity in the explanations 
delivered by the models resulting in a complete loss of 
clinicians’ trust in the models.

	 6.	 Another significant lapse in almost all studies we con-
sidered is the limited use of medical datasets or the 
non-availability of a comprehensive benchmark data-
set that exhibits variations representing real-world 
scenarios [178]. It impedes testing of the model on an 
extensive dataset which is crucial in determining the 
actual robustness [131, 155, 156, 179]. Hence, most of 
the studies in the literature ended up with subjective 
claims but exhibited subpar performance due to gen-
eralisability issues when tested on a different dataset 
[178]. Another closely related issue with the dataset 
is the issue of class imbalance [123, 165]. The ML 
or DL learning algorithms predict dominant classes 
more accurately than classes with inadequate samples. 
Most studies had limited AD samples compared to HC 
or MCI cohorts [123, 125, 133, 151, 157, 161, 165]. 
Only a balanced dataset can draw meaningful insights. 
Applying XAI-based AI techniques in AD diagnosis 
will become genuinely influential if only research 
efforts can be diverted into creating such a compre-
hensive, balanced, and benchmark dataset.

	 7.	 Although some studies utilised multimodal data (clinical, 
sociodemographic, MRI features, neuroimages, etc.) to 
predict AD [122, 127], explanations were derived for a 
single modality only. This may be due to the absence 
of correlation among the interpretation obtained from 
different modalities (see point 5 above). Hence, having 
medical experts in the loop and deriving interpretations 
for every modality used is the way forward.

	 8.	 Even though some studies used XAI tools in AD pre-
diction, they did not consider disease biomarkers such 
as MRI volumetry, cortical thickness, etc., which cor-
relate well with dementia [124, 126].

	 9.	 Most studies have not indicated factors (hyperparam-
eter values, the split proportion of train-test data, data 
preprocessing, etc.) affecting model accuracy and sub-
sequent explainability derived [125].

	10.	 Another huge concern that adds to the reluctance of 
medical experts to use AI solutions reliably is the ina-
bility of AI to consider the history of anomalies that 
contributed to cognitive decline. The lack of real-world 
labelled data sets of individuals collected over a long 
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period of time is a genuine limitation for any medical 
field, not just in AI-based AD diagnosis [163].

	11.	 Even though researchers applied either single or multi-
ple XAI frameworks in the AD prediction, sometimes 
there was no specific correlation between the AI pre-
diction and the associated brain region. [157].

We have seen numerous studies proposed to explain the AD 
prognosis and diagnosis using several XAI frameworks. 
Although these studies have greatly facilitated clinical fidel-
ity in the associated predictions, this RQ made us realise that 
we are far from making use of the XAI-based AD systems in 
real medical eventualities due to the aforementioned limita-
tions and challenges. In future, AI technocrats must thor-
oughly investigate these needs by involving medical experts 
in the loop to deliver profound trustworthiness to the medi-
cal community for AI-driven AD diagnosis.

Conclusion

Explainable Artificial Intelligence has gained tremen-
dous importance over the last several years due to sci-
entific demands and regulatory compliance. Researchers 
are exploring different XAI frameworks that character-
ise the accuracy of the model, rationality and clarity 
in AI-assisted decision-making, which is impeccable 
in healthcare. XAI aids in creating synergistic environ-
ments where it can efficiently address the solution to 
predictions such as long-term mortality and extubation 
failures. Hence, promoting wider dissemination of XAI 
concepts, backgrounds, and techniques to the research 
community is crucial.

Towards this aim and to serve as a reference source, 
this article presents a systematic review of XAI models 
and frameworks’ application on multimodal AD data. 
We have reviewed articles based on XAI for AD diag-
nosis for the last decade. The study included 37 research 
articles thoroughly reviewed through carefully framed 
RQs. The RQs highlighted different XAI-based stud-
ies adopted for AD diagnosis and unveiled various ML 
and DL models that have embraced XAI frameworks 
to imbibe transparency and fidelity in AI predictions. 
The study also reveals several benefits, limitations, and 
future avenues for clinical diagnosis. We understand it 
is too early to comment on reducing the gap between 
medical and AI domains to a minimal zero. Neverthe-
less, such reviews will reveal the benefits and limitations 
to the research community so that the trade-off between 
accuracy in AI solutions and explainability can be sorted 
out to an acceptable level of fidelity. This review will 
help explore many healthcare domains to leverage the 

true capabilities of AI in fostering fidelity in the clinical 
decision support system.
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