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Abstract
The flexibility, adaptability, and resilience of even simple brains are unmatched by any current technology. Recent unexpected 
difficulties in realising truly autonomous vehicles, making reliable medical diagnoses, detecting offensive online content 
and even just recognising faces, show that brains remain significantly functionally more capable than we can currently emu-
late. Fittingly, in recent years we have made significant progress identifying computational principles that underlie neural 
function. We are beginning to dispense with the overly simplistic stimulus-driven encode/transmit/decode doctrine. Instead 
we must embrace the brain’s inherent dynamic complexity and emergent properties and explain how plasticity moulds the 
dynamics to capture useful couplings across brain regions and between the brain, the body, and the world. While certainly 
not complete, we have sufficient evidence that a synthesis of these ideas could result in a deeper understanding of neural 
computation and which could potentially be used to construct new AI technologies with unique capabilities. I discuss the 
relevant neuroscientific principles, the advantages they have for computation, and how they can benefit AI. Limitations of 
current AI are now generally recognised. I postulate that we understand enough about the brain to immediately offer novel 
AI formulations.
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Introduction

Engineered systems, including our current most advanced 
artificial intelligences (AIs) driven by deep learning (DL), 
are typically characterised by 1: their suitability for only 
the specific purposes for which they were designed and 
trained (fundamentally, even large language models are 
doing nothing more than predicting the next word in a long 
sequence), 2:  their inability to operate autonomously in 
unconstrained real-world environments, and 3: the increas-
ing engineering effort required as systems become ever more 
complex and purpose-built. Autonomous vehicles, reliable 
medical diagnoses, detection of offensive online content, and 
even robust facial recognition have all, at some time or other, 
been claimed to be essentially solved, but now it is generally 
accepted that many are years or even decades away.

DL pioneers LeCun and Hinton have proposed that 
supervised learning will ultimately need to be abandoned 

and that unsupervised learning, as occurs in the brain, 
is the way forward to more capable AI [1]. “Obviously 
we’re missing something… The next revolution of AI 
will not be supervised” (LeCun) [2]. An understanding is 
emerging that [3]: “The brain seamlessly merges bottom-
up discriminative and top-down generative computations 
in perceptual inference, and model-free and model-based 
control… [We must] explain task performance on the basis 
of neuronal dynamics and provide a mechanistic account 
of how the brain gives rise to the mind.” Buzsaki states 
more succinctly [4]: “Brains do not process information: 
they create it.”

This perspective advocates for the advantages of taking 
inspiration for AI explicitly and faithfully (at an appropriate 
level) from the brain:

Part 1: Presents the most recent research on neural 
mechanisms that underlie computation.

Part 2: Explains how emergent computation could 
arise from these mechanisms.

Part 3: Suggests how AI can be improved by incorpo-
rating these principles.
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Principles of Neural Function and Plasticity

The brain’s flexibility, and indeed its entire computational 
capacity, is rooted in the activity dynamics of its components 
[4, 5]—that is, in neurons connected by synapses into net-
works. Significant differences exist between spiking neural 
networks (SNNs) and the superficially similar artificial neu-
ral networks (ANNs) used for DL:

• Real neurons communicate with spikes where spike tim-
ing forms an integral part of the neural representation of 
information [6]. The computational and efficiency ben-
efits of sparse spike coding are substantial [7, 8]. SNNs 
are also rigorously more powerful than their real-valued 
ANN counterparts [9].

• Networks self-organise to represent feedforward input 
structure [10, 11]. The mechanisms the brain uses to 
accomplish this have been established, and this is where 
SNNs have achieved their most outstanding successes to 
date: Spike timing-dependent plasticity (STDP) [12–17] 
identifies causal interactions between neurons such that 
when one neuron reliably drives another, the synapse 
between them is strengthened; several homeostatic mech-
anisms [14–16, 18] that regulate neuronal firing rates and 
total synaptic strengths, combined with local decorrelat-
ing inhibition [13, 15–17, 19], together implement sparse 
non-negative matrix factorisation [16, 20, 21] (NMF) that 
extracts the underlying latent causes in the inputs. Since 
these extracted features are sparse and additive, they are 
parts-based and therefore have the significant advantage 
of being readily explainable.

• Abundant feedback connections build predictive models 
[5, 22–25] by learning to invert the self-organised feed-
forward representations (also using STDP [24, 25]). Such 
is both its importance to and ubiquity in neural computa-
tion that feedback connections in the brain almost always 
outnumber the feedforward.

• Oscillations in populations of neurons [26–29] and quasi-
chaotic dynamic state transitions [30–33] continuously and 
dynamically reconfigure neural circuits based on the com-
putational needs of the task at hand. Overall activity levels, 
oscillation frequencies, and proximity to critical regions of 
dynamical phase space are controlled through widespread 
recurrent thalamic and brainstem projections [34].

• Patterns of neural activity form representations of per-
ceptions, actions, and internal brain states. Multi-scale 
inhibitory mechanisms [17, 27, 34–36] ensure that only 
best-matching circuits are activated for any given represen-
tation or task, implementing powerful k-winner-take-all 
computations [37].

• Spike conduction delays [27, 28, 38, 39], oscillations [27, 
28, 38], and short-term plasticity (STP) [38–40] innately 

represent time in the brain [39–41]. In recurrent neu-
ral circuits, STP can maintain memory states (working 
memory) for indefinite lengths of time [42, 43].

• Dopamine directly modulates the gain of STDP for 
model-free reinforcement learning (RL) [44, 45]. Other 
neuromodulators have arguably equally important effects—
acetylcholine increases the efficacy of feedforward 
connections and attention to inputs, and noradrenaline 
responds to novel and salient inputs and serotonin to risks 
and threats [46].

The above principles are well-established and offer poten-
tial clues to the next AI revolution beyond ANNs. However, 
while many of these principles have been simulated in mod-
els of neuronal dynamics, most of them await to be effec-
tively integrated into functional models of neural operation. 
That is, while the links from spiking network structure to 
dynamics are reasonably well-understood, the known links 
from neural dynamics to function are considerably more 
tenuous. Significant progress in this regard will be required 
to harness the richness and complexity of SNN dynamics 
for computation in AI.

Other principles of biological neural function are more 
speculative, or the specific underlying mechanisms have not 
yet been fully determined:

• Brains combine predictive models of the world with 
oscillations and dynamic circuit reconfiguration to create 
internalised simulations of “what if” scenarios and future 
plans [47–49]. These models are also used to maintain 
consistent brain states through time and to sanity check 
inputs to flag unexpected and out-of-distribution events 
[50]. Much of the brain’s computational power arises 
from the interactions between its internal world models 
and its innate dynamics.

• Closely related to the above is the idea of stochastic 
sampling [25, 51]—the brain represents probabilities 
by sampling over time from the distribution of possible 
interpretations of its inputs.1 I conjecture that the same 

1 This hypothesis has significant implications for results of experi-
ments that purport to find low-dimensional manifolds in population 
firing rates, for example, in diffusion models of decision making. 
Working memory combined with stochastic sampling only gives the 
appearance of a simple low-D representation. The brain is not accu-
mulating evidence in the firing rates of a large neural population; this 
would be exceedingly inefficient (a low-D manifold on already low-D 
firing rates). Instead, it is doing stochastic sampling of the possible 
interpretations of the input. The afferent evidence from which it is 
sampling is also not held in firing rates; it is held in the states of net-
work activity in lower regions (which themselves are doing stochastic 
sampling of evidence from regions below them). As the evidence is 
accumulated (probably in STP, not firing rates), firing rates increase 
because the probability distributions are narrowing and the sampling 
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process applies to outputs (actions), including sampling 
from possible sequences of actions through time, which 
is clearly equivalent to internalised simulations of ‘what 
if’ scenarios.

• Dopamine works with oscillations, dynamic circuit 
reconfiguration, and the internal world models to imple-
ment model-based RL. How this occurs is currently 
unclear, but prediction of forthcoming reward and tem-
poral difference (TD)-style reinforcement learning will 
be essential components [52].

• Explicit actions are just the final steps in a series of neural 
events learned through reinforcement—i.e. actions are pre-
ceded by sequences of internal neural operations that, from 
the perspective of neural activity patterns and TD learning, 
are essentially indistinguishable from those patterns that 
directly cause movement of the body in the world. High-
level cognitive functions are therefore simply “internal 
actions” [49, 53] (“the brain is embodied, and the body 
and brain are embedded in the world” [54] – Edelman). 
Related thinking has led to the suggestion of an “embodied 
Turing test” by many eminent AI researchers [55].

• Subcortical circuits, particularly the basal ganglia, cere-
bellum, brainstem, and even the spinal cord, fully control 
stereotypical and well-trained movements and are criti-
cal for serialising and timing of all other motor outputs. 
These regions phylogenetically pre-date the cortex and 
may use partially different mechanisms, although are still 
tightly integrated (e.g. the cerebellum contributes vitally 
to cognition [56]).

• These computational principles apply similarly across 
all of cortex, evidenced by the structural uniformity of 
not just sensory but also association and motor regions, 
and the ubiquity of STDP and homeostatic mechanisms. 
Differentiation of function occurs predominantly through 
structural connectivity, including the abundant subcor-
tical connections. The role of the cortex is to predict, 
not just incoming perceptions but also its own upcoming 
intentions and actions. It does this by becoming a model 
of the world, not in an abstract sense but in an actual 
physical sense; through self-organising plasticity, cortical 
dynamics are tuned to replicate, mimic, and couple with 
the dynamics of the world. Complex neural dynamics 
mirror the complexity evident in the real world—brains 
are complex precisely because the world is complex [57] 
(“complex” is used here in the complex systems sense 
and does not just mean “complicated”). Indeed neural 

dynamics continuously and task-dependently couple both 
with the body and with sensory events [58]. Therefore, 
what we think of as cortical representations of percep-
tions, actions, and objects in the world should be more 
correctly understood as transient neurodynamics that are 
simply replicating the perceived world’s (and the body’s) 
transient dynamical states. This is a subtle but profound 
distinction. How to exploit this insight for the benefit of 
AI is covered in subsequent sections.

Despite their great potential for advancing both our 
understanding of neural computation and our artificial 
intelligence technologies, spiking networks also present 
significant challenges in practical use. Perhaps the most dire 
of these is “spike propagation failure”; SNNs constructed of 
predominantly excitatory connections tend to over-synchronise 
and enter a seizure-like dynamical state, destroying all the 
information they contain. It has been analytically shown 
that this is a fundamental problem with all SNNs that use 
thresholded neurons (which in practice is all of them) [59]. 
Fortunately the problem can be solved with the incorporation 
of appropriate balancing inhibitory connections to maintain 
the excitation/inhibition (E/I) balance, along with several 
biologically plausible normalisation (homeostatic) mechanisms 
[59, 60]. Unfortunately the problem is not widely recognised, 
and these solutions have only recently been proposed and are 
not yet well-known or in widespread use within the machine 
learning community. The result is that this problem may have 
had significant detrimental impact on SNN research to date.

Neural Assemblies, Dynamics, Cognition, 
and Creativity

To compute means to control the flow of information and to 
store, recall, organise, integrate, and transform information 
in pursuit of a defined outcome or ongoing effect. In the case 
of the brain, it also means to flexibly adapt to unforeseen 
or changing conditions in ways that no computers can cur-
rently achieve. The brain accomplishes this by flexibly and 
adaptively activating neural assemblies (groups of neurons) 
in combinatorial patterns that best represent the confluence 
of sensory input and current internal state. But what con-
trols which assemblies should be active? Neural assemblies 
respond when they recognise (i.e. are keyed by) particu-
lar efferent spike patterns elicited either from the senses or 
from other parts of the brain. The vital insight is that, since 
the cortex is dynamically tuned to be a physical analog of 
the world, neurons and assemblies respond when they are 
required and without centralised control. This rather fortui-
tous outcome is the result of multiple plasticity mechanisms 
covered in the previous section (STP, RL, self-organisation, 
and homeostasis) that integrate to bias the innate dynamics 

is being constrained. The network activity that we interpret as firing 
rates is actually a series of complex information-rich spatiotemporal 
patterns that store a huge amount of information about the context, 
stimulus, upcoming response, and ongoing self-generated brain state.

Footnote 1 (continued)
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towards activity patterns that both recapitulate the world and 
that are ultimately rewarded [61], while also extracting fea-
tures that help predict the reward [16, 20, 21], and maintain-
ing the overall activity within useful dynamical bounds [34].

Each active neural assembly outputs a transformation of 
its inputs, and in so doing, it is performing a computation on 
its inputs that meets either innate (self-organising) or exter-
nal (reward-bearing) criteria. Once the particular input that 
activated an assembly disappears, or the brain state changes, 
input to the assembly no longer matches, and the assembly 
naturally shuts down until it next receives keying input. This 
mechanism has the effect of always finding a part of the 
brain to process any given input or brain state—when the 
key match is good, the brain responds quickly, driving lateral 
inhibition and pre-emptively shutting down other neurons 
and regions which might otherwise have responded. If the 
match is poor, the brain responds more slowly since a poor 
match needs longer to drive neurons to threshold.

STDP, RL, and homeostatic mechanisms cause the 
recruitment of more neurons to represent common inputs 
and well-trained tasks through the following mechanism: 
Commonly-occurring inputs will cause excessive firing of 
the associated assemblies which will then homeostatically 
raise their thresholds to reduce their firing rates. This will 
give other neurons that were previously inhibited (by lat-
eral inhibition from those assemblies) a chance to respond 
instead, and when they do, STDP will then solidify their 
new roles in representing the input. This recruitment process 
increases the fidelity and discriminability of representations 
of common inputs by increasing the numbers of neurons 
involved and also increases processing speed due to closer 
key-matches with finer discriminability. Of course, the 
recruited neurons will likely already be involved in existing 
representations that are similar to this new one; otherwise, 
they would not be responding to this one at all; such a mech-
anism is central to the brain’s ability to generalise and is a 
recognised functional advantage of sparse parts-based cod-
ing [20]. Thanks to sparse coding, no conflict is introduced 
by recruiting existing neurons into new representations since 
what matters is the overall dynamic pattern of activity, not 
the responses of single neurons (which can be involved in 
any number of representations). Thanks also to the combi-
natorial explosion of possible activity patterns across the 
brain, these potential representations are practically infinite 
in number [27].

Neural connections are highly convergent, divergent, 
modular, hierarchical, and re-entrant, with large overlaps 
between modules and strong cross-connections between 
hierarchies at all levels. Such anatomical structure causes 
complex patterns of competition and coupling that interact 
through and across multiple hierarchical levels simultane-
ously, resulting in spatiotemporal activity patterns that are 
exquisitely intricate and interdependent. Active assembly 

boundaries are fluid, ranging in size from a handful of neu-
rons up to large regions, and no single module is ever at the 
top, or in control, from the perspective of either static con-
nectivity or dynamic activity. Assemblies couple in novel 
patterns in response to novel inputs, and indeed can exploit 
the quasi-chaotic nature of the transitions between states 
to form novel patterns any time, in a manner that may be 
related to binding of representations, fluid intelligence, and 
creativity [62–64]. Neural computation therefore manifests 
as a continuous superposition of transient dynamic states. 
However, they are far from random; constrained by neural 
architecture [65] and shaped by the forces of plasticity, they 
are finely honed to be task- and context-specific. These pat-
terns underlie the combinatorial computational power of the 
brain as well as its extreme flexibility.

The brain does not follow a programme. Brain regions 
do not encode packets of information which are then trans-
mitted to receiving regions for decoding and processing, 
and brains do not work “despite the noise”. Due to effi-
cient coding and stochastic sampling, what we are tempted 
to think of as noise is in fact the computation in its entirety 
[25]. Engineering-style reductionist simplifications, such as 
describing information transfer through propagating pulse 
packets, or models that give the impression of neuroinspira-
tion but that in reality use reductionist constructs such as 
latched registers, dedicated data buses and serially executed 
programmes [66], therefore yield few insights into real neu-
ral function. Says Friston [5]: “By studying the dynamics 
and self-organisation of functional networks, we may gain 
insight into the true nature of the brain as the embodiment 
of the mind.” The brain is the ultimate bootstrapped physi-
cal dynamical system. A neuron simply sits and listens [67]. 
When it hears an incoming pattern of spikes that matches a 
pattern it knows, it responds with a spike of its own. That’s 
it! When this process is repeated recursively tens to trillions 
of times, what emerges is a brain controlling a body in the 
world or doing something else equally clever. Our challenge 
is to understand how this occurs. My contention is that the 
above principles are sufficient to meet this challenge to both 
better understand the brain and to construct better brain-
inspired AI.

Brains to AI

The differences between brains and ANNs lead to significant 
concrete differences in capabilities:

• AI is difficult to train and typically requires huge 
amounts of data. Due to its ability to self  discover 
parts-based representations and its modular hierarchical 
structure which allows it to combine dynamic assem-
blies into novel patterns, the brain implements transfer 
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learning by chunking, often requiring just a handful of 
training samples.

• AI systems have enormous energy requirements for train-
ing and operation. Standard computer CPU architectures 
and even GPGPUs (general-purpose graphical process-
ing units) lack the ability to simulate neural networks, 
particularly SNNs, efficiently. The latest generation of 
neuromorphic hardware co-locates the memory with the 
processing units as required for efficient implementa-
tion, and supports on-chip STDP and homeostasis to 
incorporate the most recent advances in spiking neural 
algorithms [68].

• AI systems need to be pre-trained, and any new informa-
tion typically requires complete re-training from scratch. 
The brain learns online continuously using transfer learn-
ing and specialised structures for single-shot memories 
coupled with dynamical processes (activity patterns) that 
are activated during down-time (sleep) for integrating 
that knowledge into long-term networks.

• AI is terribly brittle and can be easily fooled by adver-
sarial input that needs to be shifted only slightly outside 
the training distribution. Brains generalise exceptionally 
well due to modular self-organisation, sparse coding, pre-
dictive feedback, and transient k-winner-take-all combi-
natorial dynamics.

• AI systems can perform only the task for which they 
are trained. Due to its ability to dynamically reconfig-
ure through oscillations and internal actions, the brain 
can perform multiple tasks and switch between them 
as required and can rapidly learn new tasks by transfer 
learning through chunking.

Furthermore, brains generate explanatory causal models 
using STDP, predictive feedback, and working memory. 
What we currently call AI is fundamentally still big data and 
correlation analysis, predominantly used to generate classi-
fications and predictions. There are arguably exceptions to 
this rule [69, 70]—for example, generative networks, trans-
former (attentional) networks, and networks that attempt to 
simulate the working and episodic memory systems. Inter-
estingly these exceptions tend to draw inspiration directly 
from the brain to improve on the capabilities of DL. While 
improvements are often achieved, which is testimony to the 
astuteness of brain inspiration, the insights are applied in 
piecemeal fashion, and many of the compelling advantages 
of neural processing remain ignored and unharnessed.

While recurrent ANNs are theoretically Turing complete, 
we know from experience with DL that choice of architec-
ture and how information is represented make a difference, 
and that just because a task can theoretically be performed 
does not mean that it can be done efficiently, or even that it 
can be learned at all. SNNs are more powerful than ANNs of 
equal size and are dynamically and architecturally ideal for 

representing spatiotemporal patterns and for building causal 
models of the world. It is reasonable to expect that there 
will be classes of problem, relevant for our usage of AI, for 
which ANNs will fail in practice but that can be learned and 
performed efficiently by SNNs.

The true computational power of the brain lies in the 
simultaneous integration of all of the principles of neural 
computation. To the author’s knowledge, such an integra-
tion has never been attempted at scale. I am not advocating 
a biophysically-detailed bottom-up approach nor a top-down 
cognitive model. This is “sideways-in”, where relevant bio-
physical principles are abstracted and combined in such a 
way as to bring about emergence of function as occurs in the 
brain. The primary modelling level (the level that should be 
modelled explicitly) is the level of neurons, synapses, and 
spikes. At the level below are ion channels, neurotransmit-
ters, synaptic currents, and membrane dynamics—these are 
abstracted and modelled as mathematical functions rather 
than explicitly. At the level above are populations of neu-
rons, oscillations, and network dynamics—these emerge 
from interactions of the lower-level components, giving rise 
to the complex functional properties of the brain.

Studies have already shown how deep networks imple-
mented with spiking neurons outperform standard DL in 
several respects. On simple problems, they require orders of 
magnitude fewer training samples, they can use unlabelled 
data for most of the training, and they generate sparse effi-
cient parts-based representations [20, 68, 71]. These early 
results are significant, but they reveal only a small subset of 
the full capabilities of brains and SNNs. DL requires large 
quantities of training data because typically the full range 
of input space needs to be explicitly covered during train-
ing, unlike brains which are able to dynamically generate 
novel information [4] and actively test world models and 
hypotheses through “internal actions”. Energy requirements 
for training state-of-the-art deep networks are already meas-
ured in megawatt-hours, and the curse of dimensionality is 
causing an exponential increase as ever-larger problems are 
tackled (energy requirements for training state-of-the-art 
deep networks have increased by nearly an order of magni-
tude every year since 2012). Even with the accelerated DL 
hardware currently being developed, this is clearly an unsus-
tainable trajectory. A paradigm shift, as offered by SNNs, 
is being called for.

While parts-based decompositions and generative models 
can also be implemented using DL, these functions are par-
simoniously implemented in SNNs by STDP with very low 
power requirements and using relatively small unlabelled 
datasets. The fundamental nature of spikes as momentary 
events leads to powerful temporal representations, rapid 
processing, and intrinsic dynamics that allow for stochas-
tic sampling and dynamic reconfiguration of neural circuits 
to match ongoing computational needs. DL offers few of 
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these capabilities. The clear implication is that brains and 
SNNs are ideally suited for embodied interactions with the 
real world, and the full advantages of SNNs will become 
evident when these neural computational principles are inte-
grated and applied to real-world problems. Notably, these 
are exactly the kinds of problems for which DL is having 
trouble scaling.

Each of the computational principles—sparse spike-time 
coding, self-organisation, short term plasticity, reward learn-
ing, homeostasis, feedback predictive circuits, conduction 
delays, oscillations, innate dynamics, stochastic sampling, 
multi-scale inhibition, k-winner-take-all, and embodied cou-
pling—are research topics that have been separately investi-
gated, some quite extensively. However, a rich understanding 
of neural function can only be obtained by understanding 
how these principles synergistically combine (18, 25, 61). 
Integrating some of these principles clearly presents sig-
nificant challenges, but others should be relatively straight-
forward. Oscillations and spike-time coding have rarely, if 
ever, been combined with RL to flexibly route information 
through a neural network, for example. Further combining 
such a network with self-organising plasticity could then 
create a network that can generalise and respond flexibly 
to new inputs; feedback could allow for attention to unex-
pected inputs; and so on. While some of these principles 
could be independently implemented without SNNs, the 
space of potential implementations collapses dramatically 
when integrating many principles simultaneously. I contend 
that to efficiently perform all of which the brain is capable, 
SNNs may be one of the few viable underlying implementa-
tion substrates, since the complex dynamic activity patterns 
that actually perform the computations are so closely tied to 
SNN structure.

There is perhaps a feeling in the ANN community that 
the dynamics of spiking networks are difficult to conceptu-
alise and control and that the addition of a range of neural 
mechanisms can only further complicate the problem. This 
view has possibly even stymied SNN research. Contrary to 
this view, it is quite possible, even likely, that the synergistic 
combination of principles will lead to intuitive dynamics and 
a deeper understanding of both the underlying mechanisms 
and the emergent computational properties. Most of the prin-
ciples that have been discussed here are mechanistic and are 
understood from both procedural and functional perspec-
tives. They are evidence-based, concrete, and realistically 
implementable in functioning neural circuit models and AI 
prototypes. The next-generation AI using these principles 
will inherit the many advantages of directly brain-inspired 
neural processing. If similar attention and resources are 
given to these SNN mechanisms as has been given to ANNs 
over the last 10 years, it seems reasonable to expect that rev-
olutionary computational systems can be realised, or at the 
very least extensive progress in this direction can be made.

Acknowledgements The author would like to sincerely thank 
the following for stimulating discussions which helped shape the 
ideas presented in this manuscript: Jake Bruce, Tara Hamilton, 
Andrew Wabnitz, Allen Cheung, Michael Milford, Chris Nolan, 
Madhusoothanan Bhagavathi Perumal, Bruno van Swinderen, Michael 
Troup, Anthony Harris, Alan Woodruff, Janet Wiles, Joshua Arnold, 
Francois Windels, Tobi Delbruck, Tony Bell, Andre van Schaik, 
Sally Shrapnel, David Grayden, Anthony Burkitt, Moritz Milde, Nao 
Tsuchiya, Pankaj Sah, Jochen Triesch, Dave Peterson, Levin Kuhlmann, 
Eugene Izhikevich, Bill Newsome, Misha Tsodyks, Michael Halassa, 
Gyorgy Buzsaki, Nancy Kopell, Terry Sejnowski, and Karl Friston.

Funding  Open Access funding enabled and organized by CAUL and 
its Member Institutions. This research is supported by the Common-
wealth of Australia as represented by the Defence Science and Technol-
ogy Group of the Department of Defence.

Data Availability Data will be made available on reasonable request.

Declarations 

Ethical Approval This article does not contain any studies with human 
participants or animals performed by any of the authors.

Conflict of Interest The author declares no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521 
(7553):436.

 2. Hao K. Cambridge, MA: MIT Technology Review; 2019 [The AI tech-
nique that could imbue machines with the ability to reason]. 2019. 
https:// www. techn ology review. com/s/ 613954/ the- next- ai- revol ution- 
will- come- from- machi ne- learn ings- most- under rated- form/.

 3. Kriegeskorte N, Douglas PK. Cognitive computational neurosci-
ence. Nat Neurosci. 2018;21(9):1148–60.

 4. Buzsaki G. The Brain from Inside Out: Oxford University Press; 
2019;464.

 5. Park H-J, Friston K. Structural and functional brain networks: 
from connections to cognition. Science. 2013;342(6158):1238411.

 6. Brette R. Philosophy of the spike: Rate-based vs. spike-based 
theories of the brain. Front Syst Neurosci. 2015;9.

 7. Olshausen BA, Field DJ. Sparse coding of sensory inputs. Curr 
Opin Neurobiol. 2004;14(4):481–7.

 8. Poo C, Isaacson JS. Odor representations in olfactory 
cortex:“sparse” coding, global inhibition, and oscillations. Neu-
ron. 2009;62(6):850–61.

 9. Maass W. Noisy spiking neurons with temporal coding have more 
computational power than sigmoidal neurons. Adv Neural Inf Pro-
cess Syst. 1997;9:211–7.

http://creativecommons.org/licenses/by/4.0/
https://www.technologyreview.com/s/613954/the-next-ai-revolution-will-come-from-machine-learnings-most-underrated-form/
https://www.technologyreview.com/s/613954/the-next-ai-revolution-will-come-from-machine-learnings-most-underrated-form/


Cognitive Computation 

1 3

 10. Carpenter GA, Grossberg S. Pattern recognition by self-organizing 
neural networks: MIT Press. 1991.

 11. Olshausen BA, Field DJ. Emergence of simple-cell receptive field 
properties by learning a sparse code for natural images. Nature. 
1996;381(6583):607.

 12. Kheradpisheh SR, Ganjtabesh M, Masquelier T. Bio-inspired 
unsupervised learning of visual features leads to robust invariant 
object recognition. Neurocomputing. 2016;205:382–92.

 13. Masquelier T, Thorpe SJ. Unsupervised learning of visual features 
through spike timing dependent plasticity. PLoS Comput Biol. 
2007;3(2).

 14. Fiete IR, Senn W, Wang CZ, Hahnloser RH. Spike-time-dependent 
plasticity and heterosynaptic competition organize networks to 
produce long scale-free sequences of neural activity. Neuron. 
2010;65(4):563–76.

 15. Zylberberg J, Murphy JT, DeWeese MR. A sparse coding 
model with synaptically local plasticity and spiking neurons 
can account for the diverse shapes of V1 simple cell receptive 
fields. PLoS Comput Biol. 2011;7(10).

 16. Beyeler M, Rounds EL, Carlson KD, Dutt N, Krichmar JL. Neu-
ral correlates of sparse coding and dimensionality reduction. 
PLoS Comput Biol. 2019;15(6).

 17. Vogels T, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibi-
tory plasticity balances excitation and inhibition in sensory path-
ways and memory networks. Science. 2011;334(6062):1569–73.

 18. Lazar A, Pipa G, Triesch J. SORN: a self-organizing recur-
rent neural network. Frontiers in Computational Neuroscience. 
2009;3.

 19. Földiak P. Forming sparse representations by local anti-Hebbian 
learning. Biol Cybern. 1990;64(2):165–70.

 20. Lee DD, Seung HS. Learning the parts of objects by non-negative 
matrix factorization. Nature. 1999;401(6755):788.

 21. Hoyer PO. Non-negative matrix factorization with sparse-
ness constraints. Journal of Machine Learning Research. 
2004;5(Nov):1457–69.

 22. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, 
Friston KJ. Canonical microcircuits for predictive coding. 
Neuron. 2012;76(4):695–711.

 23. Rao RP, Ballard DH. Predictive coding in the visual cortex: a 
functional interpretation of some extra-classical receptive-field 
effects. Nat Neurosci. 1999;2(1):79.

 24. Rao RP, Sejnowski TJ. Predictive coding, cortical feedback, and 
spike-timing dependent plasticity. Probabilistic models of the 
brain: perception and neural function: MIT Press. 2002;297–315.

 25. Hartmann C, Lazar A, Nessler B, Triesch J. Where’s the noise? 
Key features of spontaneous activity and neural variability arise 
through learning in a deterministic network. PLoS Comput Biol. 
2015;11(12).

 26. Fries P. A mechanism for cognitive dynamics: neuronal com-
munication through neuronal coherence. Trends Cogn Sci. 
2005;9(10):474–80.

 27. Izhikevich EM. Polychronization: Computation with spikes. Neu-
ral Comput. 2005;18(2):245–82.

 28. Bastos AM, Vezoli J, Fries P. Communication through coherence 
with inter-areal delays. Curr Opin Neurobiol. 2015;31:173–80.

 29. Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel 
AM, et  al. Dynamic cross-frequency couplings of local 
field potential oscillations in rat striatum and hippocampus 
during performance of a T-maze task. Proc Natl Acad Sci. 
2008;105(51):20517–22.

 30. Tognoli E, Kelso J. The metastable brain. Neuron. 2014;81 (1):35–48.
 31. Rabinovich MI, Huerta R, Varona P, Afraimovich VS. Transient 

cognitive dynamics, metastability, and decision making. PLoS 
Comput Biol. 2008;4(5).

 32. Rabinovich M, Huerta R, Laurent G. Transient dynamics for neu-
ral processing. Science. 2008;321(5885):48–50.

 33. Rubinov M, Sporns O, Thivierge J-P, Breakspear M. Neurobio-
logically realistic determinants of self-organized criticality in 
networks of spiking neurons. PLoS Comput Biol. 2011;7(6).

 34. Stratton P, Wiles J. Global segregation of cortical activity and 
metastable dynamics. Front Syst Neurosci. 2015;9(119).

 35. Carandini M, Heeger DJ. Normalization as a canonical neural 
computation. Nat Rev Neurosci. 2012;13(1):51.

 36. Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini D, 
Corbetta M. How local excitation–inhibition ratio impacts the 
whole brain dynamics. J Neurosci. 2014;34(23):7886–98.

 37. Maass W. On the computational power of winner-take-all. Neural 
Comput. 2000;12(11):2519–35.

 38. Izhikevich EM, Gally JA, Edelman GM. Spike-timing dynamics 
of neuronal groups. Cereb Cortex. 2004;14(8):933–44.

 39. Szatmáry B, Izhikevich EM. Spike-timing theory of working 
memory. PLoS Comput Biol. 2010;6(8).

 40. Buonomano DV, Maass W. State-dependent computations: spa-
tiotemporal processing in cortical networks. Nat Rev Neurosci. 
2009;10(2):113.

 41. Mauk MD, Buonomano DV. The neural basis of temporal process-
ing. Annu Rev Neurosci. 2004;27:307–40.

 42. Mongillo G, Barak O, Tsodyks M. Synaptic theory of working 
memory. Science. 2008;319(5869):1543–6.

 43. Stokes MG. ‘Activity-silent’working memory in prefron-
tal cortex: a dynamic coding framework. Trends Cogn Sci. 
2015;19(7):394–405.

 44. Izhikevich EM. Solving the distal reward problem through 
linkage of STDP and dopamine signaling. Cereb Cortex. 
2007;17(10):2443–52.

 45. Schultz W. Updating dopamine reward signals. Curr Opin Neuro-
biol. 2013;23(2):229–38.

 46. Cox BR, Krichmar JL. Neuromodulation as a robot controller. 
IEEE Robot Autom Mag. 2009;16(3):72–80.

 47. Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the 
hippocampal-entorhinal system. Nat Neurosci. 2013;16(2):130.

 48. Suddendorf T, Corballis MC. The evolution of foresight: What 
is mental time travel, and is it unique to humans? Behavioral and 
Brain Sciences. 2007;30(3):299–313.

 49. Buzsáki G, Peyrache A, Kubie J, editors. Emergence of Cogni-
tion from Action. Cold Spring Harbor Symposia on Quantitative 
Biology. 2015: Cold Spring Harbor Laboratory Press; 2014.

 50. Wacongne C, Changeux J-P, Dehaene S. A neuronal model of pre-
dictive coding accounting for the mismatch negativity. J Neurosci. 
2012;32(11):3665–78.

 51. Buesing L, Bill J, Nessler B, Maass W. Neural dynamics as sam-
pling: a model for stochastic computation in recurrent networks 
of spiking neurons. PLoS Comput Biol. 2011;7(11).

 52. Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning 
using a continuous time actor-critic framework with spiking neu-
rons. PLoS Comput Biol. 2013;9(4).

 53. Johnson M. The meaning of the body. Developmental perspectives on 
embodiment and consciousness: Psychology Press; 2007. p. 35–60.

 54. Edelman GM. The embodiment of mind. Daedalus. 2006;135 
(3):23–32.

 55. Zador A, Escola S, Richards B, Ölveczky B, Bengio Y, Boahen 
K, et al. Catalyzing next-generation artificial intelligence through 
NeuroAI. Nat Commun. 2023;14(1):1597.

 56. Schmahmann JD, Caplan D. Cognition, emotion and the cerebel-
lum. Brain. 2006;129(2):290–2.

 57. Chialvo DR. Emergent complex neural dynamics. Nat Phys. 
2010;6(10):744–50.

 58. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P. 
Dynamics of active sensing and perceptual selection. Curr Opin 
Neurobiol. 2010;20(2):172–6.

 59. Stratton PG, Wabnitz A, Essam C, Cheung A, Hamilton TJ. Mak-
ing a spiking net work: robust brain-like unsupervised machine 



 Cognitive Computation

1 3

learning. arXiv preprint 2022. https:// doi. org/ 10. 48550/ arXiv. 
2208. 01204. 

 60. Stratton PG, Hamilton TJ, Wabnitz A. Unsupervised feature vector 
clustering using temporally coded spiking networks. International 
Joint Conference on Neural Networks; Gold Coast, Australia: 
IEEE. 2023.

 61. Savin C, Triesch J. Emergence of task-dependent representations 
in working memory circuits. Front Comput Neurosci. 2014;8.

 62. Rabinovich M, Tristan I, Dubnov S, editors. Nonlinear dynamics 
of human creativity. Systems, Man and Cybernetics (SMC). IEEE 
International Conference on IEEE 2014.

 63. Raffone A, van Leeuwen C. Dynamic synchronization and chaos 
in an associative neural network with multiple active memo-
ries. Chaos: An Interdisciplinary Journal of Nonlinear Science. 
2003;13(3):1090–104.

 64. Sandkühler S, Bhattacharya J. Deconstructing insight: EEG cor-
relates of insightful problem solving. PLoS ONE. 2008;3(1).

 65. Zador AM. A critique of pure learning and what artificial 
neural networks can learn from animal brains. Nat Commun. 
2019;10(1).

 66. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang 
Y, et al. A large-scale model of the functioning brain. Science. 
2012;338(6111):1202–5.

 67. Buzsáki G. Neural syntax: cell assemblies, synapsembles, and 
readers. Neuron. 2010;68(3):362–85.

 68. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, 
et al. Loihi: a neuromorphic manycore processor with on-chip 
learning. IEEE Micro. 2018;38(1):82–99.

 69. Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-
inspired artificial intelligence. Neuron. 2017;95(2):245–58.

 70. George D, Lehrach W, Kansky K, Lázaro-Gredilla M, Laan C, 
Marthi B, et al. A generative vision model that trains with high 
data efficiency and breaks text-based CAPTCHAs. Science. 
2017;358(6368).

 71. Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. 
STDP-based spiking deep convolutional neural networks for 
object recognition. Neural Netw. 2018;99:56–67.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48550/arXiv.2208.01204
https://doi.org/10.48550/arXiv.2208.01204

	Convolutionary, Evolutionary, and Revolutionary: What’s Next for Brains, Bodies, and AI?
	Abstract
	Introduction
	Principles of Neural Function and Plasticity
	Neural Assemblies, Dynamics, Cognition, and Creativity
	Brains to AI
	Acknowledgements 
	References


