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Abstract
Human decision-making is relevant for concept formation and cognitive illusions. Cognitive illusions can be explained by 
quantum probability, while the reason for introducing quantum mechanics is based on ad hoc bounded rationality (BR). 
Concept formation can be explained in a set-theoretic way, although such explanations have not been extended to cognitive 
illusions. We naturally expand the idea of BR to incomplete BR and introduce the key notion of nonlocality in cognition 
without any attempts on quantum theory. We define incomplete bounded rationality and nonlocality as a binary relation, 
construct a lattice from the relation by using a rough-set technique, and define probability in concept formation. By using 
probability defined in concept formation, we describe various cognitive illusions, such as the guppy effect, conjunction fal-
lacy, order effect, and so on. It implies that cognitive illusions can be explained by changes in the probability space relevant 
to concept formation.
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Introduction

While human judgment [1] is individual, definite, and rel-
evant to concept formation [2], decision-making tends to be 
stochastic [3]. Human judgment and decision-making have 
previously been studied independently. Formal concepts [4, 
5] and rough sets [6, 7] have been used for concept formation 
[8–10]. Furthermore, models based on Bayesian inference 
[11–13] or quantum probability have been proposed [14–18] 
to explain cognitive illusions [19–24] derived from uncer-
tainty in decision-making, and some have also explored 
the new research field of quantum cognition. While it is 
unclear that the reasons quantum mechanics can be applied 
to cognition have been verified [25], this topic has also  
been addressed under bounded rationality [26]. New chal-
lenges to concept formation and quantum probability are  

being discussed under the same framework [27, 28]; how-
ever, the relation between concept formation and quantum 
mechanics is still unclear.

In this study, we show that concept formation and 
quantum-like probability can be accounted for by the same 
framework, without the assumption of quantum mechan-
ics based on axiomatic bounded rationality; the key idea is 
nonlocality in cognition. Human cognition is expressed as 
a relation between objects and attributes, and nonlocality in 
cognition is expressed as a specific relation. The relation is 
transformed into an ordered set of concepts (lattice) using 
a rough-set lattice technique. While the Boolean lattice cor-
responding to set-theoretic logic is obtained from an ideal 
relation, the orthomodular lattice corresponding to quantum 
logic is obtained from a relation with nonlocality. Prob-
ability is defined in concepts, and we show that a change in 
the probability space due to decision-making can describe 
various cognitive illusions. Although there have been some 
attempts to define probability in a lattice [29], our definition 
of probability explains cognitive illusions. Our approach 
can explore the generalization of nonlocality, which may 
involve quantum physics.

While we think that quantum cognition has the great 
ability to explain various cognitive illusions, we also think  
that quantum cognition is not necessarily needed to  
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explain cognitive processes. The uncertainty of a thought is 
represented by superposition, multiple contexts are repre-
sented by Hilbert space, and the mixture of locality and non-
locality is represented by entanglement in quantum theory 
[28]. However, we think that these features in the cognitive 
process can be represented without quantum theory. We here 
introduce the binary relation to represent cognitive process, 
obtain a non-Boolean lattice from the binary relation, and 
define the probability in a lattice. Since our model entails the 
uncertainty of a thought, multiple contexts and the mixture 
of locality and non-locality, it can explain cognitive illusions 
without quantum theory. The non-Boolean algebra we obtain 
is, however, connected to quantum information, because that 
is a quasi-disjoint system of Boolean algebras which is used 
to represent quantum logic in a lattice theory [30, 31].

Motivation of Incomplete Bounded 
Rationality

As mentioned before, quantum cognition of which quan-
tum theory is used as mathematical tool or a kind of infor-
mation theory has a great advantage to describe cognitive  
illusion. However, the question remains how the use of quan-
tum theory in macroscopic phenomena such as cognitive 
process is verified. In this section, while we do not verify  
the use of quantum theory, we review and examine the pre-
vious attempt to verify applying quantum theory to cogni-
tive process, reveal the weakness in that attempt, expand 
that attempt in overcoming the weakness, and construct new 
method to handle cognitive process. After that, we develop 
such a new method and define the framework by which cog-
nitive illusion can be described.

There have been several attempts to show the potential 
reasons quantum mechanics can be applied to macroscopic 
phenomena such as cognition and/or decision-making [26, 
31–35]. One attempt involves introducing Hilbert space 
without any assumption of quantum theory as physics [34]. 
Hilbert space is expressed by the direct sum of vector space 
and its orthogonal vector space. Because a vector in each 
space is expressed by a linear expression on an orthonormal 
basis, the space can be expressed as Boolean algebra whose 
atoms can correspond to the orthonormal basis. Boolean 
algebra implies a set lattice or a power set whose meet and 
join are defined by intersection and union, respectively. An 
element of the power set of an n-element set is expressed as 
an n-bit binary sequence, and each atom of the power set 
is expressed as a binary sequence in which only one digit 
is 1 and the other digits are 0. In Boolean algebra, an atom 
implies the occurrence of one element event in all element 
events. Thus, the probability of an atom is defined as 1/n, 
and the sum of all atoms is n*(1/n) = 1. In the case of a 
power set of a 3-element set, the atoms are 001, 010, and 

100, and the probability is P(001) = P(010) = P(100) = 1/3. 
Atoms can correspond to orthonormal bases entailing the 
additive measure function.

However, introducing Hilbert space does not directly 
imply quantum theory. Because the direct sum of orthogo-
nal vector spaces just implies an almost disjoint union of 
Boolean lattices (i.e., the direct sum of some Boolean alge-
bras except for the smallest and largest elements), there are 
no common elements between Boolean algebras except for 
the smallest and largest elements. For this reason, no ele-
ment implies entanglement, which is characteristic of quan-
tum theory.

Based on this point, previous studies have chosen the 
method to introduce additional mechanism to handle 
quantum theory, leading to a specific orthomodular lattice 
equipped with elements corresponding to entanglement. To 
clarify the weakness in that method, the simplest model [26, 
35] is recalled here (Fig. 1).

Consider the situation in which a wandering firefly in 
box 1, 2, 3, or 4, as shown in Fig. 1, can blink. Assume that 
there are two directions of measurement, A and B. Since 
each measurement is restricted in terms of direction, an 
observer cannot indicate the accurate position of the fire-
fly. In measurement A, measured location a reveals that the 
firefly is situated precisely in position, 1 or 3, and b reveals 
that it is situated precisely in position 2 or 4. The relation 
between the precise position and measured location is sum-
marized in the above table in Fig. 1. The correspondence 
between the measured state and the location of the firefly is 
represented as a(13) and b(24). An assumption leading to an 
element with entanglement is the state in which the firefly 
does not blink. The “no blinking state” is indexed by 5 and is 
measured by n. In measurement A, the units of measurement 
are a(13), b(24), and n(5). Thus, all statements containing 
measurements can be expressed as the power set of {a(13), 
b(24), n(5)}. This power set, which is  23-Boolean algebra, 
is shown in the Hasse diagram containing red elements in 
Fig. 1, where the empty set is represented by ∅. Similarly, in 
measurement B, the units of measurement are c(12), d(34), 
and n(5). The power set with respect to measurement B is 
shown in the Hasse diagram containing blue elements in 
Fig. 1. It is easy to see that the two power sets have four com-
mon elements in terms of the precise location, such that ∅, 
n(5), ab(1234) = cd(1234), and abn(12,345) = cdn(12,345). 
These common elements are represented by black elements. 
Unifying two power sets makes one orthomodular lattice 
containing blue, red, and black elements in Fig. 1. Except 
for the smallest and largest elements, the common elements 
reveal entanglement.

The question arises as to why “no blinking” is introduced. 
This might be the actual reason for implementing entangle-
ment. The table below in Fig. 1 shows the relation between 
the precise position and measured location of a firefly not 
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involving the no blinking state. In this condition, measure-
ment A contains only two units of measurement, a(13) and 
b(24). Additionally, measurement B contains c(12) and 
d(34). Thus, each set consisting of statements containing 
measured states is expressed as  22-Boolean algebra. These 
two Boolean algebras have common elements, the small-
est and largest elements. Combining two algebras with 
respect to common elements entails a Chinese lantern-type 
orthomodular lattice. Although this lattice also satisfies the 
definition of an orthomodular lattice and breaks the law of 
distributivity, there is no element corresponding to entangle-
ment. Because it is just a Hilbert space, there is no advan-
tage in constructing a firefly model if “no blinking” is not 
introduced. For this reason, no blinking is introduced, that 
is ad hoc assumption, and so is weakness in introducing an 
element representing entanglement.

We here focus on the weakness and examine the under-
lying framework of the firefly model. It results in finding 
the inevitable weakness in the framework. First, a funda-
mental question arises regarding the firefly model and why 
two measurements are prepared along orthogonal axes. This 
question is also applied to the foundation of Hilbert space 
and weak quantum logic [31–35]. They all introduce orthog-
onal axes, while their foundation is arbitrary. Although one 
of the hopeful motivations is bounded rationality [26], it 
introduces the sum of independent Boolean algebras. The 
rationality is expressed by the construction logic resulting 
from cognitive mapping. If cognitive map f is defined from 
universal set U to a set of representations, one can define an 
equivalence relation derived from this map and obtain a par-
tition consisting of the equivalence classes with respect to 
the equivalence relation. Since each proposition is expressed 
as a combination of equivalence classes, the power set of a 
set of equivalence classes implies a whole set of propositions 
(Fig. 2A). This is simply Boolean algebra. Thus, the core of 

bounded rationality assumes that all the information in the 
world cannot be obtained and that it is therefore bounded; 
however, rationality is maintained in a restricted area. This 
implies that one can assign a cognitive map without ambi-
guity (Fig. 2A). How is this possible? It is assumed that the 
area outside of the bounded area is independently separated 
from the inside and that the inside is not influenced by the 
outside. This is a fundamental assumption. One measure-
ment (i.e., observable) is chosen, the outside of the meas-
urement is separated, and any state can be expressed as a 
union of atoms.

We think that fundamental assumptions cannot be estab-
lished and is ad hoc. Even if one chooses an arbitrary observ-
able, the bounded area cannot be separated from the outside. 
In other words, one cannot assign one map from a universal 
set to a set of representations. This is our basic assumption. 
Here, we show our roadmap to construct a quantum-like 
probability (Fig. 2B). We also assume bounded rational-
ity, but it is incomplete. Incomplete bounded rationality is 
expressed as the ambiguity of a cognitive map, and then, it 
is expressed as two kinds of cognitive maps, f and g. From 
these two maps, one can obtain two kinds of equivalence 
relations and two kinds of partitions. Here, we introduce 
how to construct a lattice using the two partitions. A theory 
of expression in which any lattice can be obtained from 
two kinds of partitions has been verified [10]. Under this 
assumption, if f = g, a Boolean lattice is obtained; otherwise, 
a non-Boolean lattice can be obtained. The non-Boolean lat-
tice contains not only a Chinese-lantern type orthomodular 
lattice but also an orthomodular lattice involving elements 
corresponding to entanglements. Thus, we introduce incom-
plete bounded rationality in our framework.

Here, we define the probability space for each lattice. 
This definition allows the probability space for  2n-Boolean 
algebra, in which the probability of an atom is 1/n, the 

Fig. 1  Firefly model entailing 
two types of orthomodular lat-
tices. The inner box represents 
the phenomenon in which a 
firefly blinks in any boxes 1–4 
and the direction of measure-
ment, A and B. The diagrams 
above represent constructing a 
lattice from the situation involv-
ing “no blinking.” The diagrams 
below represent constructing a 
lattice (Chinese lantern) from 
the situation not involving “no 
blinking”
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summation of the probability of all atoms is 1, and the prob-
ability satisfies the additive function. The probability space  
of Boolean algebra is represented by PB. The probability 
derived from a non-Boolean lattice is represented by PL. 
Thus, our probability model allows the extension of quantum  
probability on an orthonormal basis. Since Boolean algebra 
corresponds to the terminal element (i.e., complete bounded 
rationality) in the spectrum of incomplete bounded rational-
ity under our framework, Boolean algebra implies an ideal 
case that is different from actual cases. In actual cases, there 
are ambiguities in the cognitive map, and a non-Boolean 
lattice is obtained. We think that actual decision-making 
implements the combination of PB and PL. Before facing an 
actual situation, one can calculate the probability of an event 
in PB. That is ideal situation. Under the actual situation, the 
cognitive map has ambiguity, one is under a non-Boolean 
lattice, and one calculates the probability of an event in PL.  
While quantum cognition compares ideal inference to  
the inference in classical probability and empirical infer-
ence to the inference in quantum probability. Similarly, our 
model without quantum theory compares ideal inference to 
the inference in PB and empirical inference to the inference 
in PL. Because our actual inference is implemented in the 
empirical world consisting of multiple contexts, such a com-
parison is reasonable.

Under incomplete bounded rationality, one can obtain 
an orthomodular lattice. There is, however, a major differ-
ence with respect to constructing a sum of Boolean lattices 
under complete bounded rationality and our framework 
under incomplete bounded rationality. In complete bounded 
rationality, the outside of each bounded region cannot influ-
ence the region itself. A whole universe consisting of mul-
tiple bounded regions can result in an orthomodular lattice 
(Fig. 2A). By contrast, in our framework, even in a single 

bounded region, an orthomodular lattice can be obtained due 
to the influence of the outside of the bounded region. In our 
framework, the ambiguity of a cognitive map is expressed 
as correlation between the inside and outside of a context, 
that is called “nonlocality” in cognition.

There have been other attempts to construct orthomodular 
lattice-containing elements corresponding to entanglements. 
Such attempts are approaches using category theory. One 
adds the tensor product as a bilinear operation with a cat-
egory of Hilbert space [36]. Another introduces nonlocality 
[37]. While they are axiomatic, our approach is intuitive 
because the implication of “nonlocality” is different from 
quantum mechanical reasoning.

Cognitive Illusions and Concept Formation

Although humans have previously been considered to be 
rational decision-makers, many cognitive and linguistic 
experiments have shown that humans make irrational deci-
sions, which is inconsistent with probability theory [1, 13, 
38–40]. Such decisions are called cognitive illusions. Since 
these decisions are made with respect to an event or concept, 
they are relevant for concept generation. Thus, cognitive illu-
sions and concept generation should be studied together. Our 
approach is the first attempt to provide an explanation for 
cognitive illusions in the framework of concept formation. 
To indicate the significance of our approach, we here discuss 
cognitive illusions and concept formation.

Cognitive Illusions

Cognitive illusions have been experimentally verified by 
evaluating the frequency of decision-making [41]. The 

Fig. 2  A The bounded rational-
ity in which cognitive map f 
can be assigned. This implies 
the almost disjoint union of 
Boolean algebras. B Incomplete 
bounded rationality. The ambi-
guity of the cognitive map is 
expressed as two kinds of maps. 
From them, two equivalence 
relations and two partitions 
are obtained, leading to both 
Boolean and non-Boolean 
lattices. In each lattice, one 
can define a probability space. 
Actual decision-making is 
expressed by changing the prob-
ability space

 

A

B
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joint probability of multiple events is equal to or less than 
that of a single event. Against probability theory, reversed 
inequalities are found in human cognition, such as in the 
conjunction fallacy and guppy effect [15, 16, 19, 24, 42, 
43]. The conjunction fallacy implies

It is clear that this inequality is the reverse of that of 
joint probability in probability theory. The guppy effect 
is a special case of the conjunction fallacy [16, 24]. The 
probability of thinking about a guppy with respect to 
“fish” is represented by Pguppy (fish), and the probability 
of thinking about a guppy with respect to “pet” is repre-
sented by Pguppy (pet). Because people usually recall tuna 
or salmon when asked to provide an example of fish, Pguppy 
(fish) is very small. Similarly, Pguppy(Pet) is very small. In 
contrast, a guppy is frequently recalled when one is asked 
for an example of a pet fish. This leads to

This implies that there are some A and B such that P(A 
AND B) ≥  (P(A) + P(B))/2. This is the general form of the 
guppy effect [19, 24, 42].

The order effect is also a cognitive phenomenon that 
is inconsistent with probability theory [44, 45]. In prob-
ability theory, P(A AND B) = P(B AND A). Imagine that 
you love hot Indian dishes. The statement “A AND B” is 
frequently expressed by “A but B” in everyday life. For 
you, Indian dishes are “hot but good” rather than “good 
but hot.” Thus, you are more likely to describe the dish as 
“hot but good” than as “good but hot.” This situation can 
be generalized by

This implies that the first term modifies the significance 
of the second term.

The Ellsberg and Machina paradoxes are also inconsist-
ent with probability theory, which implies

Humans sometimes violate this equation in decision-
making. Ellsberg [46] proposed the following thought 
experiment, and Aerts and others [47] conducted cogni-
tive experiments with over one hundred participants (also 
see [48]). Imagine 90 colored balls are contained in an urn 
that contains 30 red balls, and the sum of yellow and black 
balls is 60, where the proportion of yellow and black balls 
is unknown. One ball is randomly drawn from the urn. If 
the participant predicts the color of the drawn ball, he/she 
obtains a reward. The results of the experiment show that 
most participants bet on red balls.

(1)P(A AND B) > P(A).

(2)
Pguppy(Pet AND Fish) ≥ (Pguppy(Pet) + Pguppy(Fish))∕2.

(3)P(A AND B) ≠ P(B AND A).

(4)P(A) = P(A AND B) + P(A AND NOT (B)).

Although the probability of a black ball being pulled is 
equal to that of a red ball being pulled, participants prefer-
entially predict that a red ball will be drawn. How can we 
explain this preference? Let the event of drawing black balls 
and that of drawing yellow balls be A and B, respectively. 
Although P(A) = 1/3, uncertainty regarding the proportion 
of black and yellow balls could contribute to a cognitive 
fallacy in calculating the probability. Imagine that two balls 
are drawn from a set of 60 black and yellow balls, where 
one ball is black. Thus, there are two possibilities such that 
two balls are “black (A) and yellow (B)” or “black (A) and 
nonyellow (NOT(B)),” which is expressed as

This inequality underlies the Ellsberg and Machina 
paradoxes.

Borderline contradiction implies that the statement “Tom 
is fat and not fat” is sometimes true, dependent on contexts 
[21, 49, 50]. If Tom is in a training gym, he is fat. By con-
trast, if he is in a room with sumo wrestlers, he is not fat. 
Thus, it is generalized by.

Borderline contradiction is relevant for essential vague-
ness in cognition [51]. It has been concluded that vagueness 
can result from super- and sub-interpretation. This idea is 
directly expressed by the rough-set lattice mentioned later. 
Although vagueness had been expressed using membership 
functions in fuzzy logic, it was recently replaced by a rough 
set of lower and upper approximations [6–10].

Cognitive illusions have recently been explained using 
quantum mechanics in the research field called quantum 
cognition [14, 16–18, 23, 24, 47, 48, 52, 53]. Since quan-
tum probability allows joint probability to entail interference 
terms, various cognitive illusions can be explained using 
such terms. However, there is no physical reason to apply 
quantum mechanics to cognitive processes [25]. As men-
tioned in “Motivation of incomplete bounded rationality,” 
there are some attempts to verify the foundation to apply 
quantum theory to cognitive process; it remains unclear. Our 
examination leads to incomplete bounded rationality, which 
is defined later.

Concept Formation

As mentioned before, cognitive illusions are estimated by 
the probability of events generated through cognitive pro-
cesses in everyday life. Events have previously been stud-
ied as concepts and/or semantically quantized things in the 
field of information science, while events have been stud-
ied as categories in the field of cognitive linguistics. These 
studies are sometimes inconsistent with each other. Here, 

(5)P(A) ≠ P(A AND B) + P(A AND NOT (B)).

(6)P(A AND NOT (A)) > 0.

1332 Cognitive Computation  (2022) 14:1328–1349

1 3



we develop a definite concept that is consistent with both 
concepts in information science and categories in cognitive 
linguistics.

Concepts in information science can be defined in terms 
of extent and intent [4]. Given a world consisting of a set 
of objects, G, attributes, M, and the relation between G and 
M, I ⊆  G ×  M is a formal concept generated by collecting 
objects and attributes. If object g ∈ G has a relation to attrib-
ute m ∈ G, it is expressed as gIm. For a set of objects A ⊆ G, 
a set of collected attributes is defined by

Similarly, for a set of attributes B ⊆ M, a set of collected 
objects is defined by

Under this definition, the pair (A, B) such that A′ = B and 
B′ = A is a formal concept, and A and B are the extent and 
intent, respectively. It is easy to see that each element of 
extent satisfies all elements of intent and that each element 
of intent can be applied to all elements of extent.

It is clear to see that collecting objects and attributes in 
(7) and (8) implies an approximated set. In this sense, one 
can compare the formal concept to the concept approximated 
as a rough set. The notion of a rough set is defined by the fol-
lowing [6–10]. Given universal set U, if there exists equiva-
lence relation R in U (i.e., R ⊆ U × U), the universal set is 
divided into a disjoint partition called the equivalence class 
of R. For element y in U, the equivalence class is defined 

(7)A
� = {m ∈ M|gIm, ∀g∈A}

(8)B� = {g ∈ G|gIm,∀ m ∈ B}

as [y]R = {x ∈ U| xRy}, where xRy implies that x is equal 
to y with respect to R. Using an equivalence class, one can 
define two kinds of rough sets for a subset X of U as R*(X) 
and R*(X), which are given by

It can be easily seen that R*(X) ⊆  X ⊆ R*(X), which 
implies that R*(X) and R*(X) are necessary and sufficient 
conditions for X. Thus, set X satisfying R*(R*(X)) = X implies 
a set satisfying the necessary and sufficient condition for X.

There are two ways to collect elements, intent (attributes) 
and extent (objects), in formal concepts. Here, we introduce 
two ways to collect elements, objects, and attributes, in 
rough sets using two kinds of equivalence relations, R and S, 
respectively. Each object is defined by an equivalence class 
of R such as [x]R, and each attribute is defined by an equiva-
lence class of S such as [x]S. Thus, one can have two kinds 
of rough sets with respect to R and S: R*, R*, K*, and K*. 
Therefore, the necessary and sufficient condition is formed 
by combining two kinds of relations, such as

A solution (or a fixed point) satisfying Eq. (11) is a set 
of attributes. Figure 3 shows the significance of using two 
kinds of equivalence relations. For a universal set, two 
kinds of partitions are derived from equivalence relations S 
and R (Fig. 3A). Each part of a universal set represents the 

(9)R∗(X) = {x ∈ U| [x]
R
⊆ X},

(10)R
∗(X) = {x ∈ U|[x]

R
∩ X ≠ ∅}.

(11)S∗(R
∗(X)) = X.

Fig. 3  The significance of 
two kinds of partitions for the 
necessary and sufficient condi-
tion of rough set. A Two kinds 
of partitions are defined by 
equivalence relation S and R for 
a universal set. Each part repre-
sents an equivalence class. B If 
only S is used for the necessary 
and sufficient condition, any 
union of equivalence classes 
satisfies S*(S*(X)) = X. C If two 
kinds of equivalence relations 
are introduced, some unions 
of equivalence classes do not 
satisfy S*(R*(X)) = X 

A

B

C
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equivalence class. Figure 3B shows S*(S*(X)) = X. If only 
one equivalence relation is introduced (e.g., S) to define 
Eq. (11), any union of the equivalence classes, X, can be 
a solution to S*(S*(X)) = X. Here, X is painted blue, S*(X) 
is painted green, and S*(S*(X)) is painted blue in Fig. 3B. 
By contrast, if two kinds of partitions by S and R are intro-
duced as necessary and sufficient conditions, there are 
some X that do not satisfy S*(R*(X)) = X. Figure 3C shows 
such a case, where X, which is a union of equivalence 
classes of S, is painted blue (left), R*(X) is painted green 
(middle and right), and S*(R*(X)) is painted blue (right).

Compared to the formal concept, X satisfying condition 
(11) implies a concept derived from a rough set. The next 
question is whether a formal concept or a concept derived 
from a rough set is more likely to be the linguistic concept 
used in everyday life.

In cognitive linguistics, the concepts that people gener-
ate and use in everyday life are called categories. While a 
category is also constructed from a pair of objects and attrib-
utes, it is different from a formal concept with respect to the 
extent of heterogeneity [19, 20, 40, 54, 55]. The objects in 
a category do not have common attributes. In the category 
of birds, although representative objects called prototypes, 
such as sparrows, have the representative attribute of flying, 
penguins do not have this attribute. Such a representative 
object is called a prototype. It is reported that there is family 
resemblance among the objects in a category. For instance, 
a father has a nose similar with that of his elder son but not 
that of his daughter. In contrast, a mother’s ears are similar 
with those of her daughter. In this manner, the objects in a 
category only partially share common properties. That is, 
family resemblances constitute categories.

Due to the nature of prototypes and family resemblance, 
a category or a set of objects has a heterogeneous structure. 
In this sense, a category or concept observed in cognitive 
linguistics is totally different from a formal concept. By con-
trast, a concept derived from a rough-set has heterogeneity. 
If the equivalence relation of objects is used as the necessary 
condition, the equivalence relation of attributes is used as the 
sufficient condition, which results in a heterogeneous struc-
ture in which some objects have more attributes and other 
objects have few attributes. Such heterogeneous structures 
are always found in concepts derived from rough sets. For 
this reason, we use concepts derived from a rough set instead 
of formal concepts.

We here repeat that we do not apply quantum theory to 
cognitive process. Most of Eqs. (1)–(6) are just fact in cogni-
tive experiments, outside the classical probability calcula-
tion. Although quantum cognition applied quantum theory 
to cognitive process to describe cognitive illusions, we here 
attempt to describe cognitive illusion without cognitive 
theory. Our model is discussed in the next section.

Methods

Nonlocality in Cognition

Nonlocality in the macroscopic world has previously been 
discussed with respect to the violation of Bell inequal-
ity [56]. Our idea is consistent with previous ideas and is 
generalized in terms of the relation between objects and 
attributes in cognitive processes. First, our idea is defined, 
and finally, we argue the relationship between our “nonlo-
cality” and Bell inequality in the macroworld.

As mentioned before, decision-making is performed 
using concepts defined by the binary relations between 
objects and attributes. In the tradition of quantum logic or 
orthomodular lattice representing quantum logic, entangle-
ment corresponding to the nonlocality (or the mixture of 
locality and nonlocality) is expressed as a specific element 
in orthomodular lattice. In that representation, an ele-
ment featured with nonlocality is expressed as an element 
belonging to multiple contexts (i.e., multiple Boolean 
algebras). It implies that nonlocality can be expressed as 
combination of “belonging to” and “not belonging to” a 
context, and that nonlocality can be expressed by binary 
relation. Recall the category bird, whose main attribute is 
flying. As concrete objects, sparrows are judged to be birds 
or not by estimating whether sparrows satisfy the attribute 
of flying. Thus, nonlocality in cognition might be defined 
by using the relation between objects and attributes.

Because nonlocality plays an essential role in cogni-
tive illusions, quantum mechanics has been introduced to 
explain it. It has been debated whether nonlocality is pos-
sible in macroscopic cognitive processes. Nonlocality in 
quantum physics implies that “measuring the state of an 
object influences the state of other objects that are located 
far from the measured object.” In this study, we propose 
nonlocality in cognition, where nonlocality is extended in 
terms of the notion of space. Although nonlocality in cog-
nition looks different from nonlocality in quantum theory, 
inevitable coexistence of A and non-A (nonlocality in cog-
nition) cannot be distinguished from nonlocality of which 
state A at the one site leads to non-A at the other site. In 
extending nonlocality, distance, implying “far from the 
measured object,” is estimated not in physical space but 
in concept space or neural information space [28, 60–62]. 
Here, we define nonlocality by global correlation (relation) 
in concept space expressed by a binary relation.

We take the example of the cognition of a cat, as shown 
in Fig. 4. Herein, we use words that start with uppercase 
letters for the names of objects, i.e., cat, dog, and so on, 
and words starting with lowercase letters to denote attrib-
utes. One can determine whether the object (Cat) is a cat 
or not. This object may appear to be a cat; however, it may 
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also appear to be a human, a mass of dust, and/or moss. 
Thus, cat is sequentially determined by.

cat (because it has a typical tabby pattern).
noncat (because it wears clothes like a human).
cat (because it has a long tail).
noncat (because its fur is like moss).

This observation implies that the object is both a cat and 
a noncat, and this directly implies undecidability. However, 
one can determine whether an object is either a cat or a non-
cat in everyday life. For example, this object can be deter-
mined to be a cat because the attributes of a cat realized by 
the object are considerably more important than those of a 
noncat realized by this object. This thinking process is rea-
sonable. However, the importance of an attribute depends 
on a finite set of attributes measured by the observer (i.e., 
the sequence of cat and noncat mentioned above is finite). If 
one considers the “next” attribute to the attribute, the “like 
moss” nature of an object, one may find essential noncat 
attributes that are more important than the cat attributes, and 
the object can be determined to be a noncat. Thus, although 
one can avoid undecidability, the decision is intrinsically 
arbitrary. Listing the attributes of a cat or a noncat is per-
formed as if the final decision were made before listing the 
attributes.

While this object can be judged to be both a cat and a 
noncat, the observer decides that it is a cat rather than a 
noncat. The statement “cat rather than noncat” is strongly 
relevant for the law of reasoning. The reasoning involved 
in deciding that the object is a cat is nearly equal to that for 
deciding it is a noncat. The question arises, whether coexist-
ence of cat and noncat is accidental or not. We will answer 
this question.

How can one guarantee the condition of “cat rather than 
noncat”? To do so, we introduce the context that one focuses 
on during decision-making. Figure 4A shows that an object 

can be identified as a cat by distinguishing it from a dog. 
In the focused cat-OR-dog context, a cat has no noncat 
attributes, i.e., attributes of dogs. However, a cat has noncat 
attributes that are outside of the context of focus. The rela-
tionships between objects and attributes can be expressed as 
binary relations in which the relationship between an object 
and an attribute either exists or not.

When there are two contexts, such as cat-OR-dog and 
human-OR-nature, as shown in Fig. 4C, each context can 
be expressed as a diagonal matrix in which the attribute 
and object are related only by diagonal elements, and the 
attributes and objects may have relationships outside these 
contexts. In this matrix, each cell represented by an (object, 
attribute) pair is shaded if the object is related to the attrib-
ute, and a pair is blank if the object is not related to the 
attribute.

Introducing a context, one can define nonlocality in cog-
nition. In a specific context, cat may be distinguished from 
other objects, whereas outside the context, cat may have 
overlapping characteristics with other objects. It may be 
related to the attribute of a cat rather than the attribute of 
a noncat (Fig. 4C). While cat has no relation to noncat in 
the cat-OR-dog context, cat has a relation to all attributes 
(i.e., noncat attributes) outside the cat-OR-dog context. This 
implies that “when the cat is determined as a cat, this deci-
sion is correlated to any other attributes far from the cat-
OR-dog context.” This is nonlocality in cognition, where 
“far from” is defined not in physical space but in concept 
or information space. While decisions such as “cat rather 
than noncat” can be made with such relationships, there is a 
possibility of misunderstanding that “cat” is identified with 
“noncat.” Therefore, we can conclude that coexistence of 
cat and noncat is not accidental but inevitable. If an object 
is determined as cat in the context, then the attribute outside 
the context is destined to be noncat. Thus, the situation is 
not distinguished from the situation in which the state at 

Fig. 4  A “Cat rather than 
noncat” expressed in a focused 
context. Determining a given 
object, cat, as a cat contains not 
only the attributes of a cat but 
also the attributes of a noncat. 
The ambiguity of cat and noncat 
can help determine a cat only 
by indicating a specific context, 
the cat-OR-dog context. B A 
relation featuring “cat” without 
context. C A relation featuring 
“cat rather than noncat” using 
the cat-OR-dog context
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some place influences the state at any other place. That is 
why we call it nonlocality in cognition. By contrast, a rela-
tion without any ambiguity can be expressed as a diagonal 
matrix, as shown in Fig. 4B.

We consider relationships without ambiguity and those 
with multiple contexts as being ideal and actual, respectively. 
Concrete and real decision-making is always achieved by 
introducing a focused context, which can then be expressed 
as a relationship with multiple contexts (Fig. 4C); meanwhile, 
single objects are expressed in relationships without ambigu-
ity in the ideal case because they are identified by their own 
attributes (Fig. 4B).

This idea entails that the relationships between objects and 
attributes can change before and after actual logical opera-
tions. Before applying a logical operation, one uses the matrix 
without context, and after applying a logical operation, the 
matrix may be used with context. Owing to this shift, the logic 
and the probability space can be changed to encompass cogni-
tive illusions. We thus define the logical space and probability 
space derived from a matrix or a binary relation, as mentioned 
in the next section.

Finally, we discuss the relationship between previous argu-
ments on nonlocality in the macroworld and our nonlocality. 
Violation of Bell inequality is generalized in the macroworld 
in terms of combinations of four experiments, e1, e2, e3, and 
e4 [51]. When a pair of experiments ei and ej can be performed 
together, this is represented by eij. The performance of each 
experiment is estimated by two values, up and down, and the 
coincidence of two experiments, ei and ej, is estimated by 
expected value Eij, which is represented by + 1 corresponding 
to the coincidence of two experiments, (ei = up and ej = up) 
or (ei = down and ej = down), and − 1 corresponding to the 
noncoincidence of two experiments, (ei = up and ej = down) 
or (ei = down and ej = up). If the macroscopic experiments are 
set up under this framework, Bell inequality is defined by [51]

There are some experimental setups that can violate Bell 
inequality, which implies nonlocality in the macroworld [51]. 
It is easy to see that our definition of nonlocality also violates 
Bell inequality. Recall the binary relation between objects and 
attributes shown in Fig. 1C. Here, we define four experiments 
by assigning attributes, cat (e1), dog (e3), human (e2), and moss 
(e4), and the performance of the experiment is estimated by the 
relation between attributes and objects, cat and dog (Fig. 4C) 
such that

(12)|E
13

− E
14

| + |E
23

+ E
24

| ≤ 2.

(13)

Cat Dog

cat (e
1

) 1 0

dog (e
3

) 0 1

human (e
2

) 1 1

moss (e4) 1 1.

The relation between an attribute and an object is defined 
to assign the connection of the performance, ei = 1 implies 
the connection opened to other experiments, and ei = 0 
implies no connection. If two experiments are opened to 
each other, they can coincide with each other. Thus, two 
experiments, ei and ej, can coincide with each other if 
ei = ej = 1 in some objects. The coincidence of a pair of 
experiments is estimated by “cat or dog.” Two experiments 
performed together are verified to coincide with each other, 
and the expected value of a pair of experiments is assigned 
by + 1 if ei = ej = 1 in cat or dog. Similarly, two experiments 
are verified not to coincide with each other, and the expected 
value is assigned to be − 1 if the condition, ei = ej = 1 never 
holds in cat or dog. For example, e1 and e3 are different with 
respect to both cat and dog; thus, E13 =  − 1. By contrast, e2 
and e3 have the value of 1 with respect to dog, and then, they 
satisfy the condition that they coincide with each other with 
respect to cat or dog. Thus, E23 =  + 1. Similarly, E14 =  + 1 
because e1 = e4 = 1 in cat, and E24 =  + 1 because e2 = e4 = 1 
in both cat and dog. This leads to

This implies that the four experiments violate Bell 
inequality.

Under our approach, nonlocality essentially influences 
violation of Bell inequality. We define nonlocality as an over-
flow of the relation (information) beyond the context. Thus, 
if the nonlocality is removed from the relation, e2 = e4 = 0 
in both cat and dog. Thus, E13 = E23 = E14 = E13 =  − 1, and 
then, | E13 − E14 | +| E23 + E24 | =|− 1 + 1| +|− 1 − 1|= 2 ≤ 2. 
Thus, Bell inequality is not violated. In our framework of 
nonlocality, decision-making is performed if the ambiguity of 
the decision is hidden outside the context, which implies that 
the decision on a specific concept (i.e., an object-attribute 
pair) is globally related to any other concept. This idea is 
consistent with global work space theory supported in brain 
research [57–59].

Lattice Structure Corresponding to a Binary Relation

Given a binary relation, one can construct a logical structure 
called a lattice using a rough-set lattice technique. Lattice 
L is a partially ordered set that is closed with respect to two 
logical operations: AND and OR. The term “closed” implies 
that, for any two elements, X and Y of a lattice, X AND Y 
and X OR Y are also elements of the same lattice. The defi-
nitions of the operations and representations of a lattice are 
described in detail in Appendix 1.

Using a rough set, we define a set of concepts using 
Eq.  (11). In our framework, there are two equivalence 
relations, R and S (see Appendix 2). Because it is impos-
sible to choose either R or S as a necessary and sufficient 

(14)|E
13

− E
14

| + |E
23

+ E
24

| = | − 1 − 1| + |1 + 1| = 4.
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condition, we use one as a sufficient condition and the other 
as a necessary condition. It has previously been verified that 
a collection of X such that R*(S*(X)) = X is a lattice [8–10]. 
Set X satisfying this equation is a concept in a rough-set 
lattice. It has also been verified that lattices obtained from 
R*(S*(X)) = X, S*(R*(X)) = X, R*(S*(X)) = X and S*(R*(X)) = X 
are isomorphic to each other [10]. Here, we construct a lat-
tice as follows:

As mentioned before, the independent items are taken 
in a specific binary relation, a diagonal matrix, as shown in 
Fig. 4B. After the logical operations in actual situation, the 
binary relation is expressed as diagonal matrices with multi-
ple contexts, as shown in Fig. 4C. Next, we address the type 
of lattice that can be obtained. We show that a relation in the 
form of a diagonal matrix without multiple contexts entails 
a Boolean lattice and that a relation with multiple contexts 
entails an orthomodular lattice.

Figure 5A shows 2 by 2 to 6 by 6 diagonal matrices and 
corresponding lattices expressed as Hasse diagrams (see 
Appendix 1). In an n by n diagonal matrix, the objects are 
expressed as A1, A2, …, An, and the attributes are expressed 
as a1, a2, …, an. It is assumed that the objects and attributes 
are equivalence classes with respect to equivalence relations 
R and S, respectively. It can be clearly seen that, for any sub-
set of a universal set consisting of attributes, S*(R*(ak ∪ ap 
∪ … ∪ aq)) = S*(Ak ∪ Ap ∪ … ∪ Aq) = ak ∪ ap ∪ … ∪ aq. Thus, 
any union of attributes is an element of a lattice, L = {X ⊆ U| 

(15)L = {X ⊆ U|S∗(R
∗(X)) = X}.

S*(R*(X)) = X}. The lattice contains all attributes as atoms 
(i.e., with the nearest element being larger than the smallest 
element) and all unions of atoms. This implies that the lattice 
is a power set of attributes and that it is a Boolean lattice.

Figure 5B shows a typical binary relation consisting 
of some subdiagonal matrices. A given n by n relation is 
divided into parts. Without loss of generality, we discuss 
how an orthomodular lattice is obtained. A 10 by 10 relation 
consists of one 4 by 4 and two 3 by 3 diagonal matrices, as 
shown in Fig. 5B. Let a1, a2, …, a10 and A1, A2, …, A10 rep-
resent attributes and objects, respectively. The 4 by 4 matrix 
consists of (Ai, aj) = 1 if i = j and (Ai, aj) = 0 otherwise, where 
the value 1 implies that an attribute is related to an object, 0 
represents no relation, and i, j = 1, 2, …, 4. For ak ∪ ap ∪ aq 
with k, p, q = 1, 2, …, 4, it can be clearly seen that S*(R*

(ak ∪ ap ∪ aq)) = S*(Ak ∪ Ap ∪ Aq ∪ (A5 ∪ A6 ∪ … ∪ A10)) = ak ∪ 
ap ∪ aq and that S*(R*(a1 ∪ a2 ∪ a3 ∪ a4)) = S*(U) = U. This 
implies that all unions of attributes in {a1, a2, a3, a4} are 
elements of the rough-set lattice, L, except a1 ∪ a2 ∪ a3 ∪ a4.

This implies that the  24-Boolean lattice, except for the 
largest element, is a sublattice in L. Every union of attributes 
that belongs to different diagonal matrices, such as a3 ∪ a6, 
is not an element of L because S*(R*(a3 ∪ a6)) = S*(U) = U. 
This implies that one  24-Boolean lattice and two  23-Boolean 
lattices can constitute a disjoint union except for the small-
est and largest elements (i.e., an almost disjoint union of 
Boolean algebras) [30, 60]. The Hasse diagram of this 
almost disjoint union of sub-Boolean lattices is shown in 
Fig. 5B. It can be directly verified that most of the almost 

A B

Fig. 5  A Boolean lattices obtained from diagonal matrices. If a diag-
onal matrix is an n by n matrix, a  2n-Boolean lattice (i.e., a lattice 
consisting of  2n elements) is obtained. Lattices are drawn as Hasse 
diagrams. B An orthomodular lattice is obtained from diagonal matri-
ces with multiple contexts. Each n by n sub-diagonal matrix leads to 

a  2n-Boolean lattice, and an entire lattice is expressed as an almost 
disjoint union of some Boolean sub-lattices. A lattice is expressed as 
a Hasse diagram except for the smallest and largest elements, where 
the smallest and largest elements (black circles) are common to all 
Boolean sub-lattices
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disjoint unions of Boolean algebras are an orthomodular 
lattice [60, 63–65]. Finally, the logical structure before the 
logical operation is expressed as a Boolean lattice, and the 
logical structure after the operation is expressed as an ortho-
modular lattice. Figure 6 shows the flow chart of construct-
ing a lattice for a given binary relation.

Probability in Lattice

Here, the N-bit Boolean lattice is represented by BN, which 
consists of binary sequence A = a1a2…aN, where ak is either 
0 or 1. We consider LN, a subset of BN, where LN is a lattice 
with the smallest and largest elements of BN. An element of 
LN, A, is ordered by natural number i and is represented by 
Ai such that

where 1(A) is the number of 1 s in binary sequence A and 
Ω(A) represents the decimal number corresponding to A. 
For example, 1(001001) = 2 and Ω(001001) = 9. Given 
L3 = {111, 110, 010, 001, 100, 000}, the elements of L3 are 
ordered by A1 = 111, A2 = 110, A3 = 100, A4 = 010, A5 = 001 
and A6 = 000. Given LN, A = a1a2…aN and B = b1b2…bN in 

(16)j < i if �(Ai) < �(Aj);

(17)j ≤ i if �(Ai) = �(Aj) and Ω(Ai) ≤ Ω(Aj).

LN are binary sequences, and order A ≤ B is defined by ak ≤  
bk for any k. The AND and OR operations are defined by

Under this definition, if A AND B and A OR B are also 
in LN for any A, B in LN, then LN is a lattice. We also define 
NOT(A) as a binary sequence satisfying

where 0 and 1 represent the smallest and largest elements in 
a lattice, respectively.

For Ai in LN, the probability of Ai, represented by P(Ai), is 
defined by Prob([Ai]L), where Prob is defined later and [Ai]L 
is a subset (i.e., partition) of BN defined as follows:

Because BN is divided into disjoint subsets with respect 
to LN, for any A in BN,

Consider L3 = {111, 110, 100, 010, 001, 000}, we have 
[A1]L = {111}, [A2]L = {110}, [A3]L = {100, 101}, [A4]L = {010, 
011}, [A5]L = {001}, and [A6]L = {000}. In other words, BN is 

(18)A OR B = min{X ∈ LN|A ≤ X,B ≤ X}

(19)A AND B = max{X ∈ LN|X ≤ A,X ≤ B}.

(20)A OR NOT (A) = � and A AND NOT(A) = �,

(21a)
[
Ai

]

L
=
{
Aj ∈ �N|Ai ≤ Aj

}
− ∪j<1

[
Aj

]

L

(21b)[A]L = [Ai]L, if A ∈ [Ai]L.

Fig. 6  The flow chart of constructing a rough-set lattice for a given binary relation
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divided into disjoint parts. Now, P(Ai) = Prob([Ai]L) is defined 
by

where P[A]
L

(x) represents the probability of binary sequences 
in [A]L, assigned by x representing the number of 1 s in the 
binary sequence, and 1[A]L represents a set of the number of 
1 s in each binary sequence in [A]L. Figure 7 shows the flow 
chart of calculating the probability of an element of the lattice.

Given [A]L = {01000, 01100, 01010, 01001, 01110}, 
N = 5, 1[A]L = {1, 2, 3} and Prob([A]L) = (1/5 + 2(3/5) + 3 (1 

(22)Prob([A
i
]
L
) =

∑

k∈1[A]
L

kP[A]
L
(k)∕N

This can be shown easily by the following:
We can assume that max1[A]L = n; then, min1[B]L = n + 1 

without loss of generality. Because of the definition of [A]L 
and the assumption max1[A]L < min1[B]L, we consider the 
case in which [A]L contains the most possible elements, 
1[A]L = {1, 2, …, n}, without loss of generality. If k ∉ 1[A]L, 
it does not affect the following argument because P[A]L(k) = 0. 
Let max1[B]L = m, 1[B]L = {n + 1, n + 2, …, m}. Thus,

Because P[A]
L

(1)  + P[A]
L

(2) + … + P[A]
L

(n)  = 1,

(24)
P(A) = Prob([A]

L
) = (P[A]

L

(1) + 2P[A]
L

(2) +…

+ (n − 1)P + [A]
L
(n − 1) + nP[A]

L

(n))∕N

(25)

P(A)

=
P[A]

L

(1) + 2P[A]
L

(2) +⋯ + (n − 1)P[A]
L

(n − 1) + n(1 − P[A]
L

(1) − P[A]
L

(2) −⋯ − P[A]
L

(n − 1))

N

=
n − ((n − 1)P[A]

L

(1) + (n − 2)P[A]
L

(2) + P[A]
L

(n − 1))

N
< n∕N

(26)

P(B) = ((n + 1)P[A]L
(n + 1) + (n + 2)P[A]L

(n + 2)

+⋯ + (m − 1)P[A]L
(m − 1) + mP[A]L

(m))∕N

= ((n + 1)(P[A]L
(n + 1) + P[A]L

(n + 2) +⋯ + P[A]L
(m))

+ (P[A]L
(n + 2) + 2P[A]L

(n + 3) +⋯ + (m − n − 1)P[A]L
(m)))∕N

= (n + 1)∕N + (P[A]L
(n + 2) + 2P[A]L

(n + 3) +…

+ (m − n − 1)P[A]L
(m))∕N > (n + 1)∕N.

Fig. 7  The flow chart of calculating the probability of an element of the lattice

/5))/5 = (10/5)/5 = 2/5 because P[A]
L

(1) = 1/5, P[A]
L

(2) = 3/5 
and P[A]

L

(3) = 1/5. Clearly, Prob([max LN]L) = N/N = 1.0 and 
Prob([min LN]L) ≥  0.0. In the Boolean and a lattice of almost 
disjoint union of Boolean algebras, Prob([min LN]L) = 0.0 is 
clear to see. It can be clearly seen that for any A, B in LN, P 
is a monotonous map such that

(23)A ≤ B ⇒ P(A) ≤ P(B).
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As a result, P(A) < n/N < (n + 1)/N < P(B).
Owing to the monotonousness, P(A), P(B) ≤ P(A OR B), 

P(A AND B) ≤ P(A), and P(B). Thus, we have that

This shows that cognitive illusions such as those associ-
ated with the guppy effect and conjunction fallacy cannot 
be verified in the probability space derived from a single 
lattice. When we focus on lattice L in which the probability 
is calculated, we write P(A) as PL(A). In BN, P(A) is written 
as PB(A), and in ON, P(A) is written as PO(A). Similarly, we 
use ProbB(A) and ProbO(A).

In BN, any [A]B is a one-element set {A}, and P(A) = 
Prob([A]B) = Prob({A}) = 1(A)/N. For any pair of binary 
sequences A and B, let the number of 1 s occurring in both 
A and B in the same digit be nc, the number of 1 s occur-
ring only in A in the same digit be nA, and the number 
of 1 s occurring only in B in the same digit be nB. Thus, 
P(A) = (nA + nc)/N, P(B) = (nB + nc)/N, P(A AND B) = nc/N, 
and P(A OR B) = (nA + nB + nc)/N. Thus, P(A) + P(B) − P(A 
AND B) = (nA + nB + 2nc)/N − nc/N, and

Particularly, it is easy to see that for disjoint sets A and B,

That implies an additive law. In our framework, the addi-
tive law holds only in BN and never holds in non-Boolean 
lattices. Because we focus on the ambiguity of decision-
making or incomplete bounded rationality, we give up the 
law of additivity. However, our framework allows A ≤ B ⇒ 
P(A) ≤ P(B), which can be considered weakened additivity.

P(A AND B) ≤ (P(A) + P(B))/2 ≤ P(A OR B) is also 
shown by counting the number of 1 s in A and/or B because 
(P(A) + P(B))/2 = (nA + nB + 2nc)/2N. Because P(A and 
NOT(B)) = nA/N, it can be seen that

As mentioned earlier, we assume that decision-making 
with the logical operations AND, OR, and NOT can modify 
the probability space from one based on Boolean lattice BN 
to one based on orthomodular lattice ON.

In our approach, various cognitive illusions can result 
from the change in probability from a Boolean lattice to 
an orthomodular lattice. We assume that the probability of 
single event A (binary sequence) before a logical operation 
is performed is obtained from BN. Thus, P(A) is obtained as 
PB(A) = ProbB([A]B) = ProbB({A}).

In contrast, after a logical operation is performed, P(A 
AND B) is obtained as PO(A AND B), where the AND 
operation is applied to A and B in BN and the probability 
of A AND B is obtained in ON. This results in P(A AND 

(27)P(A AND B) ≤ (P(A) + P(B))∕2 ≤ P(A OR B).

(28a)P(A OR B) = P(A) + P(B) − P(A AND B).

(28b)P(A OR B) = P(A) + P(B).

(29)P(A) = P(A AND B) + P(A AND NOT (B)).

B) = ProbO([A AND B]O). As mentioned in the next section, 
this leads to ProbO([A AND B]O) > ProbB([A]B), which is 
similar to the conjunction fallacy.

In our model, multi-contexts which are expressed by  
multi-dimensional aspects in quantum cognition are  
expressed by almost disjoint union of multi-Boolean alge-
bras. Thus, practical scenarios can be handled in our model, 
as well as the quantum psychological model can do [27, 66]. 
Recently, three-way decisions are proposed, based on the 
notion of acceptance, rejection, and non-commitment [67], 
and developed in the relation of quantum formalism [28]. 
Since our construction contains upper and lower approxima-
tions with respect to two binary relations, the combination  
of them can entail three-way decisions.

Simple Example from Relation to Probability

We show how to construct a lattice and how to calculate 
probability from a binary relation. Figure 8A shows how to 
construct a lattice from a diagonal binary relation. A set of 
attributes {a, b, c} and a set of objects {A, B, C} is a parti-
tion of a universal set, U = a ∪ b ∪ c = A ∪ B ∪ C, and can be 
derived from the two kinds of cognitive maps f and g shown 
in Fig. 2B. A collection of solutions for X = S*R*(X), where 
X is a subset of U. Since it is easy to see that a candidate of a 
solution to X = S*R*(X) is a union of a subset of {a, b, c}, one 
must check all subsets of {a, b, c} in the table in Fig. 6A.

For example, in taking X = a ∪ b, which is represented by 
ab, the elements in {A, B, C} having a relation (gray cell) to 
a or b are collected. Since A has a relation to a and B has a 
relation to b, one can collect AB = R*(ab). Then, one calcu-
lates S*R*(ab) = S*(AB) and collects the elements in {a, b, 
c} that have no relation to the elements in {A, B, C} except 
for R*(ab) = AB. Thus, one obtains S*R*(ab) = ab. As shown 
in the table in Fig. 8A, any unions of elements in {a, b, c} 
can be solutions to S*R*(X) = X. This implies a power set of 
{a, b, c}, which is represented by the Hasse diagram. The 
number accompanied by an element of a lattice represents 
the order in a lattice defined by Eqs. (16) and (17). Given the 
nondiagonal relation shown in Fig. 8B, some subsets are not 
solutions to S*R*(X) = X. In taking X = a, a collection of ele-
ments in {A, B, C} having a relation to a is AC since the cells 
(a, A) and (a, C) are shaded. This implies R*(a) = AC. Then, 
one collects the elements in {a, b, c} having no relation to 
the elements in {A, B, C}, except for R*(a) = AC. This is not 
only a but also c, and one obtains S*R*(a) = ac. This implies 
that a is not a solution to S*R*(X) = X (not an element of a 
lattice). An obtained lattice is shown as a Hasse diagram. 
The number accompanied by an element of a lattice rep-
resents the order in a lattice defined by Eqs. (16) and (17).

Figure 8C shows how to calculate the probability of an 
element of a lattice, L, obtained in Fig. 8B. For element x 
in a lattice, [x]L is calculated. As mentioned before, there 
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is a Boolean algebra, B, containing a given lattice, L. In 
the case of the lattice shown in Fig. 8B, the corresponding 
Boolean algebra is the lattice shown in Fig. 8A. Since [x]L 
is a disjoint subset of B3, it is taken by the order of elements 
of a lattice, L. First, [abc] is taken due to the order since abc 
is the largest element in B3, [abc] = {abc}. Second, [ac] is 
an upper set of ac except for [abc]. One obtains [ab] = {x 
in B3 | x ≥ ab} – [abc] = {ab, abc} – {abc} = {ab}. Simi-
larly, [ac] = {ac, abc} – [abc] = {ac}, where the elements of 
{ac, abc} are represented by red. Indeed, [bc] = {bc, abc} 
– [abc] = {bc}, [b] = {b, ab, bc, abc} – [bc] – [abc] = {b, 
ab}, and [c] = {c, ac, bc, abc} – [ac] – [bc] – [abc] = {c}, 
where the elements of {c, ac, bc, abc} are represented by 
blue. Finally, [∅] = {∅, a}. The probability of element x of 
a lattice is an average of the probability of the elements in 
[x]. Thus, P(b) = (PB(110) + PB(010))/2 = (2/3 + 1/3)/2 = 1/
2, and P(∅) = (PB(100) + PB(000))/2 = 1/6

Figure 9 also shows an example of the calculation of 
the probability of an element of a non-Boolean lattice. A 
Boolean lattice containing a given lattice is B4.

Results: Cognitive Illusions

In this section, we show that our model can describe vari-
ous cognitive illusions that are found in cognitive experi-
ments and that are explained by quantum cognition. Our 

preliminary explanation can show the possibility of a 
rigorous explanation of cognitive illusions.

Guppy Effect

Figure 10 shows the change in the probability space from 
B5 to O5. As a subset of B5, {10100, 10101, 10110, 10111} 
corresponds to an element, 10100, in O5, PO(10100) = (1 × 
4 + 2 × 3 + 1 × 2)/4/5 = 3/5 = 0.6. Thus, we can explain the 
cause of the guppy effect.

Because a single item is considered in the calculation of 
O5 with respect to the probability, P(11001) = PB(11001) 
= 3/5 = 0.6, and similarly, P(11010) = PB(11010) = 0.6. In 
contrast, a binary operation modifies the lattice, P(11001 
AND 11010) = PO(11000) = Prob([11000]O) = Prob({110
11, 11101, 11110, 11001, 11010, 11100, 11000}) = (3 × 
4 + 3 × 3 + 1 × 2)/7/5 = 23/35 ~ 0.66. Therefore, when we 
write A = 11001, B = 11010,

This is simply the guppy effect. Similarly, P(10111)  
= PB(10111) = 0.8, P(11110) = PB(11110) = 0.8, and 
P(10111 AND 11110) = PO(10110) = PO(10100) = 0.6 
because 10110 is included in  [10100]O. In this case, the 
guppy effect does not occur.

(30)P(A AND B) > (P(A) + P(B))∕2

A

B

C

Fig. 8  Binary relation, corresponding lattice, and probability. A 
Given a diagonal relation, any unions of subsets of {a, b, c} can be 
elements of a rough-set lattice. This leads to  23-Boolean algebra. B 

Given a nondiagonal relation, some subsets cannot be a solution to 
X = S*R*(X). This leads to a non-Boolean lattice. C Probability of an 
event (binary sequence) in a non-Boolean lattice in B 
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Conjunction Fallacy

The conjunction fallacy also implies that P(A and B) > P(A). 
This is simply an example of the guppy effect. In other 
words, the conjunction fallacy can be concretely explained 
in our framework.

Order Effect

The order effect is usually explained using quantum psychol-
ogy since quantum mechanics can use the order effect in 
measurement [61]. As mentioned before, quantum psychol-
ogy assumes bounded rationality. By contrast, we provide an 

Fig. 9  An example of the calculation of the probability of elements in a non-Boolean lattice. Element x in the non-Boolean lattice and elements 
of [x] in the B4-Boolean lattice have the same color

Fig. 10  Change in the probability space from a Boolean lattice, B5, to an orthomodular lattice, O5. Each element of O5 is expressed as a subset 
of B5; the elements of a subset of B5 corresponding to an element of O5 have the same color
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explanation under our framework with incomplete bounded 
rationality.

The order effect, P(A AND B) ≠ P(B AND A), is eas-
ily explained by our model. Let categories A and B be 
expressed as 2 by 2 and 3 by 3 diagonal relations, respec-
tively (Fig. 11). The order A and B divides a 5 by 5 binary 
relation into a 2 by 2 relation and a 3 by 3 relation from left 
to right, and the order B and A divides a 5 by 5 binary rela-
tion into a 3 by 3 relation and a 2 by 2 relation. As atoms are 
numbered using a binary relation from left to right, 00001, 
00010, …, 10000, partitions are changed depending on the 
order of A and B.

If the AND operation is applied to A before B (Fig. 4 
above), the atoms of the B2 lattice are 00001 and 00010, 
and those of the B3 lattice are 00100, 01000, and 10000. 
In this case, for example,  [00100]O = {00100, 00101, 
00110, 00111} and  [10000]O = {10000, 10001, 10010, 
10011}. Thus, PO(00100) = PO(10000) = (3 × 1 + 2 × 2 
+ 1 × 1)/4/5 = 0.4. In contrast, if the AND operation is 
applied to B before A (Fig. 9), the atoms of the B3 lattice 
are 00001, 00010, and 00100, and those of the B2 lattice 
are 01000 and 10000. In this case,  [00100]O = {00100} 
and  P O(00 ,100)  = (1  ×  1) /1 /5  = 0 .2 .  S imi la r ly, 
 [10000]O = {10000, 10001, 10010, 10100, 11000, 11001, 
11010, 11100} and PO(10000) = (3 × 3 + 4 × 2 + 1 × 1)/8/5 
= 0.45. Note that 10000 = 10001 AND 11000. It is clear that 
10001 is above 00001; however, 11000 is not. In this sense, 

10001 belongs to A, and 11000 belongs to B. Thus, the 
order A before B refers to 10001 AND 11000, and the order 
B and A refers to 11000 AND 10001. Because the order 
affects the structure of the lattice and probability space, 
we obtain PO(10001 AND 11000) = 0.4 < 0.45 = PO(11000 
AND 10001). This implies that there exist A and B in BN 
such that P(A AND B) ≠ P(B AND A). This is simply the 
order effect.

We can describe the order effect without quantum theory 
as shown in Fig. 11. Although a binary relation consist-
ing of 2 by 2 context and 3 by 3 context is the same as a 
binary relation consisting of 3 by 3 context and 2 by 2, the 
numbering elements of corresponding lattices are different 
from each other. Thus, the probability of elements of the two 
quasi-disjoint of Boolean algebras are different from each 
other, and that can explain to the order effect.

Ellsberg and Machina Paradoxes

These paradoxes involve not only the AND operation but also 
the NOT operation and are expressed as P(A) ≠ P(A AND 
B) + P(A AND NOT(B)). It is clear that P(A) = P(A AND 
B) + P(A AND NOT(B)) in classical probability theory. As 
mentioned earlier, both AND and NOT operations are defined 
in Boolean algebra in our approach, whereas the elements 
resulting from the AND operation are interpreted in the ortho-
modular lattice. Thus, the probability of the elements resulting 

Fig. 11  Order effect explained by the order of sublattices sensi-
tive to a change in the probability space. The order A and B refers 
to the order of the sublattices from left to right, B2 and B3, and the 

order B and A refers to the order B3 and B2 in the orthomodular lat-
tice (center). The elements of the orthomodular lattice that constitute 
a subset of B5 (right) are indicated with the same color
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from the AND operation is obtained by the map from the 
orthomodular lattice to [0, 1]. Now, we assume that A = 11001 
and B = 11010 in the case shown in Fig. 3. From the definition 
of the probability of a single item, P(11001) = PB(11001) = 3/
5 = 0.6. In contrast, P(11001 AND 11010) = PO(11000) ~0.66, 
and  P (11001  AND NOT(11010) )  =  P (11001 
AND 00101) = PO(00001) = 1/5 = 0.2. As a result, 
P(11001) ≠ P(11001 AND 11010) + P(11001 AND 
NOT(11010)). This implies the Ellsberg and Machina 
paradoxes.

Borderline Contradiction

Borderline contradiction is explained using quantum psy-
chology [58]. It can utilize joint probability in quantum 
cognition and violates classical probability theory. Our 
description can provide an explanation under quantum-like 
probability resulting from incomplete bounded rationality.

In probability theory, the law of noncontradic-
tion, NOT(A AND NOT(A)), is expressed as P(A AND 
NOT(A)) = 0. The borderline contradiction found in cog-
nitive processes contradicts this law and is expressed as 
P(A AND NOT(A)) > 0. Borderline contradiction can be 
explained by switching between BN and ON in our approach. 
This assumes that a change in the logical structure is caused 
by unstable decision-making between BN and ON. Border-
line contradiction is expressed as the back-and-forth trans-
formation between an element of BN and a subset of BN. For 
any A in BN, [A]O is calculated, and for any subset of BN, S, 
rev[S]B is an element chosen from S.

We now demonstrate borderline contradiction in O5, as 
shown in Fig. 3. First, we select A = 01010 in B5; the logi-
cal operation NOT is also applied to A in B5. This results 
in NOT(A) = 10101. Next, we apply [・]O to A and NOT(A) 
and then apply rev[・]B. Thus, [A]O =  [01010]O = {01011, 
01001, 01010, 01000} and [NOT(A)]O = [10101] = {10111, 
10101, 10110, 10100}. Finally, rev[[A]O]B = 01001 and 
rev[[NOT(A)]O]B = 10101 are possible. In this case, 
P(rev[[A]O]B AND rev[[NOT(A)]O]B) = P(10101 AND 
01001) = P(00001) = 0.2 > 0. This implies that there is an 
A in BN such that P(A AND NOT(A)) ~ P(rev[[A]O]B AND 
rev[[NOT(A)]O]B) > 0. In our approach, borderline contra-
diction results from instabilities in the logical structure. We 
describe various cognitive illusion by using our probability 
theory based on the lattice derived from cognitive model 
featured with nonlocality in cognition.

Finally, we here discuss the significance of our quantum-
like probability based on nonlocality in cognition. Many 
researchers consider that quantum cognition can describe 
not only cognitive illusion but the essential property of cog-
nitive concept that is phenomenal entity [68]. Conceptual 
thinking, decision-making, and/or cognition are experienced 
by a consciousness as a subject [69]. Since consciousness 

as a subject can be mixed with up a phenomenon in front of 
the entity, consciousness as a subject can experience a phe-
nomenon. That nature is strongly related to quantum theory 
on one hand [70], and experiencing subject is regarded as 
phenomenal entity called phenomenal consciousness [71], 
and bridging brain data with theoretical studies is proceeded 
[72]. Quantum theory is expected to describe phenomenal 
consciousness.

As mentioned in “Motivation of Incomplete Bounded 
Rationality,” we point out the weakness in the bounded 
rationality, that is the well-known foundation of quantum 
theory in cognitive process, and expand such an idea to the 
incomplete bounded rationality. While we give up direct 
relation between cognitive process and quantum theory, the 
resulting model in the form of a lattice, that is almost disjoint 
union of Boolean algebras, can be regarded as a weaken 
quantum logic in the strict sense of Atmanspacher [29, 31]. 
Therefore, our approach is consistent with the underly-
ing idea in quantum theory. As mentioned in “Cognitive 
Illusions and Concept Formation” and “Methods,” such a 
weaken quantum logic is derived from a specific binary rela-
tion between objects and attributes, that is called nonlocality 
in cognition. While the binary relation of the nonlocality in 
cognition is expressed in very restricted form, the nonlocal-
ity reveals that each object has one to one relation between 
objects and attributes and has identity of itself, while the 
object is related to attributes outside the context. In other 
words, the nonlocality in cognition is an entity which can 
be expanded toward the outside of the context. That is noth-
ing but a restricted expression for phenomenal entity related 
to phenomenal consciousness. Therefore, we also say that 
our approach night describes not only cognitive illusion but 
phenomenal consciousness.

While quantum cognition is recently connected with 
Bayesian inference [73], quantum-like cognitive process 
is strongly connected with Bayesian and inverse Bayesian 
process [63]. Cognitive process is recently found not only in 
human cognition but also in various living systems includ-
ing unicellular organisms, physarum [74], and bio-chemical 
reaction networks [75]. Underlying mechanism in proto- 
cognitive system is studied in the context of inference sys-
tem, especially Bayesian inference. Recently, use of Bayes-
ian inference is verified by free energy principle [76], and 
active modification of environment is verified by active infer-
ence [77]. It is known that Bayesian inference is expressed as 
Boolean algebra or classical logic [63]. While the probabil-
ity of hypothesis is replaced by the joint probability of the 
hypothesis under some data, the likelihood of the hypothesis 
is invariant in Bayesian inference. However, recent studies 
of which living systems are interpreted as the inference 
system find that the likelihood of hypothesis is perpetually 
modified and empirical data are canceled, which is called 
inverse Bayesian inference [63, 78]. These modifications and 
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canceling avoid a system from steady-state and then make 
a system wander from a context to another context [78]. 
Therefore, such inference immediately entails the inference 
under multi-contexts. Since multi-contexts are expressed by 
the binary relation with the non-locality of cognition in our 
model, the corresponding lattice is represented by an almost 
disjoint union of Boolean lattice or an orthomodular lattice. 
It results in that quantum-like cognition might be found in 
various levels of living systems.

Logical operation in orthomodular lattice might entail 
scale-free properties exhibited by the brain [79]. Since 
orthomodular lattice is represented by multiple Boolean 
sub-lattices whose greatest and least elements are common, 
decision-making is realized in one Boolean sub-lattices and 
wanders from one sub-lattice to another sub-lattice [63, 78]. 
So far as sub-lattices are regarded as attracters in a dynami-
cal system of the brain, wandering process is chaotic wan-
dering from one attracter to another attracter. It is recently 
reported that an agent with both Bayesian and inverse 
Bayesian inference shows scale-free properties [80, 81]. As 
mentioned before, the inference consisting of Bayesian and 
inverse Bayesian inference can entail orthomodular lattice 
[63]. Thus, inference process in orthomodular lattice might 
underlie the mechanism of scale-free properties in the brain.

Conclusion

Although concept formation and cognitive illusions appear 
to share a mechanism, they have been investigated indepen-
dently. While quantum cognition can successfully explain 
various cognitive illusions, the reason for the introduc-
tion of quantum mechanics is based on axiomatic bounded 
rationality. Since the fundamental assumption in bounded 
rationality is still unclear, we expand the idea of bounded 
rationality and introduce incomplete bounded rationality. 
Under this condition, we do not verify the foundation of 
quantum theory. Rather, we define the new cognitive model 
without quantum theory, and that is based on the incomplete 
bounded rationality. Indeed, our model looks quantum-like 
one because our mode is expressed as a quasi-disjoint sys-
tem of Boolean algebras containing an orthomodular lattice 
which represents quantum logic in the form of a lattice.

In this paper, we introduce nonlocality in cognition, where 
an object A is identified as A rather than not A. If the nonlo-
cality is expressed as a relation between objects and attrib-
utes, both concept formation and cognitive illusions can be 
explained using our framework. Using a rough-set lattice 
technique, concepts are expressed as elements of a lattice 
derived from the relation. By defining a probability in the lat-
tice, cognitive illusions can be described through the change 
in the probability space triggered by actual decision-making. 
This provides a full explanation of cognitive illusions under 

incomplete bounded rationality without quantum theory, 
while the model results in quantum-like model or the model 
featuring weak quantum.

As nonlocality in cognition can require an orthomodular 
lattice corresponding to quantum mechanics, the quantum 
mechanical-like mathematical structure is verified to origi-
nate in a general cognitive world without quantum mechan-
ics itself. Our idea can be a natural extension of quantum 
mechanical thinking.

Appendix 1. Lattice Theory

Here, we define an ordered set by a collection of sets, where 
an order is defined by inclusion. The binary operations OR 
and AND are defined as

If an ordered set P is closed with respect to OR and AND, 
P is called a lattice. A lattice has the smallest and largest ele-
ments, which are represented by 0 and 1, respectively. The 
complementary NOT operation is defined as follows. For 
any A in a lattice, NOT(A) is an element of a lattice such that

Figure 12 shows Hasse diagrams of some lattices obtained 
from a collection of subsets of {a, b, c}. In the Hasse dia-
gram, all elements of a lattice are represented by circles. If 
element A is smaller than element B (i.e., A is included in 
B), and there is no other element between A and B, the two 
elements are linked by a line, and A is located below B. Fig-
ure 12A shows a lattice obtained from all subsets of {a, b, 
c}, where OR and AND are expressed as a union ( ∪) and an 
intersection ( ∩), respectively. This lattice is a Boolean lat-
tice. In contrast, Fig. 12C shows that OR is not expressed as 
a union, where {a}OR{b} = {a, b, c} ≠ {a, b} = {a} ∪ {b}.  

Especially, in a lattice theory, the nearest element being 
larger than the least element is called an atom, which are not 
related to physical atom.

Appendix 2. Rough‑Set Lattice

Figure 13 shows an example of the procedure for obtain-
ing a lattice from a binary relation. From a binary relation 
between objects and attributes, one can see that one object 
has multiple attributes such that object A has attributes a 
and d, as seen in the left part of the figure. An object is con-
sidered to consist of virtual elements x1 and x2, which can 
be interpreted as attributes a and d, respectively. All virtual 

A OR B = min{X ∈ L|A ⊆ X,B ⊆ X}

A AND B = max{X ∈ L|X ⊆ A,X ⊆ B}.

A AND NOT (A) = 0, A OR NOT (A) = 1.
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elements contained in objects are numbered in the order 
x1, x2, …, xs, where s is the number of related elements 
in a binary relation. As shown in the center of Fig. 13, A 
consists of x1 and x2; B consists of x3 and x4; C consists of 
x5, x6, and x7; D consists of x8 and x9; and E consists of x10, 
x11, and x12. In other words, a universal set U = {x1, x2, …, 
x12} is partitioned in two ways: A, B, …, E and a, b, …, d. 
A partition is derived from an equivalence relation.

Here, we define equivalence relations R and S, which 
entail the partitions A, B, …, E and a, b, …, d, respectively. 
Object C contains x5, x6, and x7 because x5, x6, and x7 are 
equal to one another in the sense of equivalence relation R. 
This relation is written here as x5Rx6 and x6Rx7 (which also 
implies x5Rx7). Similarly, the equivalence relation S defines 
x4Rx9 and x9Rx11. Each object is defined as an equivalence 
class, [y]R = {x ∈ U| xRy}, and each attribute is defined by 
[y]S = {x ∈ U | xSy}. Using these equivalence classes, one 

can define two types of rough sets for set X included in U, 
such as R*(X) and R*(X).

In our framework, there are two types of equivalence 
relations leading to objects and attributes, R and S. As it is 
impossible to choose either R or S as a necessary and suf-
ficient condition, we use one (R or S) as a sufficient condi-
tion and the other as a necessary condition. A collection of 
X such that R*(S*(X)) = X is a lattice. Set X satisfying this 
equation is a concept in a rough-set lattice. Any lattice can 
be obtained in the form of

if adequate relations R and S are given. In the case of Fig. 13 
(left), as S*(R*(a)) = S*(A ∪ C ∪ D ∪ E)) = a ∪ d, a is not an ele-
ment of L. It is easy to see that S*(R*(b)) = b, S*(R*(c)) = c and 
S*(R*(d)) = d, and atomic elements b, c, and d are elements 
of L. For two-element sets, S*(R*(b ∪ c))) = S*(B ∪ C ∪ D ∪ 

L = {X ⊆ U|S ∗ (R∗(X)) = X},

Fig. 12  A–D Hasse diagrams of 
some lattices obtained from a 
family of subsets of {a, b, c}

A B C D

Fig. 13  Construction of a rough-set lattice. A binary relation between 
objects (columns) and attributes (rows) (left). A box at (x, Y) is 
shaded if x is related to Y. Two types of partitions for a set of virtual 

elements (center). Hasse diagram of a rough-set lattice obtained from 
the binary relation (right)
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E) = b ∪ c, S*(R*(c ∪ d)) = S*(A ∪ B ∪ C ∪ E) = c ∪ d and S*(R
*(a ∪ d)) = S*(A ∪ C ∪ D ∪ E) = a ∪ d; however, no other two-
element unions include elements of L. In all three element 
unions, X3 is not an element of L, as S*(R*(X3)) = S*(U) = U, 
where U = a ∪ b ∪ c ∪ d = A ∪ B ∪ C ∪ D ∪ E. Finally, we 
obtain S*(R*(U)) = U and S*(R*(∅)) = ∅. The right part of 
Fig. 13 shows a Hasse diagram of L = {X ⊆ U| S*(R*(X)) = X} 
obtained from a binary relation shown in the left of the figure.
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