
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12559-021-09989-5

A Fuzzy Collaborative Intelligence Approach to Group 
Decision‑Making: a Case Study of Post‑COVID‑19 Restaurant 
Transformation

Toly Chen1  · Min‑Chi Chiu2

Received: 4 July 2021 / Accepted: 28 December 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In a fuzzy group decision-making task, when decision makers lack consensus, existing methods either ignore this fact or 
force a decision maker to modify his/her judgment. However, these actions may be unreasonable. In this study, a fuzzy col-
laborative intelligence approach that seeks the consensus among experts in a novel way is proposed. Fuzzy collaborative 
intelligence is the application of biologically inspired fuzzy logic to a group task. The proposed methodology is based on the 
fact that a decision maker must make a choice even if he/she is uncertain. As a result, the decision maker’s fuzzy judgment 
matrix may not be able to represent his/her judgment. To solve such a problem, the fuzzy judgment matrix of each decision 
maker is decomposed into several fuzzy judgment submatrices. From the fuzzy judgment submatrices of all decision mak-
ers, a consensus can be easily identified. The proposed fuzzy collaborative intelligence approach and several existing meth-
ods have been applied to the case of the post-COVID-19 transformation of a Japanese restaurant in Taiwan. Because such 
transformation was beyond the expectation of the Japanese restaurant, the employees lacked consensus if existing methods 
were applied to identify their consensus. The proposed methodology solved this problem. The optimal transformation plan 
involved increasing the distance between tables, erecting screens between tables, and improving air circulation. In a fuzzy 
group decision-making task, an acceptable decision cannot be made without the consensus among decision makers. Ignoring 
this or forcing decision makers to modify their preferences is unreasonable. Identifying the consensus among experts from 
another point of view is a viable treatment.

Keywords Fuzzy group decision-making · Fuzzy collaborative intelligence · Decomposition · Post-COVID-19 
transformation · Restaurant

Introduction

In a fuzzy group decision-making problem, the opinions, 
judgments, or preferences of decision makers are aggregated 
to make a joint decision. However, decision makers may be 
unsure of their preferences but nevertheless be required to 
express them definitely [4]. To address this issue, researchers 
have modeled decision makers’ judgments or preferences by 

using probabilistic or fuzzy sets [13, 18, 19]. Fuzzy sets have 
ranges that usually overlap to account for a decision maker’s 
uncertainty [35, 37, 39]. Some recent studies have adopted 
advanced fuzzy numbers of different types with member-
ship, nonmembership, and hesitation functions to provide 
more flexibility [2, 18, 31].

Another problem is that a decision maker may have multi-
ple views but is forced to aggregate these views into a single 
preference [13, 20, 23]. As a result, the decision maker’s 
fuzzy judgment matrix may not represent his/her judgment. 
Under such circumstances, aggregating the fuzzy judgment 
matrixes of decision makers is not only unreasonable, but 
also extremely challenging. To solve this problem, a fuzzy 
collaborative intelligence approach is proposed in this study. 
Fuzzy logic is a biologically inspired reasoning technique 
[34], and fuzzy collaborative intelligence is the application 
of fuzzy logic to a social context [28].
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In the proposed methodology, decision makers first 
express their judgments of the relative priorities of crite-
ria. Then, fuzzy intersection (FI) is applied to check for the 
consensus among these judgments [13]. If no consensus has 
been reached, the multiple views of each decision maker 
are identified by decomposing the decision maker’s fuzzy 
judgment matrix into several fuzzy judgment submatrices. 
All the views of each decision maker are considered in the 
aggregation process, thereby increasing the likelihood of 
reaching a consensus.

The novelty of the proposed methodology lies in the fol-
lowing aspects:

(1) Unlike most fuzzy group decision-making methods [3, 
14, 16, 17], the proposed methodology is not based on 
the similarity or proximity of decision makers’ judg-
ments or preferences.

(2) When decision makers have no consensus, the proposed 
methodology does not force decision makers to modify 
their judgments or preferences [14] or eliminate deci-
sion makers to reach consensus [35]. Instead, it con-
siders the multiple views of each decision maker to 
increase the possibility of reaching consensus.

The rest of this article is organized as follows. “Literature 
Review” presents a review of the literature on the subject. 
“Methodology” introduces the fuzzy collaborative intelli-
gence approach, including the procedure for implementing 
the fuzzy collaborative intelligence approach, the measure-
ment of consensus, the decomposition of a fuzzy judgment 
matrix, the derivation of fuzzy priorities, and the evaluation 
of the overall performance. “Case Study” details the appli-
cation of the proposed methodology to a post-COVID-19 
restaurant transformation problem. In “Background”, several 
existing methods have been applied to the same case for 
comparison. Finally, “Conclusions” concludes this study and 
presents recommendations for further research.

Literature Review

The consensus among decision makers is typically meas-
ured by the similarity or proximity of their judgments [3, 
16, 17, 19], for which the judgments of the decision makers 
are averaged as a baseline. Then, the decision maker whose 
judgment is furthest from the average is either excluded from 
the decision-making process [1] or asked to modify his/her 
judgment [14]. [38] expressed decision makers’ preferences 
using interval fuzzy numbers. In addition, decision makers 
that contributed less to the consensus were asked to modify 
their preferences by considering those of nearby decision 
makers. For a similar purpose, [37] adopted fuzzy covering-
based rough sets (or fuzzy rough coverings).

Some studies have proposed fuzzy collaborative intelli-
gence methods to model the consensus among decision mak-
ers with the FI of their judgments [26, 35]. If the FI result 
is an empty set, no consensus exists. If decision makers’ 
judgments are far from others’, they do not overlap.

When no consensus can be reached by decision makers, 
partial consensus (i.e., the consensus among most decision 
makers) can be sought instead [7]. Then, the decision maker 
whose judgment is furthest from the partial consensus can 
be asked to modify his/her judgment.

Decision makers’ preferences can be expressed in terms 
of utility values or rankings, which can be either multiplica-
tive or additive. Aggregating preferences of different types 
is a challenging task [23].

A decision-making problem, such as one on an e-commerce 
application, e-marketplace, or social media platform, with 
numerous decision makers (e.g., more than 20) is considered 
a large-scale group decision-making problem [22, 30]. Two 
challenges must be overcome to solve such problems. First, 
decision makers usually have different backgrounds. Second, 
decision makers can express their opinions at different times 
and places [30]. Expressing the judgments or preferences of 
decision makers by using fuzzy numbers increases the pos-
sibility of reaching consensus.

In a large-scale group decision-making problem, decision 
makers exhibit bounded rationality and varying psychologi-
cal behaviors, such as loss avoidance, sensitivity reduction, 
probability judgment distortion, and regret aversion [19]. Jin 
et al. [19] devised a regret–rejoice function. The greater the 
deviation between the utilities of two alternatives is, the less 
a decision maker regrets choosing the preferred alternative. 
In addition, a decision maker’s authority level (or weight) 
is determined with respect to the consensus achieved with 
other decision makers.

Methodology

In the proposed fuzzy collaborative intelligence approach, 
multiple decision makers collaborate with the assistance of 
a coordinator to evaluate and compare the overall perfor-
mances of alternatives. The variables and notations used in 
the proposed methodology are defined as follows:

• ( +): fuzzy addition
• ( −): fuzzy subtraction
• ( ×): fuzzy multiplication
• �̃�(k) : the fuzzy eigenvalue of �̃(k) ; k = 1–K
• �̃�max(k) : the maximal fuzzy eigenvalue of �̃(k) ; k = 1–K
• �̃�qi : the normalized value of p̃qi ; q = 1–Q; i ∈ [1, n]
• �̃

+ : an ideal solution
• �̃

− : an anti-ideal solution
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• ãij(k) : the priority of criterion i relative to criterion j to 
decision maker k; i, j ∈ [1, n]; k = 1–K

• �̃(k) : the fuzzy judgment matrix of decision maker k; 
k = 1–K

• �̃(k − m) : the fuzzy judgment submatrix of decision 
maker k; k = 1–K; m = 1–M

• COG(): the center-of-gravity function
• C̃R(k) : the fuzzy consistency ratio of �̃(k) ; k = 1–K
• d̃() : a fuzzy distance function
• d̃+

q  : the distance from alternative q to �̃+ ; q = 1–Q
• d̃−

q  : the distance from alternative q to �̃− ; q = 1–Q
• det() : the determinant function
• F̃I() : the FI function
• Õq : the overall performance of alternative q; q = 1–Q
• p̃qi : the performance of alternative q in optimizing crite-

rion i; q = 1–Q; i ∈ [1, n]
• RI: the random consistency index
• w̃i(k) : the fuzzy priority of criterion i to decision maker 

k; i ∈ [1, n]; k = 1–K
• w̃i(k − m) : the fuzzy priority of criterion i to decision 

maker k according to the mth view; i ∈ [1, n]; k = 1–K; 
m = 1–M

• w
(c)

i
(k) : the crisp priority of criterion i to decision maker 

k; i ∈ [1, n]; k = 1–K
• �̃(k) : the fuzzy eigenvector of �̃(k) ; k = 1–K

Without loss of generality, all fuzzy variables and param-
eters used in the proposed approach are given in or approxi-
mated by triangular fuzzy numbers (TFNs).

Procedure

The proposed fuzzy collaborative intelligence approach 
comprises the following steps:

Step 1: (Each decision maker) Construct (or modify) a 
fuzzy judgment matrix �̃(k).

Step 2: (Each decision maker) If �̃(k) is consistent, go to 
Step 3; otherwise, return to Step 1.

Step 3: (Each decision maker) Apply the calibrated fuzzy 
geometric mean (FGM) method [11] to derive the value of 
w̃i(k).

Step 4: (Coordinator) Apply FI () to aggregate the values 
of { ̃wi(k) | k = 1–K}.

Step 5: If �FI({w̃i(k)}) = � , go to Step 6; otherwise, go 
to Step 9.

Step 6: (Coordinator) Formulate and optimize a fuzzy 
nonlinear programming (FNLP) model to decompose �̃(k) 
into {�̃(k − m)|m = 1 ∼ M}.

Step 7: (Coordinator) Derive {w̃i(k − m)|m = 1 ∼ M} 
from �̃(k − m).

Step 8: (Coordinator) Return to Step 4.
Step 9: (Coordinator) Evaluate the overall performance 

of each alternative by using the fuzzy technique for order 

of preference by similarity to the ideal solution (TOPSIS) 
[12, 36].

Step 10: (All decision makers) Select the optimally per-
forming alternative.

A flow chart is presented in Fig.  1 to illustrate the 
procedure.

The Measurement of Consensus

In the proposed methodology, each decision maker first 
performs a pairwise comparison of the relative priorities of 
criteria. Then, the pairwise comparison results by decision 
maker k are put in �̃(k) = [ãij(k)] , where

The fuzzy eigenvalue and eigenvector of �̃(k) satisfy

Subsequently, the fuzzy priority of criterion i is derived 
as

From Eq. (4), the maximal fuzzy eigenvalue is derived as

However, because Eqs. (2) and (3) involve many fuzzy 
multiplication operations, they are difficult to solve. There-
fore, the calibrated FGM method [11] is applied to derive 
the approximate value of w̃i(k):

(The Calibrated FGM Method).
Step 1: Derive the approximate value of w̃i(k) by using 

the traditional FGM method as follows [39]:

Step 2: Treat �̃(k) as a crisp matrix by letting aij1(k) = aij2(k) 
and aij3(k) = aij2(k) ; then, derive the priority of criterion i using 
an eigen analysis [33].

Step 3: Calibrate the value of w̃i in the following manner:

(1)ãij(k) =

{
1 if j = 1

1∕ãij(k) otherwise

(2)det(�̃(k)(−)�̃�(k)�) = 0

(3)(�̃(k)(−)�̃�(k)�)( × )�̃(k) = 0

(4)
w̃i(k) =

x̃i(k)
n∑

h=1

x̃h(k)

(5)�̃�max(k) =
1

n

n∑

i=1

n∑

j=1

ãij(k)(×)w̃j(k)

w̃i(k)

(6)w̃i(k) ≅

n

�
n∏
j=1

ãij(k)

n∑
l=1

n

�
n∏
j=1

ãlj(k)
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Fig. 1  A flow chart of the 
fuzzy collaborative intelligence 
approach
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The consistency of �̃(k) can be evaluated in terms of C̃R as

C̃R(k) should be less than 0.1; otherwise, the decision 
maker must modify his/her pairwise comparison results to 
rederive the values of �̃�(k) , �̃(k) , and w̃i(k).

To check for the consensus among decision makers, the 
FI of the priorities derived by them, �FI({w̃i(k)}) , is derived:

(7)

w̃i(k) → w̃i(k) + w
(c)

i
(k) − wi2(k)

= (wi1(k) + w
(c)

i
(k) − wi2(k), w

(c)

i
(k), wi3(k) + w

(c)

i
(k) − wi2(k))

(8)�CR(k) =

�̃�max(k)−n

n−1

RI

If FI({w̃i(k)}) = ∅ for any i, then a consensus does not 
exist, as illustrated in Fig. 2. To solve this problem, the fuzzy 
judgment matrices of decision makers are decomposed into 
fuzzy judgment submatrices to derive priorities that may 
overlap, as illustrated in Fig. 3.

The Decomposition of a Fuzzy Judgment Matrix

The FNLP Model

Lin and Chen [21] decomposed a crisp judgment matrix 
into several judgment submatrices, making these judgment 
submatrices more consistent than the original judgment 
matrix and far from each other. Subsequently, Chen and Lin 
[10] extended this method to decompose a fuzzy judgment 
matrix. However, these studies involved only a single deci-
sion maker.

In the proposed methodology, the fuzzy judgment matrix 
of decision maker k is decomposed into several fuzzy judg-
ment submatrices, for which the fuzzy arithmetic average 
operator [10]  is applied to active pairwise comparison 
results:

(9)𝜇�FI({w̃i(k)})
(x) = supmin

i
({𝜇w̃i(k)

(x)})

(10)
�̃(k) ∶=

M∑

m=1

�̃(k − m)

M

Fig. 2  The lack of consensus among decision makers

Fig. 3  A consensus achieved 
by overlapping fuzzy judgment 
submatrices
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All fuzzy judgment submatrices meet the following basic 
requirements:

In addition, a fuzzy judgment submatrix should not differ 
considerably from the original fuzzy judgment matrix:

After decomposition, the fuzzy priorities of criteria derived 
by all decision makers should overlap:

This requirement can be decomposed into the require-
ment for each pair:

(11)det(�̃(k − m)(−)�̃�(k − m)�) = 0

(12)(�̃(k − m)(−)�̃�(k − m)�)( × )�̃(k − m) = 0

(13)
w̃i(k − m) =

x̃i(k − m)
n∑

h=1

x̃h(k − m)

(14)d̃(�̃(k), �̃(k − m)) ≤ 𝜉

(15)�FI({w̃i(k − m)}) ≠ �

(16)�FI(w̃i(k − m), w̃i(l − m)) ≠ �

A fuzzy judgment matrix can be decomposed in numer-
ous ways. The fuzzy judgment submatrices of decision 
makers can overlap in even more ways, as illustrated in 
Fig. 4. In the proposed methodology, the decomposition of 
fuzzy judgment matrices is optimized by maximizing the 
overlap among the fuzzy priorities derived from the fuzzy 
judgment submatrices. For this purpose, the average width 
of �FI({w̃i(k − m)}) is maximized:

Finally, the following FNLP model is optimized:
(The FNLP model)

subject to

(17)

Max Z =
1

n

n∑

i=1

(
max(F̃I({w̃i(k − m)})) − min(F̃I({w̃i(k − m)}))

)

(18)

MaxZ =
1

n

n∑

i=1

(
max(F̃I({w̃i(k − m)})) − min(F̃I({w̃i(k − m)}))

)

(19)F̃I(w̃i(k − m), w̃i(l − m)) ≠ ∅ ∀i, k, l, and m;k ≠ l

(20)d̃(Ã(k), Ã(k − m)) ≤ 𝜉 ∀ k and m

Fig. 4  Possible ways of overlapping fuzzy judgment submatrices
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However, the FNLP model is cumbersome. Therefore, 
in the next section, the FNLP model is converted into an 
equivalent nonlinear programming (NLP) problem.

An Equivalent NLP Model

The two variables in the objective function are equivalent to 
(Chen and Lin, 2008)

Equations (25) and (26) are equivalent to

To optimize Z, the two sides of these equations must be 
equal.

The following theorem helps to convert Constraint (19).
Theorem 1: Two TFNs Ã and B̃ overlap if min(A3, B3) ≥

max(A1, B1).
Proof: The ranges of Ã and B̃ can be represented by 

[ A1, A3 ] and [ B1, B3 ], respectively, which overlap if the 
upper bound of the smaller one is greater than the lower 
bound of the larger one:

which becomes

Therefore,

(21)
Ã(k) ∶=

M∑
m=1

Ã(k − m)

M
∀ k

(22)det(Ã(k − m)(−)
∼

𝜆 (k − m)I) = 0∀ k and m

(23)(Ã(k − m)(−)
∼

𝜆 (k − m)I)( × )x̃(k − m) = 0∀ k and m

(24)
w̃i(k − m) =

x̃i(k − m)
n∑

h=1

x̃h(k − m)

∀ k and m

(25)max(�FI({w̃i(k − m)})) = min
k
(max({w̃i(k − m)}))

(26)min(�FI({w̃i(k − m)})) = max
k

(min({w̃i(k − m)}))

(27)max(F̃I({w̃i(k − m)})) ≤ wi3(k − m)∀k

(28)min(F̃I({w̃i(k − m)})) ≥ wi1(k − m)∀k

(29)
max(min([A1, A3], [B1, B3])) ≥ min(max([A1, A3], [B1, B3]))

(30)
max([min(A1,B1), min(A3, B3)]) ≥ min([max(A1,B1), max(A3, B3)])

(31)min(A3,B3) ≥ max(A1,B1)

Hence, Theorem 1 is proved.
Applying Theorem 1 to Eq. (19) gives

In addition, constraint (20) can be simplified as

because the lower and upper bounds of ãij(k) are usually 
dependent on the core [39]. Therefore, considering only the 
core of ãij(k) in measuring the distance is sufficient. Then, 
the Frobenius distance [15] is used as d():

Equation (21) is equivalent to

To convert Eqs. (22)–(24), the following theorem is helpful.
Theorem 2: In the traditional FGM method, a fuzzy prior-

ity is derived as

Proof: The proof refers to Chen and Wang [5].
Applying Theorem 2 to Eq. (7) yields

(32)
min(wi3(k − m), wi3(l − m)) ≥ max(wi1(k − m), wi1(l − m))

(33)d(�2(k), �2(k − m)) ≤ �

(34)

d(�2(k), �2(k − m)) =

√√√√
n∑

i=1

n∑

j=1

(aij2(k) − aij2(k − m))2

(35)
ãij(k) =

M∑
m=1

ãij(k − m)

M
∀ãij(k) ≥ 1

(36)

wi1(k) ≅
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj3(k)

n

�
n∏
j=1

aij1(k)

(37)

wi2(k) ≅
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k)

n

�
n∏
j=1

aij2(k)

(38)

wi3(k) ≅
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj1(k)

n

�
n∏
j=1

aij3(k)

(39)

wi1(k) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj3(k)

n

�
n∏
j=1

aij1(k)

+ w
(c)

i
(k) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k)

n

�
n∏
j=1

aij2(k)
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Therefore, Eqs. (22)–(24) are equivalent to

Finally, the following NLP problem can be solved instead:
(The NLP Model)

subject to

(40)wi2(k) = w
(c)

i
(k)

(41)

wi3(k) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj1(k)

n

�
n∏
j=1

aij3(k)

+ w
(c)

i
(k) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k)

n

�
n∏
j=1

aij2(k)

(42)

wi1(k − m) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj3(k−m)

n

�
n∏
j=1

aij1(k−m)

+ w
(c)

i
(k − m) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k−m)

n

�
n∏
j=1

aij2(k−m)

(43)wi2(k − m) = w
(c)

i
(k − m)

(44)

wi3(k − m) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj1(k−m)

n

�
n∏
j=1

aij3(k−m)

+ w
(c)

i
(k − m) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k−m)

n

�
n∏
j=1

aij2(k−m)

(45)

Max Z =
1

n

n∑

i=1

(
max(F̃I({w̃i(k − m)})) − min(F̃I({w̃i(k − m)}))

)

(46)max(F̃I({w̃i(k − m)})) ≤ wi3(k − m)∀i, k, and m

(47)min(F̃I({w̃i(k − m)})) ≥ wi1(k − m)∀i, k, and m

(48)
min(w

i3(k − m),w
i3(l − m)) ≥ max(w

i1(k − m), w
i1(l − m))∀i, k, l, and m;k ≠ l

(49)

√√√√
n∑

i=1

n∑

j=1

(aij2(k) − aij2(k − m))2 ≤ � ∀i, k, and m

(50)ãij(k) =

∑M

m=1
ãij(k − m)

M
∀ãij(k) ≥ 1

(51)

wi1(k − m) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj3(k−m)

n

�
n∏
j=1

aij1(k−m)

+ w
(c)

i
(k − m) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k−m)

n

�
n∏
j=1

aij2(k−m)

The NLP model can be solved using approaches such as 
the outer approximation/generalized Benders decomposi-
tion method (Costa, 2005) or a branch-and-bound method 
(Cacchiani and D’Ambrosio, 2017).

The FI result is a polygonal fuzzy number [9]. To facil-
itate the subsequent evaluation process, the FI result is 
approximated by an equivalent TFN as [27, 32, 35]

where

In this manner, the lower bound, center of gravity 
(COG), and upper bound of the equivalent TFN are the 
same as those of the FI result.

The Evaluation of the Overall Performance

Based on the FI result, decision makers evaluate the over-
all performance of an alternative using fuzzy TOPSIS [12, 
36]. Other fuzzy evaluation methods such as the fuzzy 
weighted average (FWA) method [8, 27], the fuzzy visekri-
terijumska optimizacija i kompromisno resenje (VIKOR) 
method [25], and the fuzzy measurement alternatives and 
ranking according to compromise solution (MARCOS) 
method [24] are also applicable.

The fuzzy TOPSIS method is applied to evaluate the 
overall performance of alternative q as follows:

where

(52)wi2(k − m) = w
(c)

i
(k − m)

(53)

wi1(k − m) =
1

1 +
∑
h≠i

n

�
n∏
j=1

ahj1(k−m)

n

�
n∏
j=1

aij3(k−m)

+ w
(c)

i
(k − m) −

1

1 +
∑
h≠i

n

�
n∏
j=1

ahj2(k−m)

n

�
n∏
j=1

aij2(k−m)

(54)

�FI({w̃
i
(k − m)}) ≅ (min(�FI({w̃

i
(k − m)})),

3COG(�FI({w̃
i
(k − m)})) −min(�FI({w̃

i
(k − m)})) −max(�FI({w̃

i
(k − m)})),

max(�FI({w̃
i
(k − m)})))

(55)COG(�FI({w̃i(k − m)})) =

∫
all x

x𝜇�FI
(x)dx

∫
all x

𝜇�FI
(x)dx

(56)Õq =
d̃−
q

d̃+
q
(+)d̃−

q

(57)d̃+
q
=

√√√√
n∑

i=1

(Λ̃+
i
(−)(�FI({w̃i(k − m)})(×)�̃�qi))

2

538 Cognitive Computation (2022) 14:531–546



1 3

in which

and

A Case Study

Background

The COVID-19 pandemic heavily affected the hospitality 
industry. Most restaurants were forced to close to avoid the 
spread of the virus through air circulation in indoor spaces. 
In Taiwan, according to the level-three alert restrictions 
implemented on May 19, 2021, restaurants could not pro-
vide dine-in services [5]. Only takeout and delivery services 
were permitted, which were insufficient to compensate for 
the sharp decline in dine-in sales revenue. After several 
weeks under level-three restrictions, many restaurants were 
forced to close down. The negative implications for Taiwan-
ese restaurants included the following. A restaurant could be 

(58)d̃−
q
=

√√√√
n∑

i=1

(Λ̃−
i
(−)(�FI({w̃i(k − m)})(×)�̃�qi))

2

(59)
∼

Λ
+

i
≥ F̃I({w̃i(k − m)})(×)

∼
𝜌
qi∀q

(60)
∼

Λ
−

i
≤ F̃I({w̃i(k − m)})(×)

∼
𝜌
qi∀q

(61)

�̃�qi =
p̃qi

�
Q∑

𝜙=1

p̃2
𝜙i

=
1

�
1 +

∑
𝜙≠q

(
p̃𝜙i

p̃qi
)2

open for only a very short period each day. Even if a restau-
rant could reopen, few customers would eat there. Finally, 
recovering to the previous level of sales revenue could take 
6 months or more.

Considering such a future, restaurant owners must decide, 
on the basis of a detailed cost–benefit analysis, whether to 
close their restaurants. If the answer was no, then the res-
taurant owner must develop a business plan for operating 
during the COVID-19 pandemic, possibly including offer-
ing take-out or delivery meals, applying for government 
bailout funds, negotiating lower rents, and restructuring 
human resources. However, as the virus continued to mutate, 
whether restaurant operations could return to normal was 
unclear. The slow vaccination rate in Taiwan exacerbated 
such concerns. Therefore, restaurant owners must consider 
changes.

In this case, the owner of a Japanese restaurant in Tai-
chung City, Taiwan, wished to transform the restaurant 
after the COVID-19 pandemic. During the pandemic, many 
Japanese restaurants in Taiwan, such as Sono, Kikumodo, 
Ranmaru, and Ito, were forced to close down because of 
the government ban on indoor dining. The following factors 
were critical in decision-making for restaurant owners wish-
ing to operate during the pandemic: (1) estimated expenses, 
(2) the approximate time required, (3) the attractiveness to 
customers, (4) changes to the image of the restaurant, and 
(5) the compatibility with current operations.

The following alternatives were considered for the trans-
formation of the Japanese restaurant in this case:

(1) Alternative I: Reducing the indoor dining area and 
increasing the outdoor dining area;

(2) Alternative II: Dividing the indoor dining area into 
smaller booths;

(3) Alternative III: Increasing the distance between tables, 
erecting screens between tables, and improving air cir-
culation;

Fig. 5  The restaurant transformation decision-making problem
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(4) Alternative IV: Reducing the number of indoor tables 
to limit the number of simultaneous diners.

The restaurant transformation decision-making prob-
lem is illustrated in Fig. 5.

The Application of the Proposed Methodology

Three decision makers, namely, the owner, manager, and 
chef of the Japanese restaurant, made a joint decision by 
applying the proposed methodology.

First, the decision makers made judgments about the 
relative priorities of criteria. The results are summarized in 
Table 1. For example, according to Decision Maker 1, the 
priority of estimated expenses was approximately five times 

that of the approximate time required and was represented 
by the TFN (3, 5, 7). The consistency ratios of these fuzzy 
judgment matrices were evaluated as

All showed certain levels of consistency.
To check for the consensus among the three decision 

makers, the FI of the fuzzy priorities derived by them 
was obtained. The result is shown in Fig. 6. These deci-
sion makers lacked a consensus on the fuzzy priority of the 

C̃R(1) = (0.00, 0.09, 6.61)

C̃R(2) = (0.00, 0.07, 10.26)

C̃R(3) = (0.00, 0.10, 11.26)

Table 1  Fuzzy judgment matrices constructed by decision makers

(a) Decision Maker 1

Estimated expenses Approximate time 
required

Attractiveness to 
customers

Changes to restaurant 
image

Compatibility with 
current operations

Estimated expenses 1 (3, 5, 7) 1/(3, 5, 7) 1/(1, 3, 5) 1/(1, 3, 5)
Approximate time 

required
1/(3, 5, 7) 1 1/(5, 7, 9) 1/(2, 4, 6) 1/(2, 4, 6)

Attractiveness to 
customers

(3, 5, 7) (7, 9, 9) 1 (2, 4, 6) (1, 3, 5)

Changes to restaurant 
image

(1, 3, 5) (3, 5, 7) 1/(2, 4, 6) 1 1/(1, 3, 5)

Compatibility with 
current operations

(1, 3, 5) (2, 4, 6) 1/(1, 3, 5) (1, 3, 5) 1

(b) Decision Maker 2
Estimated expenses Approximate time 

required
Attractiveness to 

customers
Changes to restaurant 

image
Compatibility with 

current operations
Estimated expenses 1 (1, 3, 5) (1, 3, 5) (1, 3, 5) (1, 1, 3)
Approximate time 

required
1/(1, 3, 5) 1 1/(1, 3, 5) 1/(1, 3, 5) 1/(3, 5, 7)

Attractiveness to 
customers

1/(1, 3, 5) (1, 3, 5) 1 (1, 3, 5) (1,1, 3)

Changes to restaurant 
image

1/(1, 3, 5) (1, 3, 5) 1/(1, 3, 5) 1 1/(2, 4, 6)

Compatibility with 
current operations

1/(1, 1, 3) (3, 5, 7) 1/(1, 1, 3) (2, 4, 6) 1

(c) Decision Maker 3
Estimated expenses Approximate time 

required
Attractiveness to 

customers
Changes to restaurant 

image
Compatibility with 

current operations
Estimated expenses 1 1/(1, 3, 5) 1/(2, 4, 6) (1, 3, 5) (1, 3, 5)
Approximate time 

required
(1, 3, 5) 1 1/(2, 4, 6) (1, 3, 5) (1, 3, 5)

Attractiveness to 
customers

(1, 3, 5) (1, 3, 5) 1 (3, 5, 7) (2, 4, 6)

Changes to restaurant 
image

1/(1, 3, 5) 1/(1, 3, 5) 1/(2, 4, 6) 1 1/(2, 4, 6)

Compatibility with 
current operations

1/(1, 3, 5) 1/(1, 3, 5) 1/(2, 4, 6) (2, 4, 6) 1
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approximate time required. Therefore, MATLAB R2017a 
was used to formulate and optimize an NLP model on a PC 
with an i7-7700 3.6-GHz CPU and 8 GB of RAM to decom-
pose the fuzzy judgment matrices of decision makers into 
fuzzy judgment submatrices.

The threshold of the distance from a fuzzy judgment 
submatrix to the original fuzzy judgment matrix, ξ, was 
set to 

√
90 . The optimal solution is presented in Table 2. 

For example, in the first view of Decision Maker 1, the pri-
ority of estimated expenses was (1, 3, 5) times that of the 
approximate time required. In the second view of the deci-
sion maker, the relative priority was (5, 7, 9). The optimal 
objective function value was 0.123. Table 3 presents the 
results of the consensus achieved based on the fuzzy judg-
ment submatrices.

FI was employed again to aggregate the fuzzy priorities 
of criteria derived by the decision makers. The results are 
summarized in Fig. 7.

The FI results were approximated with TFNs as

w̃1 ≅ (0.17, 0.21, 0.24)

w̃2 ≅ (0.10, 0.11, 0.13)

w̃3 ≅ (0.22, 0.34, 0.46)

w̃4 ≅ (0.08, 0.11, 0.14)

w̃5 ≅ (0.15, 0.24, 0.32)

Fig. 6  The FI of the fuzzy priorities derived by decision makers
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The most critical factor was the attractiveness to custom-
ers, followed by the compatibility with current operations 
and estimated expenses.

Subsequently, the data of the four alternatives on the criti-
cal factors were collected or evaluated by the decision mak-
ers jointly, as summarized in Table 4.

The performance of each alternative was evaluated in 
accordance with the rules in Table 5. The evaluation results 
are summarized in Table 6. All are given in TFNs. No alter-
native was perfect.

Fuzzy TOPSIS was applied to evaluate the overall perfor-
mance of each alternative with a TFN. The result is shown 
in Table 7.

In this case, the optimal alternative was Alternative III, 
which included increasing the distance between tables, erect-
ing screens between tables, and improving air circulation. In 
addition to maintaining a moderate level of the attractiveness 
to customers, Alternative III incurred extremely low esti-
mated costs. The second-best alternative was Alternative II, 
which included dividing the indoor dining area into smaller 
booths. This alternative was the most attractive to customers.

Although Alternative II was not optimal, its most likely 
performance Oq2 was the highest among all alternatives. 

Alternative IV required the fewest adjustments and seemed 
to be the most economical. However, without major reno-
vations, customers might think that dining in the restaurant 
remains unsafe, possibly resulting in a loss of revenue.

Four existing fuzzy group decision-making methods were 
also applied to this case for comparison. The first was the 
FGM–FGM–FWA method, in which the decision makers’ 
judgments were aggregated using FGM. Then, the fuzzy pri-
orities of the criteria were determined using FGM. Finally, 
and the overall performance of each alternative was evalu-
ated using FWA. The second method was the FGM–fuzzy 
extent analysis (FEA)–FWA method, wherein FEA [6] was 
applied to derive the priorities of criteria in place of the 
FGM method used by the aforementioned method. The third 
method was the FGM–FGM–fuzzy TOPSIS method, which 
was also similar to the FGM–FGM–FWA method except that 
fuzzy TOPSIS was employed to compare the overall perfor-
mances of alternatives. The fourth method was the linguistic 
ordered weighted average (LOWA)–FGM–FWA method, in 
which an LOWA operator [16] was applied to aggregate the 
fuzzy judgment matrices of decision makers. One advantage 
of the LOWA method is that the aggregation result can also 
be represented by original linguistic terms. Here, a moder-
ately optimistic decision strategy was adopted. In all meth-
ods, the COG method was applied to defuzzify the evalua-
tion result and generate the absolute rankings. The results 
obtained using these methods are summarized in Table 8. 
The FGM–FGM–FWA method, the FGM–FEA–FWA 
method, and the FGM–FGM–fuzzy TOPSIS method rec-
ommended Alternative II, whereas the LOWA–FGM–FWA 
method recommended Alternative I. All the four methods 
returned results different from that (Alternative III) obtained 
using the proposed methodology. This difference was due 
to the inability of the existing methods to handle the lack 
of consensus.

The top two alternatives recommended by the existing 
methods, Alternatives I and II, are similar. By contrast, the 

Table 2  Fuzzy judgment 
submatrices of decision makers

k �̃
∗(k − 1) �̃

∗(k − 2)

1 ||||||||||

1 (1, 3, 5) − − −
− 1 − − −

(1, 2, 4) (7, 9, 9) 1 (1, 1, 3) (1, 1, 3)
(1, 1, 3) (1, 2, 4) − 1 −
(3, 5, 7) (1, 3, 5) − (1, 1, 3) 1

||||||||||  

||||||||||

1 (5, 7, 9) − − −
− 1 − − −

(6, 8, 9) (7, 9, 9) 1 (5, 7, 9) (3, 5, 7)
(3, 5, 7) (6, 8, 9) − 1 −
(1, 1, 3) (3, 5, 7) − (3, 5, 7) 1

||||||||||
2 ||||||||||

1 (1, 2, 4) (1, 2, 4) (2, 4, 6) (1, 1, 3)
− 1 − − −
− (3, 5, 7) 1 (2, 4, 6) (1, 1, 3)
− (1, 1, 3) − 1 −
− (6, 8, 9) − (4, 6, 8) 1

||||||||||

||||||||||

1 (2, 4, 6) (2, 4, 6) (1, 2, 4) (1, 1, 3)
− 1 − − −
− (1, 1, 3) 1 (1, 2, 4) (1, 1, 3)
− (3, 5, 7) − 1 −
− (1, 2, 4) − (1, 2, 4) 1

||||||||||
3 ||||||||||

1 − − (1, 1, 3) (1, 1, 3)
(1, 2, 4) 1 − (1, 1, 3) (1, 1, 3)
(2, 4, 6) (1, 2, 4) 1 (6, 8, 9) (1, 2, 4)

− − − 1 −
− − − (3, 5, 7) 1

||||||||||  

||||||||||

1 − − (3, 5, 7) (3, 5, 7)
(2, 4, 6) 1 − (3, 5, 7) (3, 5, 7)
(1, 2, 4) (2, 4, 6) 1 (1, 2, 4) (4, 6, 8)

− − − 1 −
− − − (1, 3, 5) 1

||||||||||

Table 3  The consensus achieved based on fuzzy judgment submatri-
ces

Fuzzy sub-judgment matrixes Existence of overall 
consensus

�̃
∗(1 − 1), �̃∗(2 − 1), �̃∗(3 − 1) Yes

�̃
∗(1 − 1), �̃∗(2 − 1), �̃∗(3 − 2) No

�̃
∗(1 − 1), �̃∗(2 − 2), �̃∗(3 − 1)   No

�̃
∗(1 − 2), �̃∗(2 − 1), �̃∗(3 − 1) No

�̃
∗(1 − 1), �̃∗(2 − 2), �̃∗(3 − 2) No

�̃
∗(1 − 2), �̃∗(2 − 1, �̃∗(3 − 2)   No

�̃
∗(1 − 2), �̃∗(2 − 2), �̃∗(3 − 1) No

�̃
∗(1 − 2), �̃∗(2 − 2), �̃∗(3 − 2) No
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top two alternatives recommended by the proposed meth-
odology, Alternatives III and II, are considerably different 
because of the diversification mechanism of the proposed 
methodology.

Most fuzzy collaborative intelligence methods cannot 
solve this problem because of the lack of consensus. How-
ever, an exception is the partial-consensus fuzzy analytic 
hierarchy process (FAHP) method proposed by [20], in 

which the consensus among a subset of decision makers 
is sought using the partial-consensus FI (PCFI). The PCFI 
result is also approximated by a TFN. As a result, the pri-
orities of criteria can be derived as

w̃1 ≅ (0.07, 0.17, 0.4)

w̃2 ≅ (0.03, 0.08, 0.21)

Fig. 7  The FI result of the fuzzy priorities of the decision makers after decomposition

Table 4  The data of the four 
alternatives

*Including lost monthly revenue

q Estimated 
expenses (NTD)

Approximate time 
required (days)

Attractiveness to 
customers

Changes to res-
taurant image

Compatibility with 
current operations

I 250,000 35 High Very high High
II 220,000 55 Very high Moderate Very high
III 120,000 21 Moderate Low Moderate
IV 115,000* 3 Low Very low Moderate

543Cognitive Computation (2022) 14:531–546



1 3

w̃3 ≅ (0.17, 0.45, 0.66)

w̃4 ≅ (0.05, 0.11, 0.29)

w̃5 ≅ (0.01, 0.25, 0.45)

Fuzzy TOPSIS is then applied to compare the overall per-
formances of the alternatives. The ranking result is presented 
in Table 9. The result of the FAHP-PCFI-fuzzy TOPSIS 
method was different from that generated using the proposed 
methodology because the partial-consensus FAHP method 
aggregated fuzzy judgment matrices when no consensus 
existed. By contrast, the proposed methodology aggregated 
fuzzy judgment submatrices to reach consensus.

Table 5  Rules for evaluating the performance of alternatives

Critical factor Rule

Estimated expenses

p̃q1(xq1) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(0, 0, 1) if 0.1 ⋅min
r

xr1 + 0.9 ⋅max
r

xr1 ≤ xq1 or data not available

(0, 1, 2) if 0.35 ⋅min
r

xr1 + 0.65 ⋅max
r

xr1 ≤ xq1 < 0.1 ⋅min
r

xr1 + 0.9 ⋅max
r

xr1

(1.5, 2.5, 3.5) if 0.65 ⋅min
r

xr1 + 0.35 ⋅max
r

xr1 ≤ xq1 < 0.35 ⋅min
r

xr1 + 0.65 ⋅max
r

xr1

(3, 4, 5) if 0.9 ⋅min
r

xr1 + 0.1 ⋅max
r

xr1 ≤ xq1 < 0.65 ⋅min
r

xr1 + 0.35 ⋅max
r

xr1

(4, 5, 5) if xq1 < 0.9 ⋅min
r

xr1 + 0.1 ⋅max
r

xr1

where xq1 is the estimated expenses of the qth alternative
Approximate time required

p̃q2(xq2) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(0, 0, 1) if 0.1 ⋅min
r

xr2 + 0.9 ⋅max
r

xr2 ≤ xq2 or data not available

(0, 1, 2) if 0.35 ⋅min
r

xr2 + 0.65 ⋅max
r

xr2 ≤ xq2 < 0.1 ⋅min
r

xr2 + 0.9 ⋅max
r

xr2

(1.5, 2.5, 3.5) if 0.65 ⋅min
r

xr2 + 0.35 ⋅max
r

xr2 ≤ xq2 < 0.35 ⋅min
r

xr2 + 0.65 ⋅max
r

xr2

(3, 4, 5) if 0.9 ⋅min
r

xr2 + 0.1 ⋅max
r

xr2 ≤ xq2 < 0.65 ⋅min
r

xr2 + 0.35 ⋅max
r

xr2

(4, 5, 5) if xq2 < 0.9 ⋅min
r

xr2 + 0.1 ⋅max
r

xr2

where xq2 is the approximate time required for the qth alternative
Attractiveness to customers

p̃q3(xq3) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(0, 0, 1) if xq3 = ”Very low” or data not available

(0, 1, 2) if xq3 = ”Low”

(1.5, 2.5, 3.5) if xq3 = ”Moderate”

(3, 4, 5) if xq3 = ”High”

(4, 5, 5) if xq3 = ”Very high”   
where xq3 is the attractiveness of the qth alternative to customers

Changes to restaurant image

p̃
q4(xq4) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(0, 0, 1) if x
q4 = ”Very low” or data not available

(0, 1, 2) if x
q4 = ”Low”

(1.5, 2.5, 3.5) if x
q4 = ”Moderate”

(3, 4, 5) if x
q4 = ”High”

(4, 5, 5) if x
q4 = ”Very high”   

where xq4 is the changes to restaurant image brought about by the qth alternative
Compatibility with current operations

p̃q5(xq5) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(0, 0, 1) if xq5 = ”Very low” or data not available

(0, 1, 2) if xq5 = ”Low”

(1.5, 2.5, 3.5) if xq5 = ”Moderate”

(3, 4, 5) if xq5 = ”High”

(4, 5, 5) if xq5 = ”Very high”   
where xq5 is the compatibility with current operations of the qth alternative

Table 6  The performances of alternatives

q p̃q1 p̃q2   p̃q3   p̃q4 p̃q5

I (0, 0, 1) (1.5, 2.5, 
3.5)

(3, 4, 5) (4, 5, 5) (3, 4, 5)

II (0, 1, 2) (0, 0, 1) (4, 5, 5) (1.5, 2.5, 
3.5)

(4, 5, 5)

III (4, 5, 5) (3, 4, 5) (1.5, 2.5, 
3.5)

(0, 1, 2) (1.5, 2.5, 3.5)

IV (4, 5, 5) (4, 5, 5) (0, 1, 2) (0, 0, 1) (1.5, 2.5, 3.5)

Table 7  The overall performances of alternatives

Alternative Õq COG(Õq) Rank

I (0.046, 0.541, 0.893) 0.494 3
II (0.000, 0.596, 0.941) 0.512 2
III (0.109, 0.509, 1.000) 0.540 1
IV (0.109, 0.412, 0.939) 0.487 4
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Conclusions

When decision makers lack consensus, existing methods 
either ignore this fact or force a decision maker to modify 
his/her judgment. To better address this issue, a novel 
fuzzy collaborative intelligence approach is proposed in 
this research. In the proposed methodology, the fuzzy 
judgment matrix of each decision maker is decomposed 
into several fuzzy judgment submatrices that are more 
likely to overlap. To optimize the decomposition result, 
an FNLP problem is formulated and solved. Subsequently, 
the fuzzy judgment submatrices of the decision makers 
are aggregated using FI to derive the fuzzy priorities of 
criteria. On the basis of the FI result, the overall perfor-
mances of alternatives are evaluated and compared using 
fuzzy TOPSIS.

The proposed methodology has been applied to the case 
of planning the transformation of a Japanese restaurant after 
the COVID-19 pandemic. According to the experimental 
results, the following conclusions were drawn:

(1) Such transformation was beyond the expectation of 
the Japanese restaurant employees. Therefore, no con-
sensus was discovered among them. Nevertheless, the 
proposed fuzzy collaborative intelligence method suc-
cessfully solved this problem.

(2) The optimal transformation plan involved increasing 
the distance between tables, erecting folding screens 
between tables, and improving air circulation.

(3) Four prevalent fuzzy group decision-making methods 
were also applied to this case. Three of these methods 
recommended that the indoor dining area be divided 
into smaller booths, and one suggested reducing the 
indoor dining area and expanding the outdoor dining 

area. However, these methods could not account for the 
lack of consensus among decision makers.

An obvious drawback of the proposed methodology is the 
difficulty associated with solving an NLP problem. In addi-
tion, unlike existing methods [18, 19], the proposed method 
does not interpret the multiple views of a decision maker, 
thus limiting its further application.

In future research, the efficiency of decomposing a fuzzy 
judgment matrix can be improved. In addition, in the pro-
posed methodology, a fuzzy judgment matrix is the arithme-
tic mean of its fuzzy judgment submatrices. Other operators 
can be adopted to define this relationship.
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