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Abstract
The novel Coronavirus-induced disease COVID-19 is the biggest threat to human health at the present time, and due to the 
transmission ability of this virus via its conveyor, it is spreading rapidly in almost every corner of the globe. The unification 
of medical and IT experts is required to bring this outbreak under control. In this research, an integration of both data and 
knowledge-driven approaches in a single framework is proposed to assess the survival probability of a COVID-19 patient. 
Several neural networks pre-trained models: Xception, InceptionResNetV2, and VGG Net, are trained on X-ray images of 
COVID-19 patients to distinguish between critical and non-critical patients. This prediction result, along with eight other 
significant risk factors associated with COVID-19 patients, is analyzed with a knowledge-driven belief rule-based expert 
system which forms a probability of survival for that particular patient. The reliability of the proposed integrated system 
has been tested by using real patient data and compared with expert opinion, where the performance of the system is found 
promising.
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Introduction

The sudden appearance of an unknown member of a large 
virus family is not a novel experience for humans. Almost 
every century in human history, viruses with novel genome 
sequences appear and take thousands of lives. Ebola, Swine 
Flu, SARS, HIV, Hong Kong Flu, and Asian Flu are the 
deadliest viruses that caused the death of a large number of 

lives. In December 2019, an unrecognized viral pneumonia 
patient got identified in Wuhan, China. It is the city where 
the novel Coronavirus is discovered first. Anyway, Severe 
Acute Respiratory Syndrome (SARS) Coronavirus (COV)-2 
belongs to the Coronavirus family, which causes mild-to-
moderate respiratory symptoms and five to ten percent of 
infected people show severe respiratory symptoms [1]. This 
novel Coronavirus is responsible for a respiratory disease, 
addressed as Coronavirus Disease 2019 or COVID-19. It 
is a highly contagious disease, transferred from one per-
son to another by droplets, direct contact with the infected 
individual, or touching an infected object. Due to its mas-
sive transmission capability, it has already spread all over 
the globe within a few months. Moreover, this Coronavirus 
outbreak put the health sectors of most countries at risk, and 
the World Health Organisation (WHO) has announced it as 
a pandemic [2].

Deep learning approaches are vastly adopted in solving 
computer vision problems [3, 4]. In medical imaging, deep 
learning methods are also integrated into numerous medical 
equipment to diagnose critical diseases. X-ray, CT scan, MRI, 
etc., contain health information of a patient, which are use-
ful input parameters for deep learning models [5]. Automated 
information extraction from medical images by neural nets 
makes diagnosis faster for medical professionals. Transfer 
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learning is one of the most remarkable concepts in deep learn-
ing [6]. It refers to the loading of learned weights from a pre-
trained model without training a model from scratch. Transfer 
learning is a proper choice if a researcher has a limited dataset, 
which is the case for COVID-19 research. Coronavirus attacks 
the epithelial cells that line the respiratory tract, which can be 
identified from chest X-ray images.

Belief Rule-Based Expert System (BRBES) is an expert 
system driven by the extension of traditional IF-THEN rules 
where the system delivers a consequence value with a degree 
of belief [7]. This consequence value of a rule is constructed 
based on its antecedent attributes with referential values. In 
this research, BRBES makes decisions by analyzing CNN-
generated linguistic output along with some crucial risk factors 
regarding a patient’s health. With these inputs, BRBES per-
forms input transformation, rule activation weight calculation, 
belief update, rules aggregation using evidential reasoning, 
and finally generates patient survival probability.

The core contributions and significance of this research can 
be addressed as follows: Unlike the typical COVID-19 patient 
detection from X-ray images, the proposed integrated framework 
can contribute to the survival probability assessment of COVID-
19 patients. It helps medical professionals to adopt immediate 
measurements in critical situation. In the process of health condi-
tion analysis of the COVID-19 infected individuals, this research 
takes into consideration both data-driven deep learning and 
knowledge-driven Belief Rule-Based approach. Total depend-
ency on data-driven or knowledge-driven schemes is excluded in 
this research which encourages the reliability in patient’s health 
condition assessment. In addition to the patient condition assess-
ment, a novel dataset COVID-19-Status (X-ray images of critical 
and non-critical patients) is also proposed in this research which 
is made public for further research in this domain.

The remainder of this article is structured as follows: short 
briefs on several related works are provided in Related Work. 
Convolutional Neural Network and Data Collection and Aug-
mentation demonstrate the mechanism of the Convolutional 
Neural Network and data collection and augmentation, while 
Belief Rule-Based Expert System provides a short description 
of the Belief Rule-Based Expert System. Then Integration of 
CNN and BRBES depicts how the integration of CNN and 
BRBES takes place in this research, and Experiment provides 
details about experiments. Demonstration of the system imple-
mentation and result analysis is delivered in System Implementa-
tion and Result and Discussion. Finally, Conclusion concludes 
the article.

Related Work

Sousa et al. [8] aim to find out what factors are linked 
to COVID-19 death rate and recovery in a state in Bra-
zil’s northeast. Only moderate and severe cases were 

hospitalized according to a survey on patients who had 
flu-like symptoms, sought medical help, and tested COVID 
positive till April 2020. Robust Poisson regression was 
used to evaluate mortality, while Kaplan–Meier and Cox 
regression was used to investigate survival. For two thou-
sand seventy COVID-19 patients, the survival rate is 
87.7% considering from the twenty-fourth day of infection. 
The clinical risk factors taken into account in this research 
as the parameter for assessing the survival probability are 
diabetes, CVD, hematologic disorders, pneumopathies, 
immunodeficiencies, neurological diseases, asthma and 
so on.

Dong et al. [9] investigated that among the admitted 
COVID-19 sufferers, higher neutrophil-to-lymphocyte 
ratio and NT-proBNP readings and hypertension are 
linked with a worse outcome. LASSO and multivari-
ate Cox regression models are taken into account in the 
training phase to find predictive markers for hospital-
ized COVID-19 patients’ survival. For medical usage, a 
nomogram characterized by three factors is formulated. 
In model training and testing cohorts, AUCs and C-index 
are utilized to assess the nomogram’s performance. In the 
train and test batches, the nomogram’s C-indices are 0.901 
and 0.892, correspondingly. In the learning phase, the area 
under curve for fourteen and the twenty-one-day likelihood 
of hospitalized COVID-19 survival are 0.922 and 0.919, 
accordingly, whereas, in the test batch, it shows 0.922 and 
0.881.

The goal of Murillo-Zamora et al. [10] was to investi-
gate the medical criteria and risk factors for deaths asso-
ciated with COVID-19, which is actively circulating in 
the population in Mexico. By investigating the risk fac-
tors, the researchers found that diabetes, obesity, chronic 
obstructive pulmonary disease, chronic kidney disease, 
smoking habit, hypertension, and even age and sex are 
all significantly linked to the chance of death, especially 
for COVID-19 patients. This research examined 331,298 
COVID-19 diagnosed patients to see whether factors are 
linked to death. The probabilities of death of features and 
morbidities in COVID-19 patients were studied using mul-
tivariate logistic regression and Kaplan–Meier survival 
curves.

Nemati et al. [11] experimented with various learn-
ing algorithms to examine the mortality factors of nearly 
twelve hundred patients in this study. Several machine-
learning (gradient boosting, SVM), as well as statistical 
analysis (CoxPH, Coxnet, KM estimator), are incorporated 
to assess the release prognosis of COVID-19 patients. 
Only a minimal number of parameters, such as age, sex, 
available dates, and status (death or release), are preserved 
in the dataset among the original one where the major 
part of the data comes from public healthcare reports and 
online resources, which are mostly provided by state/local 

661Cognitive Computation  (2022) 14:660–676

1 3



medical authorities and clinics in various nations. The 
results show that the gradient boosting model surpasses 
alternative algorithms in this investigation for predicting 
patient mortality.

COVID-19 data from two hundred and eighty-seven 
patients admitted in Saudi Arabia’s King Fahad Univer-
sity Hospital are analyzed Aljameel et al. [12] in this 
research. Classification techniques are adopted to exam-
ine the data: random forest, extreme gradient boosting, 
logistic regression. Several preprocessing approaches are 
employed in order to prepare the data at first. In addition, 
10-K-fold cross-validation and SMOTE are incorporated 
to fragment the samples and ameliorate the imbalance 
among them. Investigations are carried out with 20 clini-
cal variables that are found to be relevant in predicting 
survival versus death in COVID-19 patients. With an effi-
ciency of 0.95 and an AUC of 0.99, the findings indicate 
that RF surpassed the remaining predictors. The proposed 
model can successfully aid decision-making and medical 
practitioners by immediate diagnosis of critical COVID-
19 patients.

The articles discussed above assess the survival probabil-
ity of the COVID-19 patient formulated based on some risk 
factors. These risk factors’ involvement is equally significant 
as the chest radiography analysis, which indicates to what 
extent the lungs get infected of a COVID-19 patient. This 
parameter is also crucial to consider, especially for COVID-
19 patients, because this disease results in lung damage in 
critical situations. In this research, most possible factors 
associated with a COVID-19 patient are taken into account 
and assess the probability outcome regarding the patient’s 
mortality.

Convolutional Neural Network

Chest X-ray images of COVID-19 patients are considered to 
be analyzed to assess their condition using a deep learning 
approach. Varying chest X-ray image values correspond to 
several density groups. For example, the dark area of the 
X-ray images refers to the space covered with air, whereas 
the off-white portion indicates the descend tissue (bones). 
In the case of lungs, which is likely to be affected for criti-
cal COVID-19 patients with pneumonia, the air-filled dark 
portion of the lungs appears to be dense due to liquid-like 
substances in the X-ray images, which refer to pulmonary 
abnormalities. Moreover, the cost-effectiveness and avail-
ability of X-ray technology over computed tomography 
(CT scan) technology is one of the reasons to analyze X-ray 
images.

The transfer learning approach is adopted in this 
research rather than building the CNN model from 
scratch. The CNNs frameworks of pre-trained models 

are already loaded with trained weight so that they are 
already familiar with the features of an image. Several 
pre-trained CNN models are taken into account in this 
X-ray image classification task and make a comparison 
among them. Xception, InceptionResNetV2, VGG16, and 
VGG19 models are considered to be trained on a chest 
X-ray image dataset and select an appropriate model that 
can detect whether or not a COVID-19 patient is in criti-
cal condition based on the patient’s chest X-ray image. 
All the mentioned pre-trained CNN models are previously 
trained on one of the largest image datasets in computer 
vision, “ImageNet” which contains more than 14 million 
images distributed among more than 2000 classes [13]. 
After applying these pre-trained models on the X-ray 
image dataset, a performance comparison is drawn to 
propose the optimum model for chest X-ray image classi-
fication. It should be mentioned that selected pre-trained 
models are gone through some fine-tuning mechanisms in 
the fully connected layers rather than applying exactly the 
same pre-trained model architecture in order to improve 
classification accuracy.

According to Fig. 1, which represents the schematic 
representation of the research plan, dataset images are 
fed into the fine-tuned pre-trained models. In the tuning 
process, fully connected layers are customized by includ-
ing two hidden layers following the flatten layer. Each of 
the hidden layers consists of 2024 nodes. Moreover, in 
between the hidden layers dropout layer of 0.5 is intro-
duced to prevent the issues regarding model overfitting 
[14]. The dropout layer takes the responsibility that the 
model does not get biased to training data and delivers 
better prediction performance on the validation data. 
Although models have already trained on a large “Ima-
geNet” dataset and are acquainted with image features, it 
requires dataset-specific features to get better recognition 
performance. In order to fulfil this purpose, instead of 
freezing all layers, some convolution, batch normaliza-
tion, or pooling layers of the base model are included in 
the training phase so that these layers can extract more 
dataset-specific features from the chest X-ray image data-
set. Table 1 shows the layers that are selected for training 
and other than these layers, the remaining layers are kept 
excluded for training.

According to Table 1, only the last layers weights of the 
pre-trained models are updated during back-propagation 
which enables a reduction in computation time. The motive 
of freezing initial layers is that these models are already 
trained on huge dataset like ImageNet [44] and so they are 
well-acknowledged with lower-level basic image features 
like edges and curves. Now, later convolution layers of the 
proposed model are responsible for acquiring data-specific 
high-level features. Although the total number of layers 
Xception, InceptionResNetV2, VGG16, and VGG19 have is 
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36, 164, 16, and 19, respectively, in this research maximum 
of eight layers are included in the training process.

Data Collection and Augmentation

Cohen et  al. [15] introduce a COVID-19 chest X-ray 
image dataset and make it available to a GitHub reposi-
tory. Most of the research works conducted on COVID-19 
approve and use this standard dataset. Since it is a novel 
topic of research, data collection is still going on and 
the number of images of the repository is expanding as 
days pass by. Till the time when this research was being 
conducted, the dataset contained a total of 673 images 
that were unequally distributed among nine different 
classes. The number of images per class is: COVID-19 
(538), Streptococcus (17), Pneumocystis (17), SARS (16), 
Pneumonia (14), Mycoplasma Bacterial Pneumonia (8), 
Klebsiella (8), Legionella (6), Lipoid (5), Varicella (5), 
Bacterial (4), E.Coli (4), ARDS (4), Chlamydophila (2), 
and Influenza (2). The remaining 23 images are unla-
beled. In order to prepare the dataset for this research, 
the chest X-ray images of the COVID-19 class are closely 
observed. It should be mentioned that COVID-19 causes 
severe pneumonia at the critical condition of the patient 

and on that note, X-ray images at the initial stage and 
critical stage of COVID-19 patients are differentiable.

If Fig. 2 is observed, according to [16], these X-rays 
are of a patient with COVID-19. On admission to the 
hospital, the chest condition was normal, which is the 
initial stage of COVID-19 in Fig. 2(a). But after four 
days, the patient is on ventilation, and there were bilat-
eral consolidations on the chest X-ray in Fig. 2(b) [16]. 
Based on this, 673 X-ray images of COVID-19 patients 
are labeled with critical and non-critical classes keep-
ing apart the other classes of the original dataset. After 
labeling, the “Critical” class consists of 148 images and 
390 images are included in the “Non-critical” class. But 
still not enough data for the deep learning model that 
is why the data augmentation method is applied to the 
existing dataset. The reason for using data augmenta-
tion is the dataset of the original source narrowed down 
and especially the “Critical” class has only 148 images. 
And the characteristic of the data-driven approach like 
CNN is that it maintains a positive correlation, in terms 
of prediction capability, with the size of the dataset. Tra-
ditional image augmentation techniques like horizontal 
flip, rotation, shear, and zoom are incorporated in this 
research. Random clockwise image rotation with 30% 
rotation degree and shifting and zooming image by 20% 
are applied to generate additional data. The parameters 
that are considered in the data augmentation method are 
provided in Table 2 with value.

Although augmented images are generated from the 
existing image dataset, variance in parameter allows the 
augmentation method to construct images of different view 
angles. This image variation defends the possibility of model 
overfitting.

So, a derived “COVID-19-Status” dataset is proposed in 
this research which is made available in GitHub [17]. Figure 3 
shows sample images of the COVID-19-Status dataset.

Fig. 1   Schematic Representation of the Research Plan

Table 1   Trainable Layers of the Pre-trained Models

Pre-Trained Models Trainable Layers

Xception 2 Convolution layers, 2 Batch normalization 
layers

InceptionResNetV2 4 Convolution layers, 2 Batch normalization 
layers

VGG16 6 Convolution layers, 2 MaxPooling layers
VGG19 6 Convolution layers, 2 MaxPooling layers
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Belief Rule‑Based Expert System

A Belief Rule-Based Expert System (BRBES) is composed 
of two main components [18]. The first one is Belief Rule 
Base (BRB), which works as a knowledge base, and the 
second one is evidential reasoning that works as an infer-
ence engine [19]. By extending the traditional IF-THEN 
rule, a belief rule is formed with two main parts. The first 
part is a collection of antecedent attributes, which are 
linked with referential values, and the second part is the 
consequent attribute that is embedded with belief degrees. 
In a BRB, attribute weight, rule weight, and belief degrees 
are the knowledge representation parameters, which are 
accountable to capture uncertainty in data [20]. A belief 
rule is presented below:

In this rule, “Patient Condition”, “Blood Pressure”, “Chronic 
Obstructive Pulmonary Disease”, “Blood Sugar”, “Asthma”, 
“Chronic Kidney Disease”, “Obesity”, “Acute Respiratory 

R
k
∶

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

IF Patient Condition is Critical AND Blood Pressure is Elevated

AND Chronic Obstructive Pulmonary Disease is Mildly Abnormal

AND Blood Sugar is Normal AND Asthma is Intermittent

AND Chronic Kidney Disease is Very Severe AND Obesity is Level II

AND Acute Respiratory Distress Syndrome is Mild

AND Pulse Oxymetry is Moderate

THEN Patient Survival Probability is

(Very High,0.0), (High,0.0), (Medium, 0.55), (Low, 0.45), (Very Low, 0.0)

Distress Syndrome”, and “Pulse Oxymetry” are the anteced-
ent attributes, while ‘Critical’, ‘Elevated’, ‘Mildly Abnor-
mal’, ‘Normal’, ‘Intermittent’, ‘Very Severe’, ‘Level II’, 
‘Mild’, and ‘Moderate’ are their corresponding referential 
values. “Patient Survival Probability” is the consequent 
attribute and its referential values are ‘Very High’, ‘High’, 
‘Medium’, ‘Low’, and ‘Very Low’. The belief distribution 
of this consequent attribute is (Very High, 0.0), (High, 0.0), 
(Medium, 0.55), (Low, 0.45), and (Very Low, 0.0). In this 
rule, the sum of belief degrees (0.0 + 0.0 + 0.55 + 0.45 
+ 0.0 = 1) associated with each referential values of the 
consequent attribute is one, so the rule is complete. How-
ever, the rule is considered incomplete if the sum of belief 
degrees is less than one, which can happen due to ignorance 
or incompleteness.

Evidential reasoning (ER) can handle heterogeneous data 
and different types of uncertainties, including incomplete-
ness, ignorance, imprecision, and vagueness. It consists 
of four steps, namely input transformation, rule activation 
weight calculation, belief update, and rule aggregation, 
which is shown in Fig. 4.

The first step is input transformation, where the input 
data are distributed over the referential values of the ante-
cedent attributes of a belief rule, which is known as match-
ing degrees [21]. After calculating matching degrees, the 

Fig. 2   X-ray Images of COVID-
19 Patient in (a) Non-critical 
and (b) Critical Condition

Table 2   Data Augmentation 
Parameters with Value

Operation Type Value

Horizontal Flip True
Rotation 0.30
Shear 0.20
Zoom 0.20
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belief rules are called packet antecedent, and they are 
considered active [22]. The matching degrees are used 
to perform the second step, which is the calculation of 
the activation weight of the rules. The third step is belief 
update, where the belief degree associated with each belief 
rule in the rule base is updated in case of ignorance or 
missing input data for any of the antecedent attribute [23]. 
The fourth step is rule aggregation, which is performed 
by using either analytical or recursive evidential reason-
ing algorithm [24]. The crisp value is calculated from the 
fuzzy output of the rule aggregation procedure using the 
utility score associated with each referential value of the 
consequent attribute [25]. All these steps are performed by 
following the procedures mentioned in [26, 27].

Integration of CNN and BRBES

Both Convolutional Neural Network (CNN) and Belief Rule-
Based Expert System (BRBES) are incorporated in this 
research to assess the survival probability of a COVID-19 
patient based on X-ray image along with considering sev-
eral risk factor parameters of that patient. The step-by-step 
workflow of the proposed integrated framework is depicted 
in Fig. 5.

–	 As mentioned earlier, the pre-trained model VGG19 is 
optimized in this X-ray image classification task by mak-
ing some changes in its original architecture based on 
observed experimental results. This change is made basi-

Fig. 3   Sample Images of 
COVID-19-Status [17] Dataset

Fig. 4   Sequence of BRBES Inference Procedures
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cally in the fully connected layer portion. However, the 
convolution portion is kept as it is, which consists of 16 
convolution layers with 3x3 convolution filter size. Four 
MaxPooling layers contribute to extract the feature-max 
in between the convolution layers. Instead of using 4096 
nodes per hidden layer, 2024 nodes are included with 
50% dropout in each of the two hidden layers. VGG19 
architecture ends with two output layers for critical and 
non-critical classes.

–	 Now, the CNN part of the integrated approach is respon-
sible for X-ray image analysis to classify “Patient Condi-
tion” into one of the two categories. Basically, it imitates 
the image analysis methodology of the human brain and 
recognizes the class of that image. Trainable convolution 
layers of CNN are accountable for the extraction of high-
level features of an X-ray image and generate a feature 
map for each filter. Feature vectors are basically two-
dimension feature information that is converted to a one-
dimension vector so that fully connected layer performs 
weight adjustment using backpropagation. With the help 
of the Softmax activation function, probabilities are dis-
tributed among the classes. Then class with higher prob-
ability is converted to a linguistic form, which is either 
‘Non-Critical’ or ‘Critical’ and delivered to BRBES as 
one of the input parameters.

–	 Other input parameters that are considered for BRBES 
are some crucial risk factors of that patient such as 
“Blood Pressure”, “Chronic Obstructive Pulmonary 
Disease”, “Blood Sugar”, “Asthma”, “Chronic Kid-
ney Disease”, “Obesity”, “Acute Respiratory Distress 
Syndrome”, and “Pulse Oxymetry” [28–31]. Usually, 
patients and physicians use linguistic terms to express 
these risk factors. For example, “Chronic Obstructive 
Pulmonary Disease” is expressed by using linguistic 
terms such as ‘Normal’, ‘Mildly Abnormal’, ‘Moderately 
Abnormal’, ‘Severely Abnormal’, and ‘Very Severely 
Abnormal’.

–	 Therefore, a numerical scale has been considered to 
convert linguistic terms into a numerical value. For 
example, “Very Severely Abnormal” is given the pref-
erence value as “10”, “Severely Abnormal” is given 
the preference value as “8”, “Moderately Abnormal” is 
given the preference value as “5”, “Mildly Abnormal” 
is given the preference value as “2” and “Normal” is 
given the preference value as “0”. Table 3 shows the 
numerical scale of measurement for each input param-
eter for BRBES.

–	 Based on these input parameters, “Patient Survival 
probability” is calculated using BRBES. For “Patient 
Survival probability”, its referential values are chosen 

Fig. 5   The Workflow of the Proposed CNN-BRBES Integrated Framework
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as ‘Very High’, ‘High’, ‘Medium’, ‘Low’, and ‘Very 
Low’, and its utility values are chosen as ‘100’, ‘75’, 
‘50’, ‘25’, and ‘0’, respectively. It is worth mention-
ing that all the risk factors, their linguistic measure-
ment categories, and corresponding numerical scal-
ing are determined under the supervision of clinical 
experts.

In general, there are two types of Belief Rule Base 
(BRB), namely conjunctive BRB and disjunctive BRB. In 

conjunctive BRB, each rule is assumed as conjunctive in 
nature, while in disjunctive BRB, each rule is represented 
using disjunctive assumption.

Under the conjunctive assumption, the total number of 
rules, L, is calculated using the referential values, J

i
 of the 

antecedent attributes, A
i
 of a BRB, as shown in Eq. (1).

(1)L =

T
k∏

i=1

J
i

Table 3   Numerical Scale of Measurement for Each Input Parameter for BRBES

Symptom Linguistic Term Numerical 
Scale

Patient condition Critical 10
Non Critical 1

Blood pressure Hypertensive Crisis (Systolic: > 180 mm Hg and/or Diastolic: > 120 mm Hg) 10
Stage 2 Hypertension (Systolic: ≥ 140 mm Hg or Diastolic: ≥ 90 mm Hg) 8
Stage 1 Hypertension (Systolic: 130-139 mm Hg or Diastolic: 80-89 mm Hg) 5
Elevated (Systolic: 120-129 mm Hg and Diastolic: < 80 mm Hg) 2
Normal (Systolic: < 120 mm Hg and Diastolic: < 80 mm Hg) 0

Chronic obstructive pulmonary disease Very Severely Abnormal (FEV-1:≤30%) 10
Severely Abnormal (FEV-1: 30-49%) 8
Moderately Abnormal (FEV-1: 50-69%) 5
Mildly Abnormal (FEV-1: 70-79%) 2
Normal (FEV-1:≥80%) 0

Blood sugar Diabetic (Fasting:≥125 mg/dL and Post Meal:≥200 mg/dL) 10
Pre-Diabetic (Fasting: 101-125 mg/dL and Post Meal: 141-200 mg/dL) 5
Normal (Fasting: 70-100 mg/dL and Post Meal: 70-140 mg/dL) 0

Asthma Severe Persistent (Symptoms: Throughout the day) 10
Moderate Persistent (Symptoms: Daily) 8
Mild Persistent (Symptoms: > 2 days per week, but not daily) 5
Intermittent (Symptoms:≤ 2 days per week) 2
Normal (No Symptoms) 0

Chronic kidney disease Very Severe (GFR: < 15 mL/min) 10
Severe (GFR: 15-29 mL/min) 8
Moderate (GFR: 30-59 mL/min) 5
Mild (GFR: 60-89 mL/min) 2
Normal (GFR: > 90 mL/min) 0

Obesity Level III (BMI:≥40) 10
Level II (BMI: 35-39.9) 6
Level I (BMI: 30-34.9) 3
Normal (BMI: < 30) 0

Acute respiratory distress syndrome Severe (PaO2/FiO2:<=100 mmHg) 10
Moderate (100 mmHg < PaO2/FiO2:<=200 mmHg) 6
Mild (200 mmHg < PaO2/FiO2:<=300 mmHg) 3
Normal (PaO2/FiO2: > 300 mmHg) 0

Pulse oximetry Severe (Saturation:<=93%) 10
Moderate (Saturation: > 93%) 1
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Under the disjunctive assumption, the total number of rules, 
L, is equal to the number of referential values of the anteced-
ent attributes, as shown in Eq. (2). The disjunctive assump-
tion requires that all attributes have the same number of 
referential values [32].

As mentioned above, nine input parameters have been con-
sidered for BRBES to calculate patient survival probability. 
From Table 3, it can be seen that each input parameter has a 
different number of referential values. Hence, it is not pos-
sible to consider disjunctive BRB. Therefore, conjunctive 
BRB has been considered for BRBES, where the total num-
ber of rules = 2 × 5 × 5 × 3 × 5 × 5 × 4 × 4 × 2 = 120, 000.

Usually, a BRB can be established in four ways, namely 
by extracting belief rules from domain expert knowledge, 
extracting belief rules by examining historical data, using 
previous rule bases if available, and using random rules if 
there is no prior knowledge [33]. In this study, due to the 
lack of prior knowledge, the initial BRB is constructed by 
using random rules as follows. First, intermediate values 
within the range of consequence values have been calcu-
lated. Then the number of possible combinations has been 
calculated using the length of each referential value. Finally, 
after calculating intermediate values for each combination, 
the belief degree associated with each referential value of the 
consequent attribute has been distributed within the range.

The initial BRB for patient survival probability is shown 
in Table 4 which consists of rule id with corresponding rule 
weight, input antecedents from X1 to X9 and their respec-
tive inferred consequence in terms of survival probabili-
ties of the patients. For better representation, all the input 
parameters are assigned to one-to-one variable X where 
X1: Patient Condition, X2: Blood Pressure, X3: Chronic 

(2)L = J1 = J2 = ... = J
i

Obstructive Pulmonary Disease, X4: Blood Sugar, X5: 
Asthma, X6: Chronic Kidney Disease, X7: Obesity, X8: 
Acute Respiratory Distress Syndrome and X9: Pulse Oxi-
metry. The categories for the severity of the risk factors 
are denoted as Critical: C, Non-Critical: NC, Hypertensive 
Crisis: HC, Very Severely Abnormal: VSA, Diabetic: D, 
Severe Persistent: SP, Very Severe: VS, Level III: L-III, 
Severe: S, Moderate: M, Normal: N, Mild: Mi, VH: Very 
High, H: High, M: Medium, L: Low, VL: Very Low. And 
the survival probability of the COVID-19 patients taking 
into account the risk factors and X-ray images is denoted 
by Y.

In order to ensure the reliability of the rules in the initial 
BRB, the BRBES is trained using the non-linear optimiza-
tion solver fmincon in MATLAB optimization toolbox [34], 
Belief Rule-Based Adaptive Particle Swarm Optimization 
(BRBAPSO) [35], and the enhanced Belief Rule-Based 
adaptive Differential Evolution (eBRBaDE) algorithm 
[36]. The detailed procedure to train the BRBES can be 
found in [34–36]. After training the BRBES using fmincon, 
BRBAPSO, and eBRBaDE, the trained BRB for patient 
survival probability is shown in Tables 5, 6, and 7, respec-
tively. Various rule weights for the rules can be observed 
from Tables 5, 6, and 7. For example, 0.89 has been set as 
rule weight for the rule 1 of fmincon trained Belief Rule 
Base, whereas 0.94 and 0.98 for rule weight for the rule 1 
BRBAPSO and eBRBaDE trained Belief Rule Base, respec-
tively. The reference values of the consequent attributes for 
the rule 1 are (0.77,0.23,0,0) of the fmincon trained Belief 
Rule Base. The reference values of the consequent attrib-
utes for the rule 1 are (0.83,0.17,0,0) and (0.87,0.13,0,0) for 
BRBAPSO and eBRBaDE trained Belief Rule Base, respec-
tively. Here, it can be observed that meta-heuristic-based 
algorithm like BRBAPSO and eBRBaDE are predicting 

Table 4   Initial Belief Rule Base for Patient Survival Probability: Y 
(X1: Patient Condition, X2: Blood Pressure, X3: Chronic Obstructive 
Pulmonary Disease, X4: Blood Sugar, X5: Asthma, X6: Chronic Kid-
ney Disease, X7: Obesity, X8: Acute Respiratory Distress Syndrome, 
X9: Pulse Oximetry, Critical: C, Non Critical: NC, Hypertensive Cri-

sis: HC, Very Severely Abnormal: VSA, Diabetic: D, Severe Persis-
tent: SP, Very Severe: VS, Level III: L-III, Severe: S, Moderate: M, 
Normal: N, Mild: Mi, VH: Very High, H: High, M: Medium, L: Low, 
VL: Very Low)

Rule Rule IF THEN (Y)

ID Weight X1 X2 X3 X4 X5 X6 X7 X8 X9 VH H M L VL

1 1 C HC VSA D SP VS L-III S S 1 0 0 0 0
2 1 C HC VSA D SP VS L-III S M 0.59 0.41 0 0 0
3 1 C HC VSA D SP VS L-III M S 0.82 0.18 0 0 0
4 1 C HC VSA D SP VS L-III M M 0.41 0.59 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119997 1 NC N N N N N N Mi S 0 0 0 0.55 0.45
119998 1 NC N N N N N N Mi M 0 0 0 0.14 0.86
119999 1 NC N N N N N N N S 0 0 0 0.41 0.59
120000 1 NC N N N N N N N M 0 0 0 0 1
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similar values in comparison to deterministic algorithm like 
fmincon 

In order to show the results of evidential reasoning, an 
example can be considered. Suppose from the X-ray image 
analysis of a patient by CNN, the “Patient Condition” is 
found as ‘Critical’. Suppose the other risk factors of that 
patient are as follows. Blood Pressure: Elevated, Chronic 
Obstructive Pulmonary Disease: Mildly Abnormal, Blood 
Sugar: Normal, Asthma: Intermittent, Chronic Kidney Dis-
ease: Moderate, Obesity: Level I, Acute Respiratory Distress 
Syndrome: Severe, and Pulse Oxymetry: Severe.

Now after performing the four steps of evidential 
reasoning, namely input transformation, rule activation 
weight calculation, belief update, and rule aggregation, 
the “Patient Survival Probability” will be found as: (Very 
High,0.0), (High,0.0), (Medium, 0.91), (Low, 0.09), (Very 
Low, 0.0)

Now, from this fuzzy output of the rule aggregation pro-
cedure, the crisp value is calculated using the utility score 
associated with each referential value of the “Patient Sur-
vival Probability” attribute as follows.

Patient Survival Probability = 0.0 × 100 + 0.0×

75 + 0.91 × 50 + 0.09 × 25 + 0.0 × 0 = 52.25% ≃ 52%.
Finally, the architecture of integrated CNN-BRBES sys-

tem is shown in Fig. 6.

Experiment

Several experiments are conducted, especially during fine-
tuning the fully connected layers and deciding the num-
ber of layers of base pre-trained models that should be 
added to the training process. As inputs for customized 
pre-trained models, images with 224x224 dimensions are 

Table 5   Trained Belief Rule Base Using fmincon for Patient Survival 
Probability (Y) where input antecedents are X1: Patient Condition, 
X2: Blood Pressure, X3: Chronic Obstructive Pulmonary Disease, 
X4: Blood Sugar, X5: Asthma, X6: Chronic Kidney Disease, X7: 
Obesity, X8: Acute Respiratory Distress Syndrome, X9: Pulse Oxi-

metry, Critical: C, Non Critical: NC, Hypertensive Crisis: HC, Very 
Severely Abnormal: VSA, Diabetic: D, Severe Persistent: SP, Very 
Severe: VS, Level III: L-III, Severe: S, Moderate: M, Normal: N, 
Mild: Mi, VH: Very High, H: High, M: Medium, L: Low, VL: Very 
Low)

Rule Rule IF THEN (Y)

ID Weight X1 X2 X3 X4 X5 X6 X7 X8 X9 VH H M L VL

1 0.89 C HC VSA D SP VS L-III S S 0.77 0.23 0 0 0
2 0.78 C HC VSA D SP VS L-III S M 0.42 0.58 0 0 0
3 0.71 C HC VSA D SP VS L-III M S 0.59 0.41 0 0 0
4 0.74 C HC VSA D SP VS L-III M M 0.26 0.74 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119997 0.68 NC N N N N N N Mi S 0 0 0 0.41 0.59
119998 0.79 NC N N N N N N Mi M 0 0 0 0.14 0.86
119999 0.75 NC N N N N N N N S 0 0 0 0.36 0.64
120000 0.85 NC N N N N N N N M 0 0 0 0.06 0.94

Table 6   Trained Belief Rule Base Using BRBAPSO for Patient Sur-
vival Probability (Y) where input antecedents are X1: Patient Condi-
tion, X2: Blood Pressure, X3: Chronic Obstructive Pulmonary Dis-
ease, X4: Blood Sugar, X5: Asthma, X6: Chronic Kidney Disease, 
X7: Obesity, X8: Acute Respiratory Distress Syndrome, X9: Pulse 

Oximetry, Critical: C, Non Critical: NC, Hypertensive Crisis: HC, 
Very Severely Abnormal: VSA, Diabetic: D, Severe Persistent: SP, 
Very Severe: VS, Level III: L-III, Severe: S, Moderate: M, Normal: 
N, Mild: Mi, VH: Very High, H: High, M: Medium, L: Low, VL: 
Very Low)

Rule Rule IF THEN (Y)

ID Weight X1 X2 X3 X4 X5 X6 X7 X8 X9 VH H M L VL

1 0.94 C HC VSA D SP VS L-III S S 0.83 0.17 0 0 0
2 0.83 C HC VSA D SP VS L-III S M 0.49 0.51 0 0 0
3 0.77 C HC VSA D SP VS L-III M S 0.65 0.35 0 0 0
4 0.80 C HC VSA D SP VS L-III M M 0.33 0.67 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119997 0.74 NC N N N N N N Mi S 0 0 0 0.47 0.53
119998 0.85 NC N N N N N N Mi M 0 0 0 0.21 0.79
119999 0.81 NC N N N N N N N S 0 0 0 0.43 0.57
120000 0.94 NC N N N N N N N M 0 0 0 0.11 0.89
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fed for classification. Each of the image pixels is a combi-
nation of 3 channels (red, green, blue). “ImageNet” dataset 
on which the models are trained contains images of the 
same pixels and channels. Before data augmentation, the 
COVID-19-Status dataset [17] had a total of 538 images, 
with 148 images in critical class and 390 images in non-
critical class. However, after augmentation, images are 
equally distributed between the classes and each class con-
sists of 1122 images that mean the dataset holds a total of 

2244 images after data augmentation. Anyway, each of the 
four models is trained on the Google Colaboratory cloud 
server, which has shared Tesla K80 GPU [37]. During 
model training, Adabound optimizer [38] is used because 
this optimizer is developed combining the positive sides 
of two popular optimizers: Stochastic Gradient Descent 
(SGD) and Adam. The learning rate is set to 0.001 in the 
optimizer. After the completion of experiments, Inception-
ResNetv2 and VGG19 take 5 epochs, and Xception and 

Table 7   Trained Belief Rule Base Using eBRBaDE for Patient Sur-
vival Probability (Y) where input antecedents are X1: Patient Condi-
tion, X2: Blood Pressure, X3: Chronic Obstructive Pulmonary Dis-
ease, X4: Blood Sugar, X5: Asthma, X6: Chronic Kidney Disease, 
X7: Obesity, X8: Acute Respiratory Distress Syndrome, X9: Pulse 

Oximetry, Critical: C, Non Critical: NC, Hypertensive Crisis: HC, 
Very Severely Abnormal: VSA, Diabetic: D, Severe Persistent: SP, 
Very Severe: VS, Level III: L-III, Severe: S, Moderate: M, Normal: 
N, Mild: Mi, VH: Very High, H: High, M: Medium, L: Low, VL: 
Very Low)

Rule Rule IF THEN (Y)

ID Weight X1 X2 X3 X4 X5 X6 X7 X8 X9 VH H M L VL

1 0.98 C HC VSA D SP VS L-III S S 0.87 0.13 0 0 0
2 0.89 C HC VSA D SP VS L-III S M 0.53 0.47 0 0 0
3 0.83 C HC VSA D SP VS L-III M S 0.71 0.29 0 0 0
4 0.87 C HC VSA D SP VS L-III M M 0.39 0.61 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119997 0.79 NC N N N N N N Mi S 0 0 0 0.52 0.48
119998 0.91 NC N N N N N N Mi M 0 0 0 0.26 0.74
119999 0.88 NC N N N N N N N S 0 0 0 0.49 0.51
120000 0.99 NC N N N N N N N M 0 0 0 0.14 0.86

Fig. 6   Architecture of Integrated CNN-BRBES System
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VGG16 take 6 epochs to complete their training. In each 
case, model training is stopped by EarlyStopping call-
back as there is no improvement in learning after certain 
epochs.

The dataset splitting ratio of this research is 80:20, which 
means 80% of the dataset images are selected for model 
training and 20% is kept for testing purposes.

System Implementation

A Graphical User Interface (GUI) is developed by which 
users can be facilitated with COVID-19 patient status 
checking system. To host the model on a server, Flask 
library of python is used. HTML, CSS, JavaScript are 
used to design the front-end, and for the server, localhost 
is employed where 5000 is selected as the port number. 

This GUI allows a user to upload a chest X-ray image 
from the local device and this local app resizes the image 
into 224x224x3. Then with the help of model weight file 
‘Covid-19.h5’, it classifies the image and shows the result 
on the screen just like Fig. 7.

Result and Discussion

For each model, validation accuracy, recall, precision, and 
F1 score are considered as model’s performance evalua-
tion parameters.

According to Table 8, the Xception model achieves the 
lowest validation accuracy and F1 score, which are 83.52% 
and 83.91%. VGG19 is leading the chart with the high-
est validation accuracy (99.78%) and F1 score (99.79%) 
and it has close competition with VGG16, which holds 

Fig. 7   Real Time Validation of the Proposed Model

Table 8   Performance 
Evaluation of the Models

a VGG19 has the highest validation accuracy, precision, and F1 score

Model Name Validation 
accuracy (%)

Recall (%) Precision (%) F1 score (%)

Xception 83.52 85.40 82.48 83.91
InceptionResNetV2 96.21 97.35 95.24 96.28
VGG16 99.55 100 99.12 99.56
VGG19a 99.78 99.58 100 99.79
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99.55% and 99.56%, respectively. InceptionResNet50 also 
provides a firm validation accuracy of 96.21%. All the 

models achieve these validation accuracies in less than 7 
epochs due to their pre-trained weights.

Fig. 8   (a) Loss and Accuracy Curves, Confusion Matrix of Xception Model; (b) Loss and Accuracy Curves, Confusion Matrix of Inception-
ResNetV2 Model

Fig. 9   (a) Loss and Accuracy Curves, Confusion Matrix of VGG16 Model; (b) Loss and Accuracy Curves, Confusion Matrix of VGG19 Model
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Figures 8 and 9 depict the accuracy and loss curve of 
model training and confusion matrix of all applied pre-
trained models, where Figs. 8(a, b) and 9(a, b) refer to 
Xception, InceptionResnetV3, VGG16, and VGG19 
model, respectively. From the accuracy curves of the 
models, it can be claimed that the difference between 
training and validation accuracy is insignificant except 
for the Xception model. Xception model shows model 
overfitting, which means it recognizes the training sam-
ples more accurately than validation samples. Other than 
that, InceptionResNetV2, VGG16, and VGG19 show firm 
capability of recognizing unseen images. It is commend-
able that VGG19 recognizes all the unseen images except 
an image. In the case of VGG16, it fails to recognize only 
two images.

In order to demonstrate the applicability of the integrated 
CNN-BRBES, complete data of 200 different COVID-19 
patients have been collected with the help of a physician 
from a hospital located in the Chittagong District of Bang-
ladesh. Among them, 150 patients’ data have been used 
to train the BRBES using fmincon [34], BRBAPSO [35], 
and eBRBaDE [36], while 50 patients’ data have been used 
to validate the proposed integrated system. For simplic-
ity, Table 9 demonstrates the Survival Probabilities of ten 
patients with Patient Condition (X1) obtained from CNN 
and distinct risk factors (X2: Blood Pressure, X3: Chronic 
Obstructive Pulmonary Disease, X4: Blood Sugar, X5: 
Asthma, X6: Chronic Kidney Disease, X7: Obesity, X8: 
Acute Respiratory Distress Syndrome, X9: Pulse Oximetry). 
Column 11 of Table 9 represents the survival probabilities 
given by a physician by taking account of patients’ data, 
which is considered as the Expert Opinion (Y(%)), while 
column 12, column 13, column 14 and column 15 repre-
sent the survival probabilities generated from the integrated 
CNN-BRBES (Non-Trained) (Z(%)), CNN-BRBES (Trained 
by fmincon) ( �(%)), CNN-BRBES (Trained by BRBAPSO) 
( �(%)), and CNN-BRBES (Trained by eBRBaDE) ( �(%)). 
Column 16 represents the Outcome. If a patient survived 
within 14 and 30 days after the initial diagnosis, the outcome 
is considered as 1. If the patient is deceased, the outcome is 
considered as 0.

The receiver operating characteristic (ROC) curve is 
widely used to measure the reliability and accuracy of the 
prediction results or analyze the effectiveness of assessment 
having ordinal or continuous results [39, 40]. Therefore, in 
this research, it has been considered to test the accuracy of 
CNN-BRBES against expert opinion.

The accuracy or performance of the CNN-BRBES in 
assessing the survival probability of a COVID-19 patient 
can be measured by calculating the area under curve (AUC) 
[41–43]. The amount of area under curve (AUC) determines 
the reliability and the accuracy of system-generated results 
or expert opinions. If the AUC of CNN-BRBES is larger Ta
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than the expert opinion, it can be inferred that CNN-BRBES 
produces more accurate and reliable results.

SPSS 25 has been used to generate the ROC curve and 
calculate the AUC value. Figure 10 shows the ROC curves 
for the CNN-BRBES (Trained), CNN-BRBES (Non-
Trained), and expert opinion, while Table 10 shows the 
AUC and the confidence interval (CI) for them.

From the AUC of CNN-BRBES and expert opinion 
in Table 10, it can be observed that, though the AUC 
obtained through non-trained CNN-BRBES is not signifi-
cantly higher than the result generated by expert opinion, 
the AUC of CNN-BRBES (Trained by eBRBaDE) is sig-
nificantly greater than the AUC of expert opinion. Besides, 
for CNN-BRBES (Trained by eBRBaDE), the range of 
confidence interval is highest, and the standard error is 
lower than expert opinion. In addition, CNN-BRBES 
(Trained by eBRBaDE) is performing better because it 
ensures the balance between exploration and exploita-
tion, which is not the case with CNN-BRBES (Trained by 
BRBAPSO). CNN-BRBES (Trained by fmincon) is not 

performing better in comparison to others because it uses 
deterministic optimization approach (SQ). This implies 
that the results generated by trained CNN-BRBES are bet-
ter than that of expert opinion, which uses traditional rules 
without taking account of uncertainty.

Conclusion

The objective of this research is to propose an integrated 
CNN-BRBES approach to predict the survival probability 
of COVID-19 patients. As the CNN part, a customized pre-
trained model (VGG19) is employed for COVID-19 patients’ 
condition assessment that can decide whether or not a patient 
is a critical COVID-19 patient analyzing chest X-ray image. 
One of the reasons to use pre-trained models is that in the 
case of limited data source or amount, it is a proper option to 
go for the transfer learning approach. Then BRBES carries 
the remaining responsibility of assessing a patient’s survival 
probability by analyzing the patients’ information of eight 

Fig. 10   Comparison of Results 
of CNN-BRBES and Expert 
Opinion Using ROC Curves

Table 10   Comparison of AUC 
of CNN-BRBES and Expert 
Opinion

Test Result Variable(s) AUC​ Std. Error Asymptotic 95%

Confidence Interval

Lower Bound Upper Bound

CNN-BRBES (Trained by eBRBaDE) 0.938 0.034 0.871 1.000
CNN-BRBES (Trained by BRBAPSO) 0.929 0.036 0.858 0.999
CNN-BRBES (Trained by fmincon) 0.910 0.040 0.831 0.989
CNN-BRBES (Non-Trained) 0.855 0.052 0.754 0.957
Expert Opinion 0.825 0.057 0.714 0.937
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risk factors. The proposed model offers more robustness in 
results, which are validated by the experts, as it involves both 
data and knowledge-driven approaches instead of depend-
ing on either of these two. Another mentionable point about 
this research is that a derived dataset (COVID-19-Status) 
is developed from the most popular dataset in this domain, 
covid-chestxray-dataset, which is made available for other 
researchers in GitHub [17].
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