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Abstract
Vector symbolic architectures (VSA) are a viable approach for the hyperdimensional representation of symbolic data, such 
as documents, syntactic structures, or semantic frames. We present a rigorous mathematical framework for the representa-
tion of phrase structure trees and parse trees of context-free grammars (CFG) in Fock space, i.e. infinite-dimensional Hilbert 
space as being used in quantum field theory. We define a novel normal form for CFG by means of term algebras. Using a 
recently developed software toolbox, called FockBox, we construct Fock space representations for the trees built up by a CFG 
left-corner (LC) parser. We prove a universal representation theorem for CFG term algebras in Fock space and illustrate our 
findings through a low-dimensional principal component projection of the LC parser state. Our approach could leverage the 
development of VSA for explainable artificial intelligence (XAI) by means of hyperdimensional deep neural computation.

Keywords  Geometric cognition · Formal grammars · Language processing · Vector symbolic architectures · Fock space · 
Explainable artificial intelligence (XAI)

Introduction

Claude E. Shannon, the pioneer of information theory, pre-
sented in 1952 a “maze-solving machine” as one of the first 
proper technical cognitive systems [1].1 It comprises a maze 
in form of a rectangular board partitioned into discrete cells 
that are partially separated by removable walls, and a mag-
netized “mouse” (nicknamed “Theseus”, after the ancient 
Greek hero) as a cognitive agent. The mouse possesses as 
an actuator a motorized electromagnet beneath the maze 
board. The magnet pulls the mouse through the maze. Sen-
sation and memory are implemented by a circuit of relays, 
switching their states after encounters with a wall. In this 
way, Shannon technically realized a simple, non-hierarchic 
perception-action cycle (PAC) [2, 3], quite similar to the 
more sophisticated version depicted in Fig. 1 as a viable 
generalization of a cybernetic feedback loop.

Perception Action Cycle

In general, PAC forms the core of cognitive dynamic sys-
tems [4]. They describe the interaction of a cognitive agent 
with a dynamically changing world as shown in Fig. 1. The 
agent is equipped with sensors for the perception of its cur-
rent state in the environment and with actuators allowing 
for active state changes. A central control prescribes goals 
and strategies for problem solving that could be trained by 
either trial-and-error learning as in Shannon’s construction, 
or, more generally, by reinforcement learning [4, 5].

In Shannon’s mouse-maze system, the motor (the actua-
tor) pulls the mouse along a path until it bumps into a wall 
which is registered by a sensor. This perception is stored 
by switching a relay, subsequently avoiding the correspond-
ing action. The behavior control prescribes a certain maze 
cell where the agent may find a “piece of cheese” as a goal. 
When the goal is eventually reached, no further action is 
necessary. In a first run, the mouse follows an irregular 
path according to a trial-and-error strategy, while building 
up a memory trace in the relay array. In every further run, 
the successfully learned path is pursued at once. However, 
when the operator modifies the arrangement of walls, the 
previously learned path becomes useless and the agent has 
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to learn from the very beginning. Therefore, [1, p. 1238] 
concludes:

The maze-solver may be said to exhibit at a very primi-
tive level the abilities to (1) solve problems by trial and 
error, (2) repeat the solutions without the errors, (3) add 
and correlate new information to a partial solution, (4) 
forget a solution when it is no longer applicable.

In Shannon’s seminal approach, the mouse learns by trial-
and-error whenever it bumps into a wall. Its PAC comprises 
a simple stimulus-response loop as originally outlined in 
[2]. More sophisticated cognitive dynamic systems require 
hierarchically organized PAC such as that depicted in Fig. 1 
where only two levels of analysis/synthesis and interpre-
tation/articulation are indicated. [3] presented a multilayer 
PAC inspired by cortical connectivity. Additionally, both 
perception and actuation are characterized by bottom-up 
and top-down pathways, establishing a recurrent network 
architecture. Figure 1 reflects this by means of bidirectional 
connections for the prediction of subsequent states along the 
sensory pathway and the expectation of performed actuator 
movements along the motoric pathway. Finally, the PAC in 
Fig. 1 could be augmented by an “internal stage” as a mental 
model of the world [6]. Such PAC architectures are much 
more powerful than behavioristic stimulus-response systems 
and are also able to employ predictive coding strategies [7, 
8], either by considering action as coding [5], or by antici-
pating events in the environment [9, 10].

Moreover, elaborated cognitive dynamic systems should 
be able to draw logical inferences and to communicate either 
with each other or with an external operator, respectively 
[11]. This requires higher levels of mental representations 

such as formal logics and grammars. Below we consider the 
symbolic representation system of language as a means of 
communication. In order to fulfill this function, word sym-
bols are used as semantic representatives for the description 
of facts. The simplest case in which communication between 
two communication partners can be designed successfully is 
natural communication about facts in a shared direct envi-
ronment. In this scenario, linguistic utterances can be placed 
in an environmental context so that their meaning can be 
determined in a truth-functional sense. In order to meet this 
requirement using a hierarchically organized PAC, a first 
information transformation of signal time series into ordered 
symbolic representations (analysis) and vice versa (synthe-
sis) is required, which can be implemented using subsymbol-
symbol-transducers (SST) [12]. This enables the access to 
the theoretical foundation of “Physical Symbol Systems” 
(PSS), with which—according to the “Physical Symbol 
Systems Hypothesis” (PSSH)—cognitive processes can 
henceforth be designed as information processing [13]. This 
includes a second information transformation from ordered 
symbol sequences into semantic representations (interpreta-
tion) and vice versa (articulation) as well as logical process-
ing, with which the higher cognitive functions such as prob-
lem solving, logical reasoning or behavior control can be 
implemented. It should be noted that with each transforma-
tion, the information is converted into a more useful form. 
For example, the behavior of technical cognitive systems 
can be explained on the level at which logical information 
is available. In this study we focus on the representation of 
syntactic structures using vector symbolic architectures and 
therefore refer to the lower part of the hierarchically organ-
ized PAC in Fig. 1.

Fig. 1   Hierarchical bidirectional 
perception-action cycle (PAC) 
for a cognitive dynamic system 
after [3]. The scope of the 
present paper is indicated by the 
dashed boundary
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Consider, e.g., the operator’s utterance:

(note that symbols will be set in typewriter font in order to 
abstract from their conventional meaning in the first place). 
In a rather traditional PAC framework as shown in Fig. 1, the 
acoustic signal has firstly to be analyzed in order to obtain 
a symbol-like phonetic representation. For understanding 
its meaning, the agent has secondly to process the utterance 
grammatically through syntactic parsing. Finally, the syn-
tactic representation, e.g. in form of a phrase structure tree, 
must be interpreted as a semantic representation which the 
agent can ultimately understand [14]. Depending upon such 
understanding, the agent can draw logical inferences and 
derive the appropriate behavior for controlling the actuators. 
In case of verbal behavior [16], the agent therefore computes 
an appropriate response, first as a semantic representation, 
that is articulated into a symbolic syntactic and phonetic 
form and finally synthesized as an acoustic signal. In any 
case, high-level representations are symbol-like and their 
processing is approximately rule-driven, in contrast to low-
level sensation and actuation where physical signals are 
essentially continuous.

Cognitive dynamical systems can be coupled together 
through communication channels in such a way that the 
action of one PAC (the sender) is registered as perception 
by the other PAC (the receiver) [6]. Principally, there are 
two possibilities: The action of the sender may either per-
turb or modify the behavior of the receiver. Both cases can 
be described in the framework of interactive computation 
[15] where the computation of finite input strings is replaced 
by the processing of (principally) unbounded data streams. 
In the latter case of modification, the perception changes 
the intrinsic autonomous dynamics of the receiver, whereas 
in the former case of perturbation, only the actual state is 
transformed by means of a state space operator assigned to 
the perception. If perception is given as verbal behavior (B), 
the meaning of a perceived utterance becomes a mapping 
from antecedent states A to consequent states C. This so-
called antecedent-behavior-consequent (ABC) schema [16] 
provides the fundament of dynamic semantics [17–19].

[17] discussed several kinds of propositional dynamic 
semantics. In its most simple form it codifies the ABC 
schema of [16] in such a way that a cognitive agent is in  
an epistemic state A that comprises the set of all logical 
propositions the agent believes to be true. Then, another 
agent utters a proposition B that acts on the belief state A 
by means of set algebraic unification, such that the conse-
quent state C becomes the union C = A ∪ {B} . [17] further 
elaborated this simple scheme of dynamic semantics into 
different directions, including belief revision and Bayes-
ian update semantics. Another extension, called dynamic 

(1)
��� ����� ��� ������

predicate logic by [18], made dynamic semantics more  
compositional in the sense of traditional AI (cf. [19]). The 
latest developments consider internal algebraic structures  
of the perturbing perceptional stream [20]. Then a treat-
ment in terms of algebraic representation theory analogous  
to that in quantum mechanics becomes necessary [21, 22].

Neural Networks

Perception-action cycles such as that depicted in Fig. 1 
have been implemented through neural networks by several  
researchers [9, 10, 23]. [10] presented a neural network  
PAC for a robot’s visually guided reaching and grasping 
behavior that is inspired by the cortical organization of 
the human visual-motor system. The study [23] solves the 
reinforcement learning problem of Shannon’s mouse-maze 
system through an architecture of coupled feed-forward  
and long-short-term memory networks (LSTM, [24, 25]). 
In [9], a theory of event coding for PAC is neurally imple-
mented by a recurrent network architecture that is able to 
anticipate effects in the environment, thereby ultimately 
allowing for predictive coding as well [7, 8]. Predictive  
coding, by contrast, has been neurally modeled by [26] 
through multiple timescales recurrent neural networks 
(MTRNN) of leaky-integrator units [27].

Also deploying neural networks in language technol-
ogy became increasingly important in recent time. Begin-
ning with hard-wired recurrent neural architectures [22,  
28, 29, 30], the advent of deep learning algorithms leads to 
state-of-the-art language processing through recursive neural 
networks (RNN, [31]), through LSTM networks and through 
convolutional neural networks (CNN, [32, 33]), with their 
most recent improvements, capsule networks [34, 35]; for a 
survey consult [36–38, 39]. Particularly interesting are lat-
est attempts of Smolensky and collaborators to train tensor 
product recurrent networks (TPRN, [40, 41, 42]) which are 
able to directly learn symbol-like representations by end-to- 
end training under a special quantization regularization con-
straint. Moreover, such networks provide an instantaneous 
association of linguistic input with semantic representations, 
thereby circumventing syntactic analysis and parsing.

Despite these impressive achievements, DNN are intrinsic 
black-box models, propagating input patterns through their  
hidden layers toward the associated output patterns. The hid-
den layers may have several hundred-thousands up to some  
billions synaptic weight parameters that are trained by regular-
ized gradient climbing algorithms. After training, the network  
develops a hidden representation of the input features and the 
computational rules to transform them into output. Yet these  
representations are completely opaque and nobody can really 
explain how input is mapped onto output by a DNN [32].
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Explainability

Therefore, following [43], the next-generation AI must be 
explainable, robust and trustworthy. Creating explainable 
AI (XAI) is an important challenge for current research 
[44–46]. For this aim, it is mandatory not only to develop 
new algorithms and network architectures, such as, e.g., 
TPRN [40–42], but also conceptual understanding of their 
formal structures. According to [47]: “A theory of explain-
able AI, with a formal and universally agreed definition 
of what explanations are, is lacking.” A first step towards 
this direction has been achieved by [48] who distinguish 
between opaque, interpretable, and comprehensive systems 
as follows:

Opaque systems. A system where the mechanisms 
mapping inputs to outputs are invisible to the user. It 
can be seen as an oracle that makes predictions over 
an input, without indicating how and why predictions 
are made. [...] Similarly, systems relying on genuine 
“black box” approaches, for which inspection of the 
algorithm or implementation does not give insight 
into the system’s actual reasoning from inputs to cor-
responding outputs, are classified as opaque. [48]

That is, computations carried out by an opaque system are 
neither understandable nor explainable. On the one hand, 
DNN that are “black boxes” are opaque in this sense [45]. 
On the other hand, linear systems such as support vector 
machines (SVM) appear to be interpretable:

Interpretable systems. A system where a user cannot 
only see, but also study and understand how inputs are 
mathematically mapped to outputs. This implies model 
transparency, and requires a level of understanding 
of the technical details of the mapping. [...] SVMs 
and other linear classifiers are interpretable insofar 
as data classes are defined by their location relative 
to decision boundaries. But the action of deep neural 
networks, where input features may be automatically 
learned and transformed through non-linearities, is 
unlikely to be interpretable by most users. [48]

Interestingly, [46, p. 84] pointed out that interpretability is a 
more “passive characteristic of a model referring to the level 
at which a given model makes sense for a human observer.” 
This contrasts with the model’s explainability, that can be 
regarded as an “active characteristic of a model, denoting 
any action or procedure taken by a model with the intent of 
clarifying or detailing its internal functions” to the human 
observer. The most important trait of an interpretable system 
is its transparency; and classical symbolic AI [49, 50, 51] 
is intrinsically transparent and hence interpretable [52]. 
However, interpretability usually requires expert knowl-
edge for understanding and explanation, since their internal 

representations and computations are expressed in terms of 
formal grammars or languages [52].

Comprehensible systems. A comprehensible system 
emits symbols along with its output [...]. These sym-
bols (most often words, but also visualizations, etc.) 
allow the user to relate properties of the inputs to their 
output. The user is responsible for compiling and com-
prehending the symbols, relying on her own implicit 
form of knowledge and reasoning about them. This 
makes comprehensibility a graded notion, with the 
degree of a system’s comprehensibility corresponding 
to the relative ease or difficulty of the compilation and 
comprehension. [...] Different users may have differ-
ent tolerances in their comprehension: some may be 
willing to draw arbitrary relationships between objects 
while others would only be satisfied under a highly 
constrained set of assumptions. ([48])

Therefore, a comprehensible system could be a black box, 
yet producing symbolic output, a user is able to reason over. 
However, as has been emphasized by [45, 46], different users 
may belong to different audiences with different levels of 
individual skills or interests. Thus, the notion of compre-
hensibility is highly contextual.

Finally, [48, p. 7] define an explainable system as a com-
prehensible one that is augmented by a “reasoning engine” 
that is able to justify the emitted symbolic output. Explain-
able systems call for “confidence, safety, security, privacy, 
ethics, fairness and trust” [52, p. 3]. The meaning of “trust” 
has been circumscribed by [53, p. 211] “as a psychologi-
cal state in which an agent willingly and securely becomes 
vulnerable, or depends on, a trustee, having taken into con-
sideration the characteristics of the trustee.”

Vector Symbolic Architectures

Originally, in his maze solving machine, Shannon used an 
array of relays as the agent’s memory. This has later been 
termed the “learning matrix” by [54]. Learning matrices and 
vector symbolic architectures (VSA) provide viable inter-
faces between hierarchically organized symbolic data struc-
tures such as phrase structure trees or semantic representa-
tions in traditional AI technology on the one hand [49–51] 
and continuous state space approaches as required for deep 
neural networks on the other hand [32, 55]. Beginning with 
seminal studies by [56] and [57], and later pursued by [58, 
59], and [60] among many others, those architectures have 
been dubbed VSA by [61] (cf. also [62]).

In a VSA, symbols and variables are represented as filler 
and role vectors of some underlying linear spaces [36, 63], 
respectively. When a symbol is assigned to a variable, the 
corresponding filler vector is bound to the corresponding 
role vector. Different filler-role bindings can be bundled 
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together to form a data structure [62], such as a list, a frame, 
or a table of a relational data base [64]. Those structures 
can be recursively bound to other fillers and further bun-
dled together to yield arbitrarily complex data structures 
[59]. In order to avoid the “curse of dimensionality” [49] 
induced by the binding process, vector symbolic architec-
tures usually employ some data compression and subsequent 
clean-up algorithms restricting their memory capacity by the 
signal-to-noise ratio [58]. However, also loss-less VSA can 
be devised making use of infinite-dimensional functional 
representations as in quantum automata [65] or neural field 
architectures [66].

In recent applications, VSA have been employed for 
semantic spaces [63, 67], logical inferences [68–70], data 
base queries [64, 71], non-projective formal grammars [72, 
73], and autoassociative memories [74, 75]. [6] developed a 
VSA model for cognitive representations and their induction 
in Shannon’s mouse-maze system.

In this study, we focus on transparent and interpretable 
cognitive dynamical systems that are originally described 
as traditional symbolic AI processors. For the sake of sim-
plicity, we discuss context-free grammars (CFG) and push-
down automata for formal languages [51]. Focussing on the 
dashed region in Fig. 1 , we elaborate earlier approaches for  
VSA language processors [22, 59, 73]. We rigorously prove 
a representation theorem for vector space representations of 
uncompressed filler-role bindings. To this end, we propose a 
novel normal form for CFG, allowing to express CFG parse 
trees as terms over a symbolic term algebra. Rule-based 
derivations over that algebra are then faithfully represented 
as transformation matrices in Fock space [76, 77]. In con-
trast to blackbox DNN, uncompressed VSA are therefore 
transparent and hence interpretable. Thus, our approach 
would be a first step towards the abovementioned “theory of 
explainable AI” [47] that could lead to future developments 
of new machine learning algorithms and the construction 
of reasoning engines [48] that are appropriate for desired 
audiences [45, 46].

Methods

We start from a symbolic, rule-based system that can be 
described in terms of formal grammar and automata the-
ory. Specifically, we chose context-free grammars (CFG) 
and push-down automata as their processors here for the 
ease of exposition [51]. Note that an even more involved, 
non-projective grammar formalism [72], namely minimalist 
grammar [78] has been treated in [73] previously.

In the second step, we reformulate these languages 
through term algebras and their processing through partial 
functions over term algebras. We introduce a novel normal 
form for CFG, called term normal form, and prove that any 

CFG can be transformed into term normal form. Finally, we 
introduce a vector symbolic architecture by assigning basis 
vectors of a high-dimensional linear space to the respective 
symbols and their roles in a phrase structure tree. We pro-
pose a recursive function for mapping CFG phrase structure 
trees onto representation vectors in Fock space and prove a 
representation theorem for the partial rule-based processing 
functions. Finally, we present a software toolbox, FockBox, 
for handling Fock space VSA representations [79].

Context‑Free Grammars

Consider again the simple sentence (1) as a motivating 
example. According to linguistic theory, sentences such 
as (1) exhibit a hierarchical structure, indicating a logical 
subject-predicate relationship, that can be illustrated by dif-
ferent means, e.g. through dependency graphs [72] or phrase 
structure trees [51]. For the sake of simplicity, we use the 
latter representation here, because phrase structure trees are 
directly related to context-free grammars and their accept-
ing push-down automata.2 In (1) “the mouse” appears 
as subject and the phrase “ate cheese” as the predicate, 
which is further organized into a transitive verb “ate” and 
its direct object “cheese”. The hierarchical structure of 
sentence (1) can therefore be either expressed through regu-
lar brackets, as in (2)

Fig. 2   Phrase structure tree of example sentence (1)

2  Note that non-projective dependency graphs can be characterized 
by multiple context-free grammars [80] and variants thereof [72].
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or, likewise as a phrase structure tree as in Fig. 2 
In Fig. 2 every internal node of the tree denotes a syntac-

tic category: S stands for “sentence”, NP for “noun phrase”, 
the sentence’s subject, VP for “verbal phrase”, the predicate, 
D for “determiner”, N for “noun”, and V for “verb”.

The phrase structure tree Fig. 2 immediately gives rise to 
a context-free grammar (CFG) by interpreting every branch 
as a rewriting rule in Chomsky normal form [51, 81]

where one distinguishes between syntactical rules (3 – 5) 
and lexical rules (6 – 9), respectively. More abstractly, a 
CFG is given as a quadruple G = (T ,N, �,R) , such that in 
our example T = {���, �����, ���, ������} is the set of 
words or terminal symbols, N = {�, ��, ��, �, �, �} is the 
set of categories or nonterminal symbols, � ∈ N is the dis-
tinguished start symbol, and R ⊂ N × (N ∪ T)∗ is a set of 
rules. A rule r = (A, �) ∈ R is usually written as a production 
r ∶ A → � where A ∈ N denotes a category and � ∈ (N ∪ T)∗ 
a finite string of terminals or categories of length n = |�|.

(2)[[[���][�����]][���[������]]] ,

(3)� → �� ��

(4)�� → � �

(5)�� → � �

(6)� → ���

(7)� → �����

(8)� → ���

(9)� → ������

Context-free grammars can be processed by push-down 
automata [51]. Regarding psycholinguistic plausibility, 
the left-corner (LC) parser is particularly relevant because 
input-driven bottom-up and expectation-driven top-down 
processes are tightly intermingled with each other [82], 
resembling a predictive coding algorithm [8]. An LC parser 
possesses, such as any other push-down automaton, two 
memory tapes: firstly a working memory, called stack, operating 
in a last-in-first-out (LIFO) fashion, and secondly an input tape  
storing the sentence to be processed.3 In the most simple 
cases, when a given CFG does not contain local ambiguities 
(as in (3 – 9) for our example (1)), an LC parser can work 
deterministically. The LC parsing algorithm operates in four 
different modes: i) if nothing else is possible and if the input 
tape is not empty, the first word of the input is shifted into 
the stack; ii) if the first symbol in the stack is the left corner 
of a syntactic rule, the first stack symbol is rewritten by a 
predicted category (indicated by square brackets in Table 1) 
followed by the left-hand side of the rule (project); iii) if a 
category in the stack was correctly predicted, the matching 
symbols are removed from the stack (complete); iv) if the 
input tape is empty and the stack only contains the start sym-
bol of the grammar, the automaton moves into the accepting 
state; otherwise, syntactic language processing had failed. 
Applying the LC algorithm to our example CFG leads to the 
symbolic process shown in Table 1.

Table 1   Left-corner parser 
processing the example 
sentence (1). The stack expands 
to the left

step stack input operation

0 � the mouse ate cheese shift
1 the mouse ate cheese project (6)
2 D mouse ate cheese project (4)
3 [N] NP mouse ate cheese shift
4 mouse [N] NP ate cheese project (7)
5 N [N] NP ate cheese complete
6 NP ate cheese project (3)
7 [VP] S ate cheese shift
8 ate [VP] S cheese project (8)
9 V [VP] S cheese project (5)
10 [N] VP [VP] S cheese shift
11 cheese [N] VP [VP] S � project (9)
12 N [N] VP [VP] S � complete
13 VP [VP] S � complete
15 S � accept

3  The LC parser is named after the left corner of a subtree. Consider 
the phrase structure tree Fig. 2 where 	  is the subtree generated 

by CFG rule (4). Since the article the is the first perceived word in 
the input stream, it is recognized as a determiner D according to CFG 
rule (6). Then, D is the left corner of rule (4), allowing the prediction 
of the yet unobserved noun N.
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The left-corner parser shown in Table 1 essentially oper-
ates autonomously in modes project, complete and accept, 
but interactively in shift mode. Thus, we can significantly 
simplify the parsing process through a mapping from one 
intermediary automaton configuration to another one that is 
mediated by the interactively shifted input word perturbing 
the intrinsic structure building dynamics [15]. Expressing 
the configurations as temporary phrase structure trees yields 
then the symbolic computation in Fig. 3.

The first tree in Fig. 3, denoted ∅ , simply corresponds to 
the empty stack in Table 1, step 0. The second tree is gener-
ated by applying the CFG LC rules project (6) and (4) in 
steps 2 and 3. Accordingly, the third tree is obtained from 
the second one after processing steps 4 to 6, and so on.

According to our previous definitions, the states of the 
processor are the automaton configurations in Table 1 or the 
temporary phrase structure trees in Fig. 3, that are both inter-
pretable in terms of LC parsing and language processing for 
an informed expert observer. Moreover, the processing steps 
in the last column of Table 1 and also the interactive map-
pings Fig. 3 are interpretable for the observer. In principle, 
one could augment the left-corner parser with a “reason-
ing engine” [48] that translates the formal language used in 
those symbolic representations into everyday language for 
any desired audience [45, 46]. The result would be some-
thing like the (syntactic) “meaning” [[w]] of a word w that 
can be regarded as the operator mapping a tree in Fig. 3 to 
its successor. This interactive interpretation of meaning is 
well-known in dynamic semantics [17–19].

Algebraic Description

In order to prepare the construction of a vector symbolic 
architecture (VSA) [56–61] and its representation theory 
in the next steps, we need an algebraically more sophis-
ticated description. This is provided by the concept of a  
term algebra [81]. A term algebra is defined over a sig-
nature Σ = (F, rank) where F is a finite set of function  
symbols and rank ∶ F → ℕ0 is an arity function, assigning 

to each symbol f ∈ F an integer indicating the number of 
arguments that f has to take.

To apply this idea to a CFG, we introduce a new kind 
of grammar normal form that we call term normal form in 
the following. A CFG G = (T ,N, �,R) is said to be in term 
normal form when for every category A ∈ N holds: if A is 
expanded through n ∈ ℕ rules, r1 ∶ A → �1 to rn ∶ A → �n , 
then |�1| = … = |�n|.

It can be easily demonstrated that every CFG can be 
transformed into a weakly equivalent CFG in term normal 
form, where weak equivalence means that two different 
grammars derive the same context-free language. A proof 
is presented in Appendix 6.1.

Obviously, the rules (3) – (5) of our example above 
are already in term normal form, simply because they are 
not locally ambiguous. Thus, we define a term algebra by 
regarding the set of variables V = N ∪ T  as signature with 
arity function rank ∶ V → ℕ0 such that i) rank(a) = 0 for 
all a ∈ T  , i.e. terminals are nullary symbols and hence 
constants; ii) rank(A) = |�| for categories A ∈ N , that are 
expanded through rules A → � . Moreover, when G is given 
in Chomsky normal form, for all categories A ∈ N appear-
ing exclusively in lexical rules rank(A) = 1 , i.e. lexical cat-
egories (D, N, V) are unary functions, whereas rank(A) = 2 
for all categories A ∈ N that appear exclusively in syntac- 
tic rules, which are hence binary functions.

For a general CFG G in term normal form, we define 
the term algebra �(G) inductively: i) every terminal sym-
bol a ∈ T  is a term, a ∈ �(G) . ii) Let A ∈ N  be a cat-
egory with rank(A) = k and let t0,… , tk−1 ∈ �(G) be 
terms, then A(t0,… , tk−1) ∈ �(G) is a term. Additionally, 
we want to describe LC phrase structure trees as well. To 
this end, we extend the signature by the predicted cat-
egories P = {[�], [��]} , that are interpreted as constants  
with rank(C) = 0 for C ∈ P . The enlarged term algebra is 
denoted by �LC(G) . We also allow for � ∈ �LC(G).

In the LC term algebra �LC(G) , we encode the tree of 
step 1 in Fig. 3 (beginning with the empty tree t

0
= � in step 

0) as term

Fig. 3   Interactive LC parse of the example sentence (1)

739Cognitive Computation (2022) 14:733–748



1 3

because rank(��) = 2 , rank(�) = 1 , and rank(���) = rank

([�]) = 0 . Likewise we obtain

as the term representation of the succeeding step 2 in Fig. 3.
Next, we define several partial functions over �LC(G) as 

follows [56, 83].

Here, the function cat ∶ �LC(G) → N yields the category, 
i.e. the function symbol A of the term A(t0,… , tk) ∈ �LC(G) . 
The functions exi ∶ �LC(G) → �LC(G) for term extraction 
and consk ∶ N ×�LC(G)

k+1
→ �LC(G) as term constructor 

are defined only partially, when A(t0,… , tk) ∈ Dom(exi) , if 
k = rank(A) − 1 and i < k , as well as (A, t0,… , t

k
) ∈ Dom

(cons
k
) , if k = rank(A) − 1.

By means of the term transformations (12 – 14) we can 
express the action of an incrementally and interactively 
shifted word a ∈ T  that perturbs the intrinsic autonomous 
structure-building dynamics of a cognitive system [15] 
through a term operator [[a]] ∶ �LC(G) → �LC(G) . For the 
transition from, e.g., LC tree 1 to LC tree 2 in Fig. 3 we 
obtain

The term operator [[�����]] corresponds to a computer pro-
gram that sequentially extracts the category and the left sub-
tree from the input data structure t1 and merges the results 
together into the output structure t2 . Therefore, the (syn-
tactic) meaning of the word “mouse” is its impact on the 
symbolic term algebra. Note that the function [[⋅]] is known 
as the interpretation function in dynamic semantics [17–19]. 
Thus, term algebraic computation is transparent and straight-
forwardly interpretable [52].

Vector Symbolic Architectures

In vector symbolic architectures (VSA) [56–61] hierarchi-
cally organized complex data structures are represented as 
vectors in high dimensional linear spaces. The composition  
of these structures is achieved by two basic operations: bind-
ing and bundling. While bundling is commonly implemented  
as vector superposition, i.e. addition, different VSA realize  
binding in particular ways: originally through tensor products  
[56, 57], through circular convolution in reduced holographic 

(10)t1 = ��(�(���), [�])

(11)t2 = �(��(�(���), �(�����)), [��])

(12)cat(A(t0,… , tk)) = A

(13)exi(A(t0,… , tk)) = ti

(14)consk(A, t0,… , tk) = A(t0,… , tk) .

(15)
[[�����]](t1) = cons2(�, cons2(cat(t1), ex0(t1), �(�����)), [��]) = t2 .

representations (HRR) [58], through XOR spatter code [84] or  
through Hadamard products [62]. While HRR, spatter code, 
Hadamard products or a combination of tensor products with 
nonlinear compression [83] are lossy representations that  
require a clean-up module (usually an attractor neural network,  
cf. [60]), uncompressed tensor product representations of basis 
vectors are faithful, thereby allowing a transparent representa-
tion theory. It is the aim of the present study, to firstly elaborate  
the mathematical theory of uncompressed tensor product rep-
resentations. We suggest to refer to such systems as to inter- 
pretable VSA [48] in this context.

Coming back to our linguistic example, we construct a 
homomorphism � ∶ �LC(G) ∪ N → F  from the term algebra  
unified with its categories N to a vector space F  in such a way,  
that the structure of the transformations (12–14) is preserved.  
The resulting images �(t) for terms t ∈ �LC(G) become vector  
space operators, i.e. essentially matrices acting on F .

Again, we proceed inductively. First we map the sym-
bols in �LC(G) ∪ N  onto vectors. To each atomic symbol 
s ∈ T ∪ N ∪ P we assign a so-called filler basis vector 
�s⟩ = �(s) ∈ F  , calling the subspace V

F
= span(�(T ∪ N ∪ P)) 

the filler space. Its dimension n = dimVF corresponds to the 
number of atomic symbols in T ∪ N ∪ P , which is n = 13 in 
our example.

Let further m = max({|�| | (A → �) ∈ R}) be the length 
of the largest production of grammar G. Then, we define 
m + 1 so-called role vectors �i⟩ , spanning the role space 
VR = span({�i⟩ � 0 ≤ i ≤ m}) . Note that we employ the so-
called Dirac notation from quantum mechanics that allows a  
coordinate-free and hence representation-independent descrip-
tion here [79, 85]. Then, the role �0⟩ denotes the 1st daughter  
node, �1⟩ the 2nd daughter and so on, until the last daughter  
�m − 1⟩ . The remaining role �m⟩ bounds the mother node in the  
phrase structure trees of grammar G. In our example, because 
G has Chomsky normal form, we have m = 2 = dimVR − 1 
such that there are three roles for positions in a binary branch-
ing tree: left daughter �0⟩ , right daughter �1⟩ , and mother �2⟩ .  
For binary trees, we also use a more intuitive symbolic nota-
tion: left daughter �∕⟩ , right daughter �⧵⟩ , and mother �∧⟩.

Let A(t0,… , tk) ∈ �LC(G) be a term. Then, we define the 
tensor product representation of A(t0,… , tk) ∈ �LC(G) in 
vector space F  recursively as follows

As a shorthand notation, we suggest the Dirac expression

Here the symbol “ ⊗ ” refers to the (Kronecker) tensor 
product, mapping two vectors onto another vector, in con-
trast to the dyadic (outer) tensor product, which yields a 
matrix, hence being a vector space operator. In addition, 

(16)
𝜓(A(t0,… , tk)) = �A⟩⊗ �m⟩⊕𝜓(t0)⊗ �0⟩⊕⋯⊕𝜓(tk)⊗ �m − 1⟩ .

(17)
�A(t0,… , tk)⟩ = �A⟩⊗ �m⟩⊕ �t0⟩⊗ �0⟩⊕⋯⊕ �tk⟩⊗ �m − 1⟩ .
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“ ⊕ ” denotes the (outer) direct sum that is mandatory for the 
superposition of vectors from spaces with different dimen-
sionality in order to avoid interference effects.

Obviously, the (in principle) infinite recursion of the map-
ping � leads to an infinite-dimensional representation space

that is known as Fock space from quantum field theory [59, 
76, 77, 86].

In quantum field theory, there is a distinguished state 
��⟩ ≠ 0 , the vacuum state, spanning a one-dimensional sub-
space, the vacuum sector that is isomorphic to the under-
lying number field. According to (18), this sector is con-
tained in the subspace spanned by filler and role spaces, 
VF ⊕ VR . Therefore, we could represent the empty tree in 
Fig. 3 by an arbitrary role; a suitable choice is the mother 
role �(�) = �m⟩ ≅ ��⟩ , hence symbolizing the vacuum state. 
Using the tensor product representation (16), we can recur-
sively compute the images of our example terms above. For 
(10) we obtain

where we used the compressed Dirac notation 
�a⟩⊗ �b⟩ = �ab⟩ in the last steps. The last line is easily inter-
pretable in terms of phrase structure: It simply states that NP 
occupies the root of the tree, D appears as its immediate left 
daughter, the is the left daughter’s left daughter and a leave, 
and finally [N] is a leave bound to the right daughter of the 
root. Note that the Dirac kets have to be interpreted from the 
right to the left (reading the Arabic manner). The vector �t

1
⟩ 

belongs to a Fock subspace of dimension

where n = dim(VF) , m = dim(VR) and p the embedding 
depth in the phrase structure tree step 1 of Fig. 3. This leads 
to q1 = 172 for �t

1
⟩

Similarly, we get for (11)

(18)F =

∞⨁

p=0

(
VF ⊗ V

⊗p

R

)
⊕ VR ,

(19)

�t1⟩ = ���(�(���), [�])⟩ = ���⟩⊗ �2⟩⊕ ��(���)⟩⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���⟩⊗ �2⟩⊕ (��⟩⊗ �2⟩⊕ ����⟩⊗ �0⟩)⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���⟩⊗ �2⟩⊕ ��⟩⊗ �2⟩⊗ �0⟩⊕ ����⟩⊗ �0⟩⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���2⟩⊕ ��20⟩⊕ ����00⟩⊕ �[�]1⟩

= ���∧⟩⊕ ��∧∕⟩⊕ ����∕∕⟩⊕ �[�]⧵⟩ ,

(20)q = n
mp+1 − 1

m − 1
+ m

where we have again utilized the more intuitive branch-
ing notation in the last line which can be straightforwardly 
interpreted in terms of tree addresses as depicted in Fig. 3 
(step 2). Computing the dimension of the respective Fock 
subspace according to (20) yields q2 = 523 for �t

2
⟩.

In Fock space, the interactive and incremental action 
of a word a ∈ T  is then represented as a matrix operator 
[[a]]� ∶ F → F  . For the transition from (10) to (11) we 
obtain

In order to prove � a homomorphism, we define the fol-
lowing linear maps on F

(21)

�t
2
⟩ = ��(��(�(���), �(�����)), [��])⟩
= ��⟩⊗ �2⟩⊕ ���(�(���), �(�����))⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩
= ��⟩⊗ �2⟩⊕ (���⟩⊗ �2⟩⊕ ��(���)⟩⊗ �0⟩⊕ ��(�����)⟩
⊗ �1⟩)⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ ��(���)⟩⊗ �0⟩⊗ �0⟩
⊕ ��(�����)⟩⊗ �1⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ (��⟩⊗ �2⟩⊕ ����⟩
⊗ �0⟩)⊗ �0⟩⊗ �0⟩⊕
(��⟩⊗ �2⟩⊕ ������⟩⊗ �0⟩)⊗ �1⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ ��⟩⊗ �2⟩⊗ �0⟩⊗ �0⟩
⊕ ����⟩⊗ �0⟩⊗ �0⟩⊗ �0⟩⊕
��⟩⊗ �2⟩⊗ �1⟩⊗ �0⟩⊕ ������⟩⊗ �0⟩⊗ �1⟩⊗ �0⟩
⊕ �[��]⟩⊗ �1⟩

= ��2⟩⊕ ���20⟩⊕ ��200⟩⊕ ����000⟩⊕ ��210⟩
⊕ ������010⟩⊕ �[��]1⟩

= ��∧⟩⊕ ���∧∕⟩⊕ ��∧∕∕⟩⊕ ����∕∕∕⟩⊕ ��∧⧵∕⟩
⊕ ������∕⧵∕⟩⊕ �[��]⧵⟩ ,

(22)

[[�����]]𝜓 �t1⟩ = [[�����]]𝜓 (���∧⟩⊕ ��∧∕⟩⊕ ����∕∕⟩⊕ �[�]⧵⟩)

= ��∧⟩⊕ ���∧∕⟩⊕ ��∧∕∕⟩⊕ ����∕∕∕⟩⊕ ��∧⧵∕⟩

⊕ ������∕⧵∕⟩⊕ �[��]⧵⟩ = �t
2
⟩ .

(23)���(�u⟩) = ( �⊗ ⟨m�)�u⟩

(24)��i(�u⟩) = ( �⊗ ⟨i�)�u⟩

(25)
����

k
(�a⟩, �u

0
⟩,… , �u

k
⟩) =�a⟩⊗ �m⟩⊕ �u

0
⟩⊗ �0⟩

⊕⋯⊕ �u
k
⟩⊗ �k⟩ ,
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here, � denotes the unit operator (i.e. the unit matrix) and the 
Dirac “bra” vectors ⟨k� are linear forms from the dual role 
space V∗

R
 that are adjoined to the role “ket” vectors �k⟩ such 

that ⟨i�k⟩ = �ik with Kronecker’s �ik = 0(1) for i ≠ k(i = k).
By means of these homomorphisms we compute the 

meaning of “mouse” as Fock space operator through

Therefore, [[�����]]� is a holistic matrix operator instan-
taneously mapping the representation vector �t

1
⟩ of the par-

tial phrase structure tree t1 onto the representation vector 
�t
2
⟩ of tree t2 by inserting the relevant fragments that have 

been extracted from the tree data structure t1 in terms of the 
symbolic functions in Eq. (15).

Inserting (23 – 25) yields

where we have expanded ��(�����)⟩ as in (21) above. Note 
that the meaning of “mouse” crucially depends on the 
given state �t

1
⟩ subjected to the operator [[�����]]� , making 

meaning highly contextual. This is an important feature of 
dynamic semantics as well [17–19]. Locally, we can build 
the transformation matrix in analogy to Hebbian learning 
[87] for neural network

such that

since ⟨t1�t1⟩ = 1 for linearly independent filler and role vec-
tors in uncompressed tensor product representations. Here, 
[[�����]]� (�t1⟩) is the local value of the transformation 

(26)
[[�����]]� �t1⟩ =����2(��⟩, ����2(���(�t1⟩), ��0(�t1⟩),

��(�����)⟩), �[��]⟩) = �t
2
⟩ .

(27)

[[�����]]𝜓 �t1⟩ = ����
2
(��⟩, ����

2
(( �⊗ ⟨2�)�t

1
⟩, ( �⊗ ⟨0�)�t

1
⟩, ��(�����)⟩), �[��]⟩)

= ����
2
(��⟩, ( �⊗ ⟨2�)�t

1
⟩⊗ �2⟩⊕ ( �⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ ��(�����)⟩⊗ �1⟩, �[��]⟩)

= ��⟩⊗ �2⟩⊕ (( �⊗ ⟨2�)�t
1
⟩⊗ �2⟩⊕ ( �⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ ��(�����)⟩⊗ �1⟩)⊗ �0⟩⊕ �[��]⟩)⊗ �1⟩

= ��⟩⊗ �2⟩⊕ (( �⊗ ⟨2�)�t
1
⟩⊗ �2⟩⊕ ( �⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ (��⟩⊗ �2⟩⊕ ������⟩⊗ �0⟩)⊗ �1⟩)⊗ �0⟩⊕

�[��]⟩)⊗ �1⟩ = �t
2
⟩ ,

(28)[[�����]]� (�t1⟩) = �t2⟩⟨t1�

[[�����]]� (�t1⟩)�t1⟩ = �t
2
⟩⟨t

1
�t
1
⟩ = �t

2
⟩

matrix at Fock space vector �t
1
⟩ . Evaluating [[�����]]� glob-

ally for all admissible arguments, yields a piecewise affine 
linear but overall nonlinear transformation [56].

The problem of learning such operators in a general VSA 
framework by end-to-end training has not been convincingly 
solved yet. However, the latest attempts of Smolensky and 
collaborators to train tensor product recurrent networks 
(TPRN) are a promising approach for this endeavor [40–42]. 
By contrast, neural automata have not to be trained at all 
since their synaptic connectivity is explicitly construed from 
the machine table of the underlying automaton [22].

Results

The main result of this study is a Fock space representation 
theorem for vector symbolic architectures of context-free 

grammars that follows directly from the definitions (23 – 25) 
and is proven in Appendix 6.2.

The tensor product representation � ∶ �LC(G) ∪ N → F  
is a homomorphism with respect to the term transformations 
(12 – 14). It holds

Therefore, the representation (16) mediates as an inter-
twiner between the matrix operators ��� , �� , and ���� on 
Fock space (23 – 25) and their symbolic counterparts cat , 
ex , and cons (12 – 14), entailing a commutative diagram. 

(29)���(�A(t0,… , tk)⟩) = �cat(A(t0,… , tk))⟩

(30)��i(�A(t0,… , tk)⟩) = �exi(A(t0,… , tk))⟩

(31)����k(�A⟩, �t0⟩,… , �tk⟩) = �consk(A, t0,… , tk)⟩ .

Table 2   Fock space representation of LC parser processing the example sentence (1). The computational steps correspond to the shift operations 
in Table 1 and to the iterations of the interactive LC parse in Fig. 3

# Fock vector dim operation

0 �∧⟩ 16 shift the
1 ��⧵∧∕⟩⊕ ���⧵∧⟩⊕ �[�]⧵⟩⊕ ����∕∕⟩ 172 shift mouse
2 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ �[��]⧵⟩⊕ ������∕⧵∕⟩⊕ ����∕∕∕⟩ 523 shift ate
3 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ ���⧵∧⧵⟩⊕ ��⧵∧∕⧵⟩⊕ �[�]⧵⧵⟩⊕ ����∕∕⧵⟩⊕ ������∕⧵∕⟩⊕ ����∕∕∕⟩ 523 shift cheese
4 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⧵⧵⟩⊕ ��⧵∧⟩⊕ ���⧵∧⧵⟩⊕ ��⧵∧∕⧵⟩⊕ ����∕∕⧵⟩⊕ �������∕⧵⧵⟩

⊕������∕⧵∕⟩⊕ ����∕∕∕⟩
523 accept
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Hence, the uncompressed tensor product representation is 
faithful and interpretable.

For the particular example discussed above, we obtain the 
Fock space trajectory in Table 2.

Table 2 shows for each processing step in the first col-
umn the resulting Fock space vector in Dirac notation [79, 
85] in the second column and the dimension of the hosting 
Fock subspace (third column). Column four relates these 
processing steps to the underpinning symbolic computation 
presented in Table 1 for the push-down recognizer and in 
Fig. 3 for the interactive LC tree generator.

Each Fock space vector is a unique point in a high- 
dimensional linear space that is instantaneously transformed 
by the Fock space representation operators associated to the 
shifted words. These matrices provide the interpretation of 
the meanings of those words.

In order to visualize the results of Fock space computa-
tion, we project the trajectory from Table 2 into a three-
dimensional space using principal component analysis 
(PCA) [49]. PCA is a common method for data compres-
sion utilizing the directions of maximal variance in a cloud 
of data points. In our example, the data cloud is the trajec-
tory of the VSA representations, computing the left-corner 
phrase structure trees of the sentence example (1). To this 
aim, we use FockBox,4 a MATLAB toolbox provided by 
[79], for the efficient calculation of Fock space representa-
tions. The result is shown in Fig. 4 as illustration.

The trajectory is initialized by the vacuum state, trans-
lated into the origin by the PCA in Fig.  4. The point 
labeled “the” is the result of applying the meaning 
operator [[���]]� onto the vacuum state �∧⟩ , which is the 
first Dirac vector ��⧵∧∕⟩⊕ ���⧵∧⟩⊕ �[�]⧵⟩⊕ ����∕∕⟩ 
in Table 2. From there, the processing trajectory moves 
into a different direction by exploiting the mean-
ing operator [[�����]]� upon the latter state, entailing 
��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ �[��]⧵⟩⊕ ������
∕⧵∕⟩⊕ ����∕∕∕⟩ afterwards. This illustrates the nonlinear-
ity and contextuality of meaning operators which is further 
supported by the last two processing steps. In any case, even 
the three-dimensional compression by means of PCA is at 
least approximately interpretable as symbolic computation 
because each region in state space corresponds to one dis-
tinguished VSA representation. Similarly, the connecting 
transitions have an interpretation as symbol-like computa-
tions as well.

Discussion

In this article we developed a representation theory for 
context-free grammars and push-down automata in Fock 
space as an vector symbolic architecture (VSA). We pre-
sented rigorous proofs for the representations of suitable 
term algebras. To this end, we suggested a novel normal 
form for CFG allowing to express CFG parse trees as terms 
over a symbolic term algebra. Interactive computations such 
as the predictions of a left corner parser are transparently 
interpreted by partially recursive operators acting upon 

Fig. 4   Principal component 
(PC) projection of the LC pars-
er’s Fock space representation. 
Shown are the first three PCs

4  FockBox is available via Github at https://​github.​com/​matth​ias-​
wolff/​FockB​ox.
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the linguistic term algebra. In order to construct a faithful 
representation of the term algebra in VSA Fock space, we 
encoded filler and role vectors by linearly independent basis 
vectors and employed uncompressed tensor product binding. 
As a result, rule-based derivations over the term algebra are 
then represented by transformation matrices in Fock space 
such that computations in VSA are transparent and hence 
interpretable as well.

For the implementation of rule-based symbolic computations  
in cognitive dynamic systems, such as neural networks, VSA 
provide a viable approach. We have proven that uncompressed  
tensor product representations are transparent and interpret- 
able. Thus, our results contribute a formally sound basis for a  
future “theory of explainable AI” [47] and subsequent research  
and engineering. In contrast to current blackbox approaches, 
our method is essentially transparent and hence interpretable.  
Explainable AI applications could then be constructed by deliv-
ering suitable “reasoning engines” [48] and cognitive user inter- 
faces (CUI) [88, 89] from such systems.

Conclusion

We reformulated context-free grammars (CFG) through  
term algebras and their processing through push-down 
automata by partial functions over term algebras. We  
introduced a novel normal form for CFG, called term nor-
mal form, and proved that any CFG in Chomsky normal 
form can be transformed into term normal form. Finally,  
we introduced a vector symbolic architecture (VSA) by 
assigning basis vectors of a high-dimensional linear space 
to the respective symbols and their roles in a phrase struc-
ture tree. We suggested a recursive function for mapping  
CFG phrase structure trees onto representation vectors in 
Fock space and proved a representation theorem for the  
partial rule-based processing functions. We illustrated our 
findings by an interactive left-corner parser and used Fock-
Box, a freely accessible MATLAB toolbox, for the genera-
tion and visualization of Fock space VSA. Our approach 
directly encodes symbolic, rule-based knowledge into the 
hyperdimensional computing framework of VSA and can 
thereby supply substantial insights into the future develop-
ment of explainable artificial intelligence (XAI).

Appendix

Proof of Term Normal Form

Definition 1  A context-free grammar (CFG) is a quad-
ruple G = (T ,N, �,R) with a set of terminals T  , a set of 
nonterminals N , the start symbol � ∈ N and a set of rules 

R ⊆ N × (N ∪ T)∗ . A rule r = (A, �) ∈ R is usually written 
as a production r ∶ A → �.

Definition 2  According to [51] a CFG G = (T ,N, �,R) is 
said to be in Chomsky normal form iff every production 
r ∈ R is one of

with A ∈ N , B,C ∈ N ⧵ {�} and a ∈ T .

It is a known fact, that for every CFG G there is an equiv-
alent CFG G′ in Chomsky normal form [51]. It is also  
known that if G does not produce the empty string — 
absence of production (34) — then there is an equivalent 
CFG G′ in Chomsky reduced form [51].

Definition 3  A CFG G = (T ,N, �,R) is said to be in Chom-
sky reduced form iff every production r ∈ R is one of

with A,B,C ∈ N and a ∈ T .

By utilizing some of the construction steps for estab-
lishing Chomsky normal form from [51] we deduce

Corollary 1  For every CFG G in Chomsky reduced form 
there is an equivalent CFG G′ in Chomsky normal form 
without a rule corresponding to production (34).

Proof  Let G be a CFG in Chomsky reduced form. Clearly 
G does not produce the empty string. The only differ-
ence to Chomsky normal form is the allowed presence 
of the start symbol � on the right-hand side of rules in R . 
By introducing a new start symbol �0 and inserting rules 
{(�0, �) ∣ ∃(�, �) ∈ R} we eliminate this presence and obtain 
an equivalent CFG in Chomsky normal form without a pro-
duction of form (34). 	�  ◻

Definition 4  A CFG G = (T ,N, �,R) is said to be in term 
normal form iff R ⊆ N × (N ∪ T)+ and for every two rules 
r = (A, �) ∈ R and r� = (A�, � �) ∈ R

holds.

We state and proof by construction:

(32)A →BC

(33)A →a

(34)� →�

(35)A →BC

(36)A →a

A = A�
⟹ |�| = |� �|
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Theorem 1  For every CFG G = (T ,N, �,R) not producing 
the empty string there is an equivalent CFG G′ in term nor-
mal form.

Proof  Let G = (T ,N, �,R) be a CFG not producing the 
empty string. Let G� = (T ,N�, �,R�) be the equivalent CFG 
in Chomsky reduced form and D ⊆ N′ be the set of all 
nonterminals from G′ which have productions of both forms 
(35) and (36).

We establish term normal form by applying the following 
transformations to G′ : 

1.	 For every nonterminal A ∈ D let R��
A
= {(A,BC) ∈ R

�

∣ B,C ∈ N
�} be the rules corresponding to productions 

of form (35) and R�
A
= {(A, a) ∈ R� ∣ a ∈ T} be the rules 

corresponding to productions of form (36). We add 

1.	 New nonterminals A′′ and A′,
2.	 A new rule (A��,BC) for every rule (A,BC) ∈ R��

A
 and

3.	 A new rule (A�, a) for every rule (A, a) ∈ R�
A
.

	    Finally, we remove all rules R��
A
∪ R�

A
 from R′.

2.	 For every nonterminal A ∈ D let L
A
= {(X,AY) ∈ R

�

∣ X, Y ∈ N
�} be the set of rules where A appears at 

first position on the right-hand side. For every rule 
(X,AY) ∈ LA we add 

1.	 A new rule (X,A�� Y) and
2.	 A new rule (X,A� Y).

	    Finally, we remove all rules LA from R′.
3.	 For every nonterminal A ∈ D let R

A
= {(X,Y A) ∈

R
� ∣ X, Y ∈ N

�} be the set of rules where A appears at 
second position on the right-hand side. For every rule 
(X, Y A) ∈ RA we add 

1.	 A new rule (X, Y A��) and
2.	 A new rule (X,Y A�).

	    Finally, we remove all rules RA from R′.
4.	 If � ∈ D then we add 

1.	 A new start symbol �0,
2.	 A new rule (�0, ��) and
3.	 A new rule (�0, ���).

5.	 Finally, we remove D from N′

	�  ◻

We immediately deduce

Corollary 2  For every CFG G only producing strings of 
either exactly length 1 or at least length 2 there is an equiva-
lent CFG G′ in term normal form which is also in Chomsky 
normal form.

Proof  We handle the two cases separately. 
Case 1 Let G be a CFG producing strings of exactly 

length 1 . Since G does not produce the empty string there 
is an equivalent CFG G′ in Chomsky reduced form where 
every rule is of form (36) and the only nonterminal being 
the start symbol. Obviously, G′ is in Chomsky normal form 
and also in term normal form.

Case 2 Let G be a CFG producing strings of at least 
length 2 . Since G does not produce the empty string there is 
an equivalent CFG in Chomsky reduced form and from Cor-
ollary 1 follows that there is an equivalent CFG in Chomsky 
normal form. Applying the construction from Theorem 1 to 
this CFG leads to a CFG G′ in term normal formal. Since G 
does not produce strings of length 1 step 4 is omitted by the 
construction and G′ stays in Chomsky normal form. 	�  ◻

We also state the opposite direction.

Corollary 3  Every CFG G for which an equivalent CFG G′ 
in Chomsky normal form exists which is also in term normal 
form, produces either only strings of length 1 or at least of 
length 2.

Proof  Let G = (T ,N, �,R) be a CFG in Chomsky normal 
form and term normal form at the same time. Clearly, G does 
not produce the empty string. Let R|� ⊆ R be the set of rules 
with the start symbols � on the left side. Since G is in term 
normal form we have to consider the following two cases.

Case 1 Let (�, �) ∈ R be a rule where � ∈ T  . Then every 
rule in the set R|� has to be of the same form. It follows that 
G only produces strings of length 1.

Case 2 Let (�,AB) ∈ R be a rule with A,B ∈ � . Then 
every rule in the set R|� has to be of the same form. It follows 
that strings produced by G have to be at least of length 2 . 	
� ◻

We instantly deduce

Theorem 2  Those CFGs for which a Chomsky normal form 
in term normal exists are exactly the CFGs producing either 
only strings of length 1 or strings with at least length 2.

which follows directly from Corollaries 2 and 3.

Proof of Representation Theorem

The proof of the Fock space representation theorem for vec-
tor symbolic architectures follows from direct calculation 
using the definition of the tensor product representation  
(17).
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