
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12559-021-09974-y

Vector Symbolic Architectures for Context‑Free Grammars

Peter beim Graben1  · Markus Huber2 · Werner Meyer2 · Ronald Römer2 · Matthias Wolff2

Received: 28 September 2020 / Accepted: 26 November 2021
© The Author(s) 2021

Abstract
Vector symbolic architectures (VSA) are a viable approach for the hyperdimensional representation of symbolic data, such
as documents, syntactic structures, or semantic frames. We present a rigorous mathematical framework for the representa-
tion of phrase structure trees and parse trees of context-free grammars (CFG) in Fock space, i.e. infinite-dimensional Hilbert
space as being used in quantum field theory. We define a novel normal form for CFG by means of term algebras. Using a
recently developed software toolbox, called FockBox, we construct Fock space representations for the trees built up by a CFG
left-corner (LC) parser. We prove a universal representation theorem for CFG term algebras in Fock space and illustrate our
findings through a low-dimensional principal component projection of the LC parser state. Our approach could leverage the
development of VSA for explainable artificial intelligence (XAI) by means of hyperdimensional deep neural computation.

Keywords  Geometric cognition · Formal grammars · Language processing · Vector symbolic architectures · Fock space ·
Explainable artificial intelligence (XAI)

Introduction

Claude E. Shannon, the pioneer of information theory, pre-
sented in 1952 a “maze-solving machine” as one of the first
proper technical cognitive systems [1].1 It comprises a maze
in form of a rectangular board partitioned into discrete cells
that are partially separated by removable walls, and a mag-
netized “mouse” (nicknamed “Theseus”, after the ancient
Greek hero) as a cognitive agent. The mouse possesses as
an actuator a motorized electromagnet beneath the maze
board. The magnet pulls the mouse through the maze. Sen-
sation and memory are implemented by a circuit of relays,
switching their states after encounters with a wall. In this
way, Shannon technically realized a simple, non-hierarchic
perception-action cycle (PAC) [2, 3], quite similar to the
more sophisticated version depicted in Fig. 1 as a viable
generalization of a cybernetic feedback loop.

Perception Action Cycle

In general, PAC forms the core of cognitive dynamic sys-
tems [4]. They describe the interaction of a cognitive agent
with a dynamically changing world as shown in Fig. 1. The
agent is equipped with sensors for the perception of its cur-
rent state in the environment and with actuators allowing
for active state changes. A central control prescribes goals
and strategies for problem solving that could be trained by
either trial-and-error learning as in Shannon’s construction,
or, more generally, by reinforcement learning [4, 5].

In Shannon’s mouse-maze system, the motor (the actua-
tor) pulls the mouse along a path until it bumps into a wall
which is registered by a sensor. This perception is stored
by switching a relay, subsequently avoiding the correspond-
ing action. The behavior control prescribes a certain maze
cell where the agent may find a “piece of cheese” as a goal.
When the goal is eventually reached, no further action is
necessary. In a first run, the mouse follows an irregular
path according to a trial-and-error strategy, while building
up a memory trace in the relay array. In every further run,
the successfully learned path is pursued at once. However,
when the operator modifies the arrangement of walls, the
previously learned path becomes useless and the agent has

 *	 Peter beim Graben
	 peter.beimgraben@b-tu.de

1	 Bernstein Center for Computational Neuroscience, Berlin,
Germany

2	 Department of Communication Engineering,
Brandenburgische Technische Universität (BTU, Platz der
Deutschen Einheit 1, Cottbus D – 03046, Senftenberg,
Germany

1  See also Shannon’s instructive video demonstration at https://​www.​
youtu​be.​com/​watch?v=​vPKkX​ibQXGA.

/ Published online: 24 December 2021

Cognitive Computation (2022) 14:733–748

http://orcid.org/0000-0002-4867-1810
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09974-y&domain=pdf
https://www.youtube.com/watch?v=vPKkXibQXGA
https://www.youtube.com/watch?v=vPKkXibQXGA

1 3

to learn from the very beginning. Therefore, [1, p. 1238]
concludes:

The maze-solver may be said to exhibit at a very primi-
tive level the abilities to (1) solve problems by trial and
error, (2) repeat the solutions without the errors, (3) add
and correlate new information to a partial solution, (4)
forget a solution when it is no longer applicable.

In Shannon’s seminal approach, the mouse learns by trial-
and-error whenever it bumps into a wall. Its PAC comprises
a simple stimulus-response loop as originally outlined in
[2]. More sophisticated cognitive dynamic systems require
hierarchically organized PAC such as that depicted in Fig. 1
where only two levels of analysis/synthesis and interpre-
tation/articulation are indicated. [3] presented a multilayer
PAC inspired by cortical connectivity. Additionally, both
perception and actuation are characterized by bottom-up
and top-down pathways, establishing a recurrent network
architecture. Figure 1 reflects this by means of bidirectional
connections for the prediction of subsequent states along the
sensory pathway and the expectation of performed actuator
movements along the motoric pathway. Finally, the PAC in
Fig. 1 could be augmented by an “internal stage” as a mental
model of the world [6]. Such PAC architectures are much
more powerful than behavioristic stimulus-response systems
and are also able to employ predictive coding strategies [7,
8], either by considering action as coding [5], or by antici-
pating events in the environment [9, 10].

Moreover, elaborated cognitive dynamic systems should
be able to draw logical inferences and to communicate either
with each other or with an external operator, respectively
[11]. This requires higher levels of mental representations

such as formal logics and grammars. Below we consider the
symbolic representation system of language as a means of
communication. In order to fulfill this function, word sym-
bols are used as semantic representatives for the description
of facts. The simplest case in which communication between
two communication partners can be designed successfully is
natural communication about facts in a shared direct envi-
ronment. In this scenario, linguistic utterances can be placed
in an environmental context so that their meaning can be
determined in a truth-functional sense. In order to meet this
requirement using a hierarchically organized PAC, a first
information transformation of signal time series into ordered
symbolic representations (analysis) and vice versa (synthe-
sis) is required, which can be implemented using subsymbol-
symbol-transducers (SST) [12]. This enables the access to
the theoretical foundation of “Physical Symbol Systems”
(PSS), with which—according to the “Physical Symbol
Systems Hypothesis” (PSSH)—cognitive processes can
henceforth be designed as information processing [13]. This
includes a second information transformation from ordered
symbol sequences into semantic representations (interpreta-
tion) and vice versa (articulation) as well as logical process-
ing, with which the higher cognitive functions such as prob-
lem solving, logical reasoning or behavior control can be
implemented. It should be noted that with each transforma-
tion, the information is converted into a more useful form.
For example, the behavior of technical cognitive systems
can be explained on the level at which logical information
is available. In this study we focus on the representation of
syntactic structures using vector symbolic architectures and
therefore refer to the lower part of the hierarchically organ-
ized PAC in Fig. 1.

Fig. 1   Hierarchical bidirectional
perception-action cycle (PAC)
for a cognitive dynamic system
after [3]. The scope of the
present paper is indicated by the
dashed boundary

734 Cognitive Computation (2022) 14:733–748

1 3

Consider, e.g., the operator’s utterance:

(note that symbols will be set in typewriter font in order to
abstract from their conventional meaning in the first place).
In a rather traditional PAC framework as shown in Fig. 1, the
acoustic signal has firstly to be analyzed in order to obtain
a symbol-like phonetic representation. For understanding
its meaning, the agent has secondly to process the utterance
grammatically through syntactic parsing. Finally, the syn-
tactic representation, e.g. in form of a phrase structure tree,
must be interpreted as a semantic representation which the
agent can ultimately understand [14]. Depending upon such
understanding, the agent can draw logical inferences and
derive the appropriate behavior for controlling the actuators.
In case of verbal behavior [16], the agent therefore computes
an appropriate response, first as a semantic representation,
that is articulated into a symbolic syntactic and phonetic
form and finally synthesized as an acoustic signal. In any
case, high-level representations are symbol-like and their
processing is approximately rule-driven, in contrast to low-
level sensation and actuation where physical signals are
essentially continuous.

Cognitive dynamical systems can be coupled together
through communication channels in such a way that the
action of one PAC (the sender) is registered as perception
by the other PAC (the receiver) [6]. Principally, there are
two possibilities: The action of the sender may either per-
turb or modify the behavior of the receiver. Both cases can
be described in the framework of interactive computation
[15] where the computation of finite input strings is replaced
by the processing of (principally) unbounded data streams.
In the latter case of modification, the perception changes
the intrinsic autonomous dynamics of the receiver, whereas
in the former case of perturbation, only the actual state is
transformed by means of a state space operator assigned to
the perception. If perception is given as verbal behavior (B),
the meaning of a perceived utterance becomes a mapping
from antecedent states A to consequent states C. This so-
called antecedent-behavior-consequent (ABC) schema [16]
provides the fundament of dynamic semantics [17–19].

[17] discussed several kinds of propositional dynamic
semantics. In its most simple form it codifies the ABC
schema of [16] in such a way that a cognitive agent is in
an epistemic state A that comprises the set of all logical
propositions the agent believes to be true. Then, another
agent utters a proposition B that acts on the belief state A
by means of set algebraic unification, such that the conse-
quent state C becomes the union C = A ∪ {B} . [17] further
elaborated this simple scheme of dynamic semantics into
different directions, including belief revision and Bayes-
ian update semantics. Another extension, called dynamic

(1)
��� ����� ��� ������

predicate logic by [18], made dynamic semantics more
compositional in the sense of traditional AI (cf. [19]). The
latest developments consider internal algebraic structures
of the perturbing perceptional stream [20]. Then a treat-
ment in terms of algebraic representation theory analogous
to that in quantum mechanics becomes necessary [21, 22].

Neural Networks

Perception-action cycles such as that depicted in Fig. 1
have been implemented through neural networks by several
researchers [9, 10, 23]. [10] presented a neural network
PAC for a robot’s visually guided reaching and grasping
behavior that is inspired by the cortical organization of
the human visual-motor system. The study [23] solves the
reinforcement learning problem of Shannon’s mouse-maze
system through an architecture of coupled feed-forward
and long-short-term memory networks (LSTM, [24, 25]).
In [9], a theory of event coding for PAC is neurally imple-
mented by a recurrent network architecture that is able to
anticipate effects in the environment, thereby ultimately
allowing for predictive coding as well [7, 8]. Predictive
coding, by contrast, has been neurally modeled by [26]
through multiple timescales recurrent neural networks
(MTRNN) of leaky-integrator units [27].

Also deploying neural networks in language technol-
ogy became increasingly important in recent time. Begin-
ning with hard-wired recurrent neural architectures [22,
28, 29, 30], the advent of deep learning algorithms leads to
state-of-the-art language processing through recursive neural
networks (RNN, [31]), through LSTM networks and through
convolutional neural networks (CNN, [32, 33]), with their
most recent improvements, capsule networks [34, 35]; for a
survey consult [36–38, 39]. Particularly interesting are lat-
est attempts of Smolensky and collaborators to train tensor
product recurrent networks (TPRN, [40, 41, 42]) which are
able to directly learn symbol-like representations by end-to-
end training under a special quantization regularization con-
straint. Moreover, such networks provide an instantaneous
association of linguistic input with semantic representations,
thereby circumventing syntactic analysis and parsing.

Despite these impressive achievements, DNN are intrinsic
black-box models, propagating input patterns through their
hidden layers toward the associated output patterns. The hid-
den layers may have several hundred-thousands up to some
billions synaptic weight parameters that are trained by regular-
ized gradient climbing algorithms. After training, the network
develops a hidden representation of the input features and the
computational rules to transform them into output. Yet these
representations are completely opaque and nobody can really
explain how input is mapped onto output by a DNN [32].

735Cognitive Computation (2022) 14:733–748

1 3

Explainability

Therefore, following [43], the next-generation AI must be
explainable, robust and trustworthy. Creating explainable
AI (XAI) is an important challenge for current research
[44–46]. For this aim, it is mandatory not only to develop
new algorithms and network architectures, such as, e.g.,
TPRN [40–42], but also conceptual understanding of their
formal structures. According to [47]: “A theory of explain-
able AI, with a formal and universally agreed definition
of what explanations are, is lacking.” A first step towards
this direction has been achieved by [48] who distinguish
between opaque, interpretable, and comprehensive systems
as follows:

Opaque systems. A system where the mechanisms
mapping inputs to outputs are invisible to the user. It
can be seen as an oracle that makes predictions over
an input, without indicating how and why predictions
are made. [...] Similarly, systems relying on genuine
“black box” approaches, for which inspection of the
algorithm or implementation does not give insight
into the system’s actual reasoning from inputs to cor-
responding outputs, are classified as opaque. [48]

That is, computations carried out by an opaque system are
neither understandable nor explainable. On the one hand,
DNN that are “black boxes” are opaque in this sense [45].
On the other hand, linear systems such as support vector
machines (SVM) appear to be interpretable:

Interpretable systems. A system where a user cannot
only see, but also study and understand how inputs are
mathematically mapped to outputs. This implies model
transparency, and requires a level of understanding
of the technical details of the mapping. [...] SVMs
and other linear classifiers are interpretable insofar
as data classes are defined by their location relative
to decision boundaries. But the action of deep neural
networks, where input features may be automatically
learned and transformed through non-linearities, is
unlikely to be interpretable by most users. [48]

Interestingly, [46, p. 84] pointed out that interpretability is a
more “passive characteristic of a model referring to the level
at which a given model makes sense for a human observer.”
This contrasts with the model’s explainability, that can be
regarded as an “active characteristic of a model, denoting
any action or procedure taken by a model with the intent of
clarifying or detailing its internal functions” to the human
observer. The most important trait of an interpretable system
is its transparency; and classical symbolic AI [49, 50, 51]
is intrinsically transparent and hence interpretable [52].
However, interpretability usually requires expert knowl-
edge for understanding and explanation, since their internal

representations and computations are expressed in terms of
formal grammars or languages [52].

Comprehensible systems. A comprehensible system
emits symbols along with its output [...]. These sym-
bols (most often words, but also visualizations, etc.)
allow the user to relate properties of the inputs to their
output. The user is responsible for compiling and com-
prehending the symbols, relying on her own implicit
form of knowledge and reasoning about them. This
makes comprehensibility a graded notion, with the
degree of a system’s comprehensibility corresponding
to the relative ease or difficulty of the compilation and
comprehension. [...] Different users may have differ-
ent tolerances in their comprehension: some may be
willing to draw arbitrary relationships between objects
while others would only be satisfied under a highly
constrained set of assumptions. ([48])

Therefore, a comprehensible system could be a black box,
yet producing symbolic output, a user is able to reason over.
However, as has been emphasized by [45, 46], different users
may belong to different audiences with different levels of
individual skills or interests. Thus, the notion of compre-
hensibility is highly contextual.

Finally, [48, p. 7] define an explainable system as a com-
prehensible one that is augmented by a “reasoning engine”
that is able to justify the emitted symbolic output. Explain-
able systems call for “confidence, safety, security, privacy,
ethics, fairness and trust” [52, p. 3]. The meaning of “trust”
has been circumscribed by [53, p. 211] “as a psychologi-
cal state in which an agent willingly and securely becomes
vulnerable, or depends on, a trustee, having taken into con-
sideration the characteristics of the trustee.”

Vector Symbolic Architectures

Originally, in his maze solving machine, Shannon used an
array of relays as the agent’s memory. This has later been
termed the “learning matrix” by [54]. Learning matrices and
vector symbolic architectures (VSA) provide viable inter-
faces between hierarchically organized symbolic data struc-
tures such as phrase structure trees or semantic representa-
tions in traditional AI technology on the one hand [49–51]
and continuous state space approaches as required for deep
neural networks on the other hand [32, 55]. Beginning with
seminal studies by [56] and [57], and later pursued by [58,
59], and [60] among many others, those architectures have
been dubbed VSA by [61] (cf. also [62]).

In a VSA, symbols and variables are represented as filler
and role vectors of some underlying linear spaces [36, 63],
respectively. When a symbol is assigned to a variable, the
corresponding filler vector is bound to the corresponding
role vector. Different filler-role bindings can be bundled

736 Cognitive Computation (2022) 14:733–748

1 3

together to form a data structure [62], such as a list, a frame,
or a table of a relational data base [64]. Those structures
can be recursively bound to other fillers and further bun-
dled together to yield arbitrarily complex data structures
[59]. In order to avoid the “curse of dimensionality” [49]
induced by the binding process, vector symbolic architec-
tures usually employ some data compression and subsequent
clean-up algorithms restricting their memory capacity by the
signal-to-noise ratio [58]. However, also loss-less VSA can
be devised making use of infinite-dimensional functional
representations as in quantum automata [65] or neural field
architectures [66].

In recent applications, VSA have been employed for
semantic spaces [63, 67], logical inferences [68–70], data
base queries [64, 71], non-projective formal grammars [72,
73], and autoassociative memories [74, 75]. [6] developed a
VSA model for cognitive representations and their induction
in Shannon’s mouse-maze system.

In this study, we focus on transparent and interpretable
cognitive dynamical systems that are originally described
as traditional symbolic AI processors. For the sake of sim-
plicity, we discuss context-free grammars (CFG) and push-
down automata for formal languages [51]. Focussing on the
dashed region in Fig. 1 , we elaborate earlier approaches for
VSA language processors [22, 59, 73]. We rigorously prove
a representation theorem for vector space representations of
uncompressed filler-role bindings. To this end, we propose a
novel normal form for CFG, allowing to express CFG parse
trees as terms over a symbolic term algebra. Rule-based
derivations over that algebra are then faithfully represented
as transformation matrices in Fock space [76, 77]. In con-
trast to blackbox DNN, uncompressed VSA are therefore
transparent and hence interpretable. Thus, our approach
would be a first step towards the abovementioned “theory of
explainable AI” [47] that could lead to future developments
of new machine learning algorithms and the construction
of reasoning engines [48] that are appropriate for desired
audiences [45, 46].

Methods

We start from a symbolic, rule-based system that can be
described in terms of formal grammar and automata the-
ory. Specifically, we chose context-free grammars (CFG)
and push-down automata as their processors here for the
ease of exposition [51]. Note that an even more involved,
non-projective grammar formalism [72], namely minimalist
grammar [78] has been treated in [73] previously.

In the second step, we reformulate these languages
through term algebras and their processing through partial
functions over term algebras. We introduce a novel normal
form for CFG, called term normal form, and prove that any

CFG can be transformed into term normal form. Finally, we
introduce a vector symbolic architecture by assigning basis
vectors of a high-dimensional linear space to the respective
symbols and their roles in a phrase structure tree. We pro-
pose a recursive function for mapping CFG phrase structure
trees onto representation vectors in Fock space and prove a
representation theorem for the partial rule-based processing
functions. Finally, we present a software toolbox, FockBox,
for handling Fock space VSA representations [79].

Context‑Free Grammars

Consider again the simple sentence (1) as a motivating
example. According to linguistic theory, sentences such
as (1) exhibit a hierarchical structure, indicating a logical
subject-predicate relationship, that can be illustrated by dif-
ferent means, e.g. through dependency graphs [72] or phrase
structure trees [51]. For the sake of simplicity, we use the
latter representation here, because phrase structure trees are
directly related to context-free grammars and their accept-
ing push-down automata.2 In (1) “the mouse” appears
as subject and the phrase “ate cheese” as the predicate,
which is further organized into a transitive verb “ate” and
its direct object “cheese”. The hierarchical structure of
sentence (1) can therefore be either expressed through regu-
lar brackets, as in (2)

Fig. 2   Phrase structure tree of example sentence (1)

2  Note that non-projective dependency graphs can be characterized
by multiple context-free grammars [80] and variants thereof [72].

737Cognitive Computation (2022) 14:733–748

1 3

or, likewise as a phrase structure tree as in Fig. 2
In Fig. 2 every internal node of the tree denotes a syntac-

tic category: S stands for “sentence”, NP for “noun phrase”,
the sentence’s subject, VP for “verbal phrase”, the predicate,
D for “determiner”, N for “noun”, and V for “verb”.

The phrase structure tree Fig. 2 immediately gives rise to
a context-free grammar (CFG) by interpreting every branch
as a rewriting rule in Chomsky normal form [51, 81]

where one distinguishes between syntactical rules (3 – 5)
and lexical rules (6 – 9), respectively. More abstractly, a
CFG is given as a quadruple G = (T ,N, �,R) , such that in
our example T = {���, �����, ���, ������} is the set of
words or terminal symbols, N = {�, ��, ��, �, �, �} is the
set of categories or nonterminal symbols, � ∈ N is the dis-
tinguished start symbol, and R ⊂ N × (N ∪ T)∗ is a set of
rules. A rule r = (A, �) ∈ R is usually written as a production
r ∶ A → � where A ∈ N denotes a category and � ∈ (N ∪ T)∗
a finite string of terminals or categories of length n = |�|.

(2)[[[���][�����]][���[������]]] ,

(3)� → �� ��

(4)�� → � �

(5)�� → � �

(6)� → ���

(7)� → �����

(8)� → ���

(9)� → ������

Context-free grammars can be processed by push-down
automata [51]. Regarding psycholinguistic plausibility,
the left-corner (LC) parser is particularly relevant because
input-driven bottom-up and expectation-driven top-down
processes are tightly intermingled with each other [82],
resembling a predictive coding algorithm [8]. An LC parser
possesses, such as any other push-down automaton, two
memory tapes: firstly a working memory, called stack, operating
in a last-in-first-out (LIFO) fashion, and secondly an input tape
storing the sentence to be processed.3 In the most simple
cases, when a given CFG does not contain local ambiguities
(as in (3 – 9) for our example (1)), an LC parser can work
deterministically. The LC parsing algorithm operates in four
different modes: i) if nothing else is possible and if the input
tape is not empty, the first word of the input is shifted into
the stack; ii) if the first symbol in the stack is the left corner
of a syntactic rule, the first stack symbol is rewritten by a
predicted category (indicated by square brackets in Table 1)
followed by the left-hand side of the rule (project); iii) if a
category in the stack was correctly predicted, the matching
symbols are removed from the stack (complete); iv) if the
input tape is empty and the stack only contains the start sym-
bol of the grammar, the automaton moves into the accepting
state; otherwise, syntactic language processing had failed.
Applying the LC algorithm to our example CFG leads to the
symbolic process shown in Table 1.

Table 1   Left-corner parser
processing the example
sentence (1). The stack expands
to the left

step stack input operation

0 � the mouse ate cheese shift
1 the mouse ate cheese project (6)
2 D mouse ate cheese project (4)
3 [N] NP mouse ate cheese shift
4 mouse [N] NP ate cheese project (7)
5 N [N] NP ate cheese complete
6 NP ate cheese project (3)
7 [VP] S ate cheese shift
8 ate [VP] S cheese project (8)
9 V [VP] S cheese project (5)
10 [N] VP [VP] S cheese shift
11 cheese [N] VP [VP] S � project (9)
12 N [N] VP [VP] S � complete
13 VP [VP] S � complete
15 S � accept

3  The LC parser is named after the left corner of a subtree. Consider
the phrase structure tree Fig. 2 where 	 is the subtree generated

by CFG rule (4). Since the article the is the first perceived word in
the input stream, it is recognized as a determiner D according to CFG
rule (6). Then, D is the left corner of rule (4), allowing the prediction
of the yet unobserved noun N.

738 Cognitive Computation (2022) 14:733–748

1 3

The left-corner parser shown in Table 1 essentially oper-
ates autonomously in modes project, complete and accept,
but interactively in shift mode. Thus, we can significantly
simplify the parsing process through a mapping from one
intermediary automaton configuration to another one that is
mediated by the interactively shifted input word perturbing
the intrinsic structure building dynamics [15]. Expressing
the configurations as temporary phrase structure trees yields
then the symbolic computation in Fig. 3.

The first tree in Fig. 3, denoted ∅ , simply corresponds to
the empty stack in Table 1, step 0. The second tree is gener-
ated by applying the CFG LC rules project (6) and (4) in
steps 2 and 3. Accordingly, the third tree is obtained from
the second one after processing steps 4 to 6, and so on.

According to our previous definitions, the states of the
processor are the automaton configurations in Table 1 or the
temporary phrase structure trees in Fig. 3, that are both inter-
pretable in terms of LC parsing and language processing for
an informed expert observer. Moreover, the processing steps
in the last column of Table 1 and also the interactive map-
pings Fig. 3 are interpretable for the observer. In principle,
one could augment the left-corner parser with a “reason-
ing engine” [48] that translates the formal language used in
those symbolic representations into everyday language for
any desired audience [45, 46]. The result would be some-
thing like the (syntactic) “meaning” [[w]] of a word w that
can be regarded as the operator mapping a tree in Fig. 3 to
its successor. This interactive interpretation of meaning is
well-known in dynamic semantics [17–19].

Algebraic Description

In order to prepare the construction of a vector symbolic
architecture (VSA) [56–61] and its representation theory
in the next steps, we need an algebraically more sophis-
ticated description. This is provided by the concept of a
term algebra [81]. A term algebra is defined over a sig-
nature Σ = (F, rank) where F is a finite set of function
symbols and rank ∶ F → ℕ0 is an arity function, assigning

to each symbol f ∈ F an integer indicating the number of
arguments that f has to take.

To apply this idea to a CFG, we introduce a new kind
of grammar normal form that we call term normal form in
the following. A CFG G = (T ,N, �,R) is said to be in term
normal form when for every category A ∈ N holds: if A is
expanded through n ∈ ℕ rules, r1 ∶ A → �1 to rn ∶ A → �n ,
then |�1| = … = |�n|.

It can be easily demonstrated that every CFG can be
transformed into a weakly equivalent CFG in term normal
form, where weak equivalence means that two different
grammars derive the same context-free language. A proof
is presented in Appendix 6.1.

Obviously, the rules (3) – (5) of our example above
are already in term normal form, simply because they are
not locally ambiguous. Thus, we define a term algebra by
regarding the set of variables V = N ∪ T as signature with
arity function rank ∶ V → ℕ0 such that i) rank(a) = 0 for
all a ∈ T  , i.e. terminals are nullary symbols and hence
constants; ii) rank(A) = |�| for categories A ∈ N , that are
expanded through rules A → � . Moreover, when G is given
in Chomsky normal form, for all categories A ∈ N appear-
ing exclusively in lexical rules rank(A) = 1 , i.e. lexical cat-
egories (D, N, V) are unary functions, whereas rank(A) = 2
for all categories A ∈ N that appear exclusively in syntac-
tic rules, which are hence binary functions.

For a general CFG G in term normal form, we define
the term algebra �(G) inductively: i) every terminal sym-
bol a ∈ T is a term, a ∈ �(G) . ii) Let A ∈ N be a cat-
egory with rank(A) = k and let t0,… , tk−1 ∈ �(G) be
terms, then A(t0,… , tk−1) ∈ �(G) is a term. Additionally,
we want to describe LC phrase structure trees as well. To
this end, we extend the signature by the predicted cat-
egories P = {[�], [��]} , that are interpreted as constants
with rank(C) = 0 for C ∈ P . The enlarged term algebra is
denoted by �LC(G) . We also allow for � ∈ �LC(G).

In the LC term algebra �LC(G) , we encode the tree of
step 1 in Fig. 3 (beginning with the empty tree t

0
= � in step

0) as term

Fig. 3   Interactive LC parse of the example sentence (1)

739Cognitive Computation (2022) 14:733–748

1 3

because rank(��) = 2 , rank(�) = 1 , and rank(���) = rank

([�]) = 0 . Likewise we obtain

as the term representation of the succeeding step 2 in Fig. 3.
Next, we define several partial functions over �LC(G) as

follows [56, 83].

Here, the function cat ∶ �LC(G) → N yields the category,
i.e. the function symbol A of the term A(t0,… , tk) ∈ �LC(G) .
The functions exi ∶ �LC(G) → �LC(G) for term extraction
and consk ∶ N ×�LC(G)

k+1
→ �LC(G) as term constructor

are defined only partially, when A(t0,… , tk) ∈ Dom(exi) , if
k = rank(A) − 1 and i < k , as well as (A, t0,… , t

k
) ∈ Dom

(cons
k
) , if k = rank(A) − 1.

By means of the term transformations (12 – 14) we can
express the action of an incrementally and interactively
shifted word a ∈ T that perturbs the intrinsic autonomous
structure-building dynamics of a cognitive system [15]
through a term operator [[a]] ∶ �LC(G) → �LC(G) . For the
transition from, e.g., LC tree 1 to LC tree 2 in Fig. 3 we
obtain

The term operator [[�����]] corresponds to a computer pro-
gram that sequentially extracts the category and the left sub-
tree from the input data structure t1 and merges the results
together into the output structure t2 . Therefore, the (syn-
tactic) meaning of the word “mouse” is its impact on the
symbolic term algebra. Note that the function [[⋅]] is known
as the interpretation function in dynamic semantics [17–19].
Thus, term algebraic computation is transparent and straight-
forwardly interpretable [52].

Vector Symbolic Architectures

In vector symbolic architectures (VSA) [56–61] hierarchi-
cally organized complex data structures are represented as
vectors in high dimensional linear spaces. The composition
of these structures is achieved by two basic operations: bind-
ing and bundling. While bundling is commonly implemented
as vector superposition, i.e. addition, different VSA realize
binding in particular ways: originally through tensor products
[56, 57], through circular convolution in reduced holographic

(10)t1 = ��(�(���), [�])

(11)t2 = �(��(�(���), �(�����)), [��])

(12)cat(A(t0,… , tk)) = A

(13)exi(A(t0,… , tk)) = ti

(14)consk(A, t0,… , tk) = A(t0,… , tk) .

(15)
[[�����]](t1) = cons2(�, cons2(cat(t1), ex0(t1), �(�����)), [��]) = t2 .

representations (HRR) [58], through XOR spatter code [84] or
through Hadamard products [62]. While HRR, spatter code,
Hadamard products or a combination of tensor products with
nonlinear compression [83] are lossy representations that
require a clean-up module (usually an attractor neural network,
cf. [60]), uncompressed tensor product representations of basis
vectors are faithful, thereby allowing a transparent representa-
tion theory. It is the aim of the present study, to firstly elaborate
the mathematical theory of uncompressed tensor product rep-
resentations. We suggest to refer to such systems as to inter-
pretable VSA [48] in this context.

Coming back to our linguistic example, we construct a
homomorphism � ∶ �LC(G) ∪ N → F from the term algebra
unified with its categories N to a vector space F in such a way,
that the structure of the transformations (12–14) is preserved.
The resulting images �(t) for terms t ∈ �LC(G) become vector
space operators, i.e. essentially matrices acting on F .

Again, we proceed inductively. First we map the sym-
bols in �LC(G) ∪ N onto vectors. To each atomic symbol
s ∈ T ∪ N ∪ P we assign a so-called filler basis vector
�s⟩ = �(s) ∈ F  , calling the subspace V

F
= span(�(T ∪ N ∪ P))

the filler space. Its dimension n = dimVF corresponds to the
number of atomic symbols in T ∪ N ∪ P , which is n = 13 in
our example.

Let further m = max({|�| | (A → �) ∈ R}) be the length
of the largest production of grammar G. Then, we define
m + 1 so-called role vectors �i⟩ , spanning the role space
VR = span({�i⟩ � 0 ≤ i ≤ m}) . Note that we employ the so-
called Dirac notation from quantum mechanics that allows a
coordinate-free and hence representation-independent descrip-
tion here [79, 85]. Then, the role �0⟩ denotes the 1st daughter
node, �1⟩ the 2nd daughter and so on, until the last daughter
�m − 1⟩ . The remaining role �m⟩ bounds the mother node in the
phrase structure trees of grammar G. In our example, because
G has Chomsky normal form, we have m = 2 = dimVR − 1
such that there are three roles for positions in a binary branch-
ing tree: left daughter �0⟩ , right daughter �1⟩ , and mother �2⟩ .
For binary trees, we also use a more intuitive symbolic nota-
tion: left daughter �∕⟩ , right daughter �⧵⟩ , and mother �∧⟩.

Let A(t0,… , tk) ∈ �LC(G) be a term. Then, we define the
tensor product representation of A(t0,… , tk) ∈ �LC(G) in
vector space F recursively as follows

As a shorthand notation, we suggest the Dirac expression

Here the symbol “ ⊗ ” refers to the (Kronecker) tensor
product, mapping two vectors onto another vector, in con-
trast to the dyadic (outer) tensor product, which yields a
matrix, hence being a vector space operator. In addition,

(16)
𝜓(A(t0,… , tk)) = �A⟩⊗ �m⟩⊕𝜓(t0)⊗ �0⟩⊕⋯⊕𝜓(tk)⊗ �m − 1⟩ .

(17)
�A(t0,… , tk)⟩ = �A⟩⊗ �m⟩⊕ �t0⟩⊗ �0⟩⊕⋯⊕ �tk⟩⊗ �m − 1⟩ .

740 Cognitive Computation (2022) 14:733–748

1 3

“ ⊕ ” denotes the (outer) direct sum that is mandatory for the
superposition of vectors from spaces with different dimen-
sionality in order to avoid interference effects.

Obviously, the (in principle) infinite recursion of the map-
ping � leads to an infinite-dimensional representation space

that is known as Fock space from quantum field theory [59,
76, 77, 86].

In quantum field theory, there is a distinguished state
��⟩ ≠ 0 , the vacuum state, spanning a one-dimensional sub-
space, the vacuum sector that is isomorphic to the under-
lying number field. According to (18), this sector is con-
tained in the subspace spanned by filler and role spaces,
VF ⊕ VR . Therefore, we could represent the empty tree in
Fig. 3 by an arbitrary role; a suitable choice is the mother
role �(�) = �m⟩ ≅ ��⟩ , hence symbolizing the vacuum state.
Using the tensor product representation (16), we can recur-
sively compute the images of our example terms above. For
(10) we obtain

where we used the compressed Dirac notation
�a⟩⊗ �b⟩ = �ab⟩ in the last steps. The last line is easily inter-
pretable in terms of phrase structure: It simply states that NP
occupies the root of the tree, D appears as its immediate left
daughter, the is the left daughter’s left daughter and a leave,
and finally [N] is a leave bound to the right daughter of the
root. Note that the Dirac kets have to be interpreted from the
right to the left (reading the Arabic manner). The vector �t

1
⟩

belongs to a Fock subspace of dimension

where n = dim(VF) , m = dim(VR) and p the embedding
depth in the phrase structure tree step 1 of Fig. 3. This leads
to q1 = 172 for �t

1
⟩

Similarly, we get for (11)

(18)F =

∞⨁

p=0

(
VF ⊗ V

⊗p

R

)
⊕ VR ,

(19)

�t1⟩ = ���(�(���), [�])⟩ = ���⟩⊗ �2⟩⊕ ��(���)⟩⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���⟩⊗ �2⟩⊕ (��⟩⊗ �2⟩⊕ ����⟩⊗ �0⟩)⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���⟩⊗ �2⟩⊕ ��⟩⊗ �2⟩⊗ �0⟩⊕ ����⟩⊗ �0⟩⊗ �0⟩⊕ �[�]⟩⊗ �1⟩

= ���2⟩⊕ ��20⟩⊕ ����00⟩⊕ �[�]1⟩

= ���∧⟩⊕ ��∧∕⟩⊕ ����∕∕⟩⊕ �[�]⧵⟩ ,

(20)q = n
mp+1 − 1

m − 1
+ m

where we have again utilized the more intuitive branch-
ing notation in the last line which can be straightforwardly
interpreted in terms of tree addresses as depicted in Fig. 3
(step 2). Computing the dimension of the respective Fock
subspace according to (20) yields q2 = 523 for �t

2
⟩.

In Fock space, the interactive and incremental action
of a word a ∈ T is then represented as a matrix operator
[[a]]� ∶ F → F  . For the transition from (10) to (11) we
obtain

In order to prove � a homomorphism, we define the fol-
lowing linear maps on F

(21)

�t
2
⟩ = ��(��(�(���), �(�����)), [��])⟩
= ��⟩⊗ �2⟩⊕ ���(�(���), �(�����))⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩
= ��⟩⊗ �2⟩⊕ (���⟩⊗ �2⟩⊕ ��(���)⟩⊗ �0⟩⊕ ��(�����)⟩
⊗ �1⟩)⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ ��(���)⟩⊗ �0⟩⊗ �0⟩
⊕ ��(�����)⟩⊗ �1⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ (��⟩⊗ �2⟩⊕ ����⟩
⊗ �0⟩)⊗ �0⟩⊗ �0⟩⊕
(��⟩⊗ �2⟩⊕ ������⟩⊗ �0⟩)⊗ �1⟩⊗ �0⟩⊕ �[��]⟩⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ���⟩⊗ �2⟩⊗ �0⟩⊕ ��⟩⊗ �2⟩⊗ �0⟩⊗ �0⟩
⊕ ����⟩⊗ �0⟩⊗ �0⟩⊗ �0⟩⊕
��⟩⊗ �2⟩⊗ �1⟩⊗ �0⟩⊕ ������⟩⊗ �0⟩⊗ �1⟩⊗ �0⟩
⊕ �[��]⟩⊗ �1⟩

= ��2⟩⊕ ���20⟩⊕ ��200⟩⊕ ����000⟩⊕ ��210⟩
⊕ ������010⟩⊕ �[��]1⟩

= ��∧⟩⊕ ���∧∕⟩⊕ ��∧∕∕⟩⊕ ����∕∕∕⟩⊕ ��∧⧵∕⟩
⊕ ������∕⧵∕⟩⊕ �[��]⧵⟩ ,

(22)

[[�����]]𝜓 �t1⟩ = [[�����]]𝜓 (���∧⟩⊕ ��∧∕⟩⊕ ����∕∕⟩⊕ �[�]⧵⟩)

= ��∧⟩⊕ ���∧∕⟩⊕ ��∧∕∕⟩⊕ ����∕∕∕⟩⊕ ��∧⧵∕⟩

⊕ ������∕⧵∕⟩⊕ �[��]⧵⟩ = �t
2
⟩ .

(23)���(�u⟩) = (�⊗ ⟨m�)�u⟩

(24)��i(�u⟩) = (�⊗ ⟨i�)�u⟩

(25)
����

k
(�a⟩, �u

0
⟩,… , �u

k
⟩) =�a⟩⊗ �m⟩⊕ �u

0
⟩⊗ �0⟩

⊕⋯⊕ �u
k
⟩⊗ �k⟩ ,

741Cognitive Computation (2022) 14:733–748

1 3

here, � denotes the unit operator (i.e. the unit matrix) and the
Dirac “bra” vectors ⟨k� are linear forms from the dual role
space V∗

R
 that are adjoined to the role “ket” vectors �k⟩ such

that ⟨i�k⟩ = �ik with Kronecker’s �ik = 0(1) for i ≠ k(i = k).
By means of these homomorphisms we compute the

meaning of “mouse” as Fock space operator through

Therefore, [[�����]]� is a holistic matrix operator instan-
taneously mapping the representation vector �t

1
⟩ of the par-

tial phrase structure tree t1 onto the representation vector
�t
2
⟩ of tree t2 by inserting the relevant fragments that have

been extracted from the tree data structure t1 in terms of the
symbolic functions in Eq. (15).

Inserting (23 – 25) yields

where we have expanded ��(�����)⟩ as in (21) above. Note
that the meaning of “mouse” crucially depends on the
given state �t

1
⟩ subjected to the operator [[�����]]� , making

meaning highly contextual. This is an important feature of
dynamic semantics as well [17–19]. Locally, we can build
the transformation matrix in analogy to Hebbian learning
[87] for neural network

such that

since ⟨t1�t1⟩ = 1 for linearly independent filler and role vec-
tors in uncompressed tensor product representations. Here,
[[�����]]� (�t1⟩) is the local value of the transformation

(26)
[[�����]]� �t1⟩ =����2(��⟩, ����2(���(�t1⟩), ��0(�t1⟩),

��(�����)⟩), �[��]⟩) = �t
2
⟩ .

(27)

[[�����]]𝜓 �t1⟩ = ����
2
(��⟩, ����

2
((�⊗ ⟨2�)�t

1
⟩, (�⊗ ⟨0�)�t

1
⟩, ��(�����)⟩), �[��]⟩)

= ����
2
(��⟩, (�⊗ ⟨2�)�t

1
⟩⊗ �2⟩⊕ (�⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ ��(�����)⟩⊗ �1⟩, �[��]⟩)

= ��⟩⊗ �2⟩⊕ ((�⊗ ⟨2�)�t
1
⟩⊗ �2⟩⊕ (�⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ ��(�����)⟩⊗ �1⟩)⊗ �0⟩⊕ �[��]⟩)⊗ �1⟩

= ��⟩⊗ �2⟩⊕ ((�⊗ ⟨2�)�t
1
⟩⊗ �2⟩⊕ (�⊗ ⟨0�)�t

1
⟩⊗ �0⟩⊕ (��⟩⊗ �2⟩⊕ ������⟩⊗ �0⟩)⊗ �1⟩)⊗ �0⟩⊕

�[��]⟩)⊗ �1⟩ = �t
2
⟩ ,

(28)[[�����]]� (�t1⟩) = �t2⟩⟨t1�

[[�����]]� (�t1⟩)�t1⟩ = �t
2
⟩⟨t

1
�t
1
⟩ = �t

2
⟩

matrix at Fock space vector �t
1
⟩ . Evaluating [[�����]]� glob-

ally for all admissible arguments, yields a piecewise affine
linear but overall nonlinear transformation [56].

The problem of learning such operators in a general VSA
framework by end-to-end training has not been convincingly
solved yet. However, the latest attempts of Smolensky and
collaborators to train tensor product recurrent networks
(TPRN) are a promising approach for this endeavor [40–42].
By contrast, neural automata have not to be trained at all
since their synaptic connectivity is explicitly construed from
the machine table of the underlying automaton [22].

Results

The main result of this study is a Fock space representation
theorem for vector symbolic architectures of context-free

grammars that follows directly from the definitions (23 – 25)
and is proven in Appendix 6.2.

The tensor product representation � ∶ �LC(G) ∪ N → F
is a homomorphism with respect to the term transformations
(12 – 14). It holds

Therefore, the representation (16) mediates as an inter-
twiner between the matrix operators ��� , �� , and ���� on
Fock space (23 – 25) and their symbolic counterparts cat ,
ex , and cons (12 – 14), entailing a commutative diagram.

(29)���(�A(t0,… , tk)⟩) = �cat(A(t0,… , tk))⟩

(30)��i(�A(t0,… , tk)⟩) = �exi(A(t0,… , tk))⟩

(31)����k(�A⟩, �t0⟩,… , �tk⟩) = �consk(A, t0,… , tk)⟩ .

Table 2   Fock space representation of LC parser processing the example sentence (1). The computational steps correspond to the shift operations
in Table 1 and to the iterations of the interactive LC parse in Fig. 3

Fock vector dim operation

0 �∧⟩ 16 shift the
1 ��⧵∧∕⟩⊕ ���⧵∧⟩⊕ �[�]⧵⟩⊕ ����∕∕⟩ 172 shift mouse
2 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ �[��]⧵⟩⊕ ������∕⧵∕⟩⊕ ����∕∕∕⟩ 523 shift ate
3 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ ���⧵∧⧵⟩⊕ ��⧵∧∕⧵⟩⊕ �[�]⧵⧵⟩⊕ ����∕∕⧵⟩⊕ ������∕⧵∕⟩⊕ ����∕∕∕⟩ 523 shift cheese
4 ��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⧵⧵⟩⊕ ��⧵∧⟩⊕ ���⧵∧⧵⟩⊕ ��⧵∧∕⧵⟩⊕ ����∕∕⧵⟩⊕ �������∕⧵⧵⟩

⊕������∕⧵∕⟩⊕ ����∕∕∕⟩
523 accept

742 Cognitive Computation (2022) 14:733–748

1 3

Hence, the uncompressed tensor product representation is
faithful and interpretable.

For the particular example discussed above, we obtain the
Fock space trajectory in Table 2.

Table 2 shows for each processing step in the first col-
umn the resulting Fock space vector in Dirac notation [79,
85] in the second column and the dimension of the hosting
Fock subspace (third column). Column four relates these
processing steps to the underpinning symbolic computation
presented in Table 1 for the push-down recognizer and in
Fig. 3 for the interactive LC tree generator.

Each Fock space vector is a unique point in a high-
dimensional linear space that is instantaneously transformed
by the Fock space representation operators associated to the
shifted words. These matrices provide the interpretation of
the meanings of those words.

In order to visualize the results of Fock space computa-
tion, we project the trajectory from Table 2 into a three-
dimensional space using principal component analysis
(PCA) [49]. PCA is a common method for data compres-
sion utilizing the directions of maximal variance in a cloud
of data points. In our example, the data cloud is the trajec-
tory of the VSA representations, computing the left-corner
phrase structure trees of the sentence example (1). To this
aim, we use FockBox,4 a MATLAB toolbox provided by
[79], for the efficient calculation of Fock space representa-
tions. The result is shown in Fig. 4 as illustration.

The trajectory is initialized by the vacuum state, trans-
lated into the origin by the PCA in Fig. 4. The point
labeled “the” is the result of applying the meaning
operator [[���]]� onto the vacuum state �∧⟩ , which is the
first Dirac vector ��⧵∧∕⟩⊕ ���⧵∧⟩⊕ �[�]⧵⟩⊕ ����∕∕⟩
in Table 2. From there, the processing trajectory moves
into a different direction by exploiting the mean-
ing operator [[�����]]� upon the latter state, entailing
��⧵∧∕∕⟩⊕ ���⧵∧∕⟩⊕ ��⧵∧⧵∕⟩⊕ ��⧵∧⟩⊕ �[��]⧵⟩⊕ ������
∕⧵∕⟩⊕ ����∕∕∕⟩ afterwards. This illustrates the nonlinear-
ity and contextuality of meaning operators which is further
supported by the last two processing steps. In any case, even
the three-dimensional compression by means of PCA is at
least approximately interpretable as symbolic computation
because each region in state space corresponds to one dis-
tinguished VSA representation. Similarly, the connecting
transitions have an interpretation as symbol-like computa-
tions as well.

Discussion

In this article we developed a representation theory for
context-free grammars and push-down automata in Fock
space as an vector symbolic architecture (VSA). We pre-
sented rigorous proofs for the representations of suitable
term algebras. To this end, we suggested a novel normal
form for CFG allowing to express CFG parse trees as terms
over a symbolic term algebra. Interactive computations such
as the predictions of a left corner parser are transparently
interpreted by partially recursive operators acting upon

Fig. 4   Principal component
(PC) projection of the LC pars-
er’s Fock space representation.
Shown are the first three PCs

4  FockBox is available via Github at https://​github.​com/​matth​ias-​
wolff/​FockB​ox.

743Cognitive Computation (2022) 14:733–748

https://github.com/matthias-wolff/FockBox
https://github.com/matthias-wolff/FockBox

1 3

the linguistic term algebra. In order to construct a faithful
representation of the term algebra in VSA Fock space, we
encoded filler and role vectors by linearly independent basis
vectors and employed uncompressed tensor product binding.
As a result, rule-based derivations over the term algebra are
then represented by transformation matrices in Fock space
such that computations in VSA are transparent and hence
interpretable as well.

For the implementation of rule-based symbolic computations
in cognitive dynamic systems, such as neural networks, VSA
provide a viable approach. We have proven that uncompressed
tensor product representations are transparent and interpret-
able. Thus, our results contribute a formally sound basis for a
future “theory of explainable AI” [47] and subsequent research
and engineering. In contrast to current blackbox approaches,
our method is essentially transparent and hence interpretable.
Explainable AI applications could then be constructed by deliv-
ering suitable “reasoning engines” [48] and cognitive user inter-
faces (CUI) [88, 89] from such systems.

Conclusion

We reformulated context-free grammars (CFG) through
term algebras and their processing through push-down
automata by partial functions over term algebras. We
introduced a novel normal form for CFG, called term nor-
mal form, and proved that any CFG in Chomsky normal
form can be transformed into term normal form. Finally,
we introduced a vector symbolic architecture (VSA) by
assigning basis vectors of a high-dimensional linear space
to the respective symbols and their roles in a phrase struc-
ture tree. We suggested a recursive function for mapping
CFG phrase structure trees onto representation vectors in
Fock space and proved a representation theorem for the
partial rule-based processing functions. We illustrated our
findings by an interactive left-corner parser and used Fock-
Box, a freely accessible MATLAB toolbox, for the genera-
tion and visualization of Fock space VSA. Our approach
directly encodes symbolic, rule-based knowledge into the
hyperdimensional computing framework of VSA and can
thereby supply substantial insights into the future develop-
ment of explainable artificial intelligence (XAI).

Appendix

Proof of Term Normal Form

Definition 1  A context-free grammar (CFG) is a quad-
ruple G = (T ,N, �,R) with a set of terminals T  , a set of
nonterminals N , the start symbol � ∈ N and a set of rules

R ⊆ N × (N ∪ T)∗ . A rule r = (A, �) ∈ R is usually written
as a production r ∶ A → �.

Definition 2  According to [51] a CFG G = (T ,N, �,R) is
said to be in Chomsky normal form iff every production
r ∈ R is one of

with A ∈ N , B,C ∈ N ⧵ {�} and a ∈ T .

It is a known fact, that for every CFG G there is an equiv-
alent CFG G′ in Chomsky normal form [51]. It is also
known that if G does not produce the empty string —
absence of production (34) — then there is an equivalent
CFG G′ in Chomsky reduced form [51].

Definition 3  A CFG G = (T ,N, �,R) is said to be in Chom-
sky reduced form iff every production r ∈ R is one of

with A,B,C ∈ N and a ∈ T .

By utilizing some of the construction steps for estab-
lishing Chomsky normal form from [51] we deduce

Corollary 1  For every CFG G in Chomsky reduced form
there is an equivalent CFG G′ in Chomsky normal form
without a rule corresponding to production (34).

Proof  Let G be a CFG in Chomsky reduced form. Clearly
G does not produce the empty string. The only differ-
ence to Chomsky normal form is the allowed presence
of the start symbol � on the right-hand side of rules in R .
By introducing a new start symbol �0 and inserting rules
{(�0, �) ∣ ∃(�, �) ∈ R} we eliminate this presence and obtain
an equivalent CFG in Chomsky normal form without a pro-
duction of form (34). 	� ◻

Definition 4  A CFG G = (T ,N, �,R) is said to be in term
normal form iff R ⊆ N × (N ∪ T)+ and for every two rules
r = (A, �) ∈ R and r� = (A�, � �) ∈ R

holds.

We state and proof by construction:

(32)A →BC

(33)A →a

(34)� →�

(35)A →BC

(36)A →a

A = A�
⟹ |�| = |� �|

744 Cognitive Computation (2022) 14:733–748

1 3

Theorem 1  For every CFG G = (T ,N, �,R) not producing
the empty string there is an equivalent CFG G′ in term nor-
mal form.

Proof  Let G = (T ,N, �,R) be a CFG not producing the
empty string. Let G� = (T ,N�, �,R�) be the equivalent CFG
in Chomsky reduced form and D ⊆ N′ be the set of all
nonterminals from G′ which have productions of both forms
(35) and (36).

We establish term normal form by applying the following
transformations to G′ :

1.	 For every nonterminal A ∈ D let R��
A
= {(A,BC) ∈ R

�

∣ B,C ∈ N
�} be the rules corresponding to productions

of form (35) and R�
A
= {(A, a) ∈ R� ∣ a ∈ T} be the rules

corresponding to productions of form (36). We add

1.	 New nonterminals A′′ and A′,
2.	 A new rule (A��,BC) for every rule (A,BC) ∈ R��

A
 and

3.	 A new rule (A�, a) for every rule (A, a) ∈ R�
A
.

	  Finally, we remove all rules R��
A
∪ R�

A
 from R′.

2.	 For every nonterminal A ∈ D let L
A
= {(X,AY) ∈ R

�

∣ X, Y ∈ N
�} be the set of rules where A appears at

first position on the right-hand side. For every rule
(X,AY) ∈ LA we add

1.	 A new rule (X,A�� Y) and
2.	 A new rule (X,A� Y).

	  Finally, we remove all rules LA from R′.
3.	 For every nonterminal A ∈ D let R

A
= {(X,Y A) ∈

R
� ∣ X, Y ∈ N

�} be the set of rules where A appears at
second position on the right-hand side. For every rule
(X, Y A) ∈ RA we add

1.	 A new rule (X, Y A��) and
2.	 A new rule (X,Y A�).

	  Finally, we remove all rules RA from R′.
4.	 If � ∈ D then we add

1.	 A new start symbol �0,
2.	 A new rule (�0, ��) and
3.	 A new rule (�0, ���).

5.	 Finally, we remove D from N′

	� ◻

We immediately deduce

Corollary 2  For every CFG G only producing strings of
either exactly length 1 or at least length 2 there is an equiva-
lent CFG G′ in term normal form which is also in Chomsky
normal form.

Proof  We handle the two cases separately.
Case 1 Let G be a CFG producing strings of exactly

length 1 . Since G does not produce the empty string there
is an equivalent CFG G′ in Chomsky reduced form where
every rule is of form (36) and the only nonterminal being
the start symbol. Obviously, G′ is in Chomsky normal form
and also in term normal form.

Case 2 Let G be a CFG producing strings of at least
length 2 . Since G does not produce the empty string there is
an equivalent CFG in Chomsky reduced form and from Cor-
ollary 1 follows that there is an equivalent CFG in Chomsky
normal form. Applying the construction from Theorem 1 to
this CFG leads to a CFG G′ in term normal formal. Since G
does not produce strings of length 1 step 4 is omitted by the
construction and G′ stays in Chomsky normal form. 	� ◻

We also state the opposite direction.

Corollary 3  Every CFG G for which an equivalent CFG G′
in Chomsky normal form exists which is also in term normal
form, produces either only strings of length 1 or at least of
length 2.

Proof  Let G = (T ,N, �,R) be a CFG in Chomsky normal
form and term normal form at the same time. Clearly, G does
not produce the empty string. Let R|� ⊆ R be the set of rules
with the start symbols � on the left side. Since G is in term
normal form we have to consider the following two cases.

Case 1 Let (�, �) ∈ R be a rule where � ∈ T  . Then every
rule in the set R|� has to be of the same form. It follows that
G only produces strings of length 1.

Case 2 Let (�,AB) ∈ R be a rule with A,B ∈ � . Then
every rule in the set R|� has to be of the same form. It follows
that strings produced by G have to be at least of length 2 . 	
� ◻

We instantly deduce

Theorem 2  Those CFGs for which a Chomsky normal form
in term normal exists are exactly the CFGs producing either
only strings of length 1 or strings with at least length 2.

which follows directly from Corollaries 2 and 3.

Proof of Representation Theorem

The proof of the Fock space representation theorem for vec-
tor symbolic architectures follows from direct calculation
using the definition of the tensor product representation
(17).

745Cognitive Computation (2022) 14:733–748

1 3

 

	� ◻

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations 

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Shannon CE. Computers and automata. Proceedings of the Insti-
tute of Radio Engineering. 1953;41(10):1234–41.

	 2.	 von Uexküll J. The theory of meaning. Semiotica. 1982;4(1):25–79.
	 3.	 Fuster JM. Upper processing stages of the perception-action cycle.

Trends in Cognitve Science. 2004;8(4):143–5.
	 4.	 Haykin S. Cognitive Dynamic Systems. Cambridge University

Press, 2012.
	 5.	 Tishby N, Polani D. Information theory of decisions and actions.

In: Cutsuridis V, Hussain A, Taylor JG, editors. Perception-Action
Cycle: Models. Architectures, and Hardware. New York (NY):
Springer; 2011. p. 601–36.

	 6.	 Wolff M, Huber M, Wirsching G, Römer R, beim Graben P,
Schmitt I. Towards a quantum mechanical model of the inner stage
of cognitive agents. In Proceedings of the 9th IEEE International
Conference on Cognitive Infocommunications (CogInfoCom),
2018a. p. 000147–000152.

���(�A(t0,… , t
k
)⟩) = (�⊗ ⟨m�)�A(t0,… , t

k
)⟩

= (�⊗ ⟨m�)(�A⟩⊗ �m⟩⊕ �t0⟩⊗ �0⟩⊕⋯⊕ �t
k
⟩⊗ �k⟩)

= �A⟩ = �cat(A(t0,… , t
k
))⟩ ,

��
i
(�A(t0,… , t

k
)⟩) = (�⊗ ⟨i�)�A(t0,… , t

k
)⟩

= (�⊗ ⟨i�)(�A⟩⊗ �m⟩⊕ �t0⟩⊗ �0⟩⊕⋯⊕ �t
k
⟩⊗ �k⟩)

= �t
i
⟩ = �ex

i
(A(t0,… , t

k
))⟩ ,

����
k
(�A⟩, �t0⟩,… , �t

k
⟩) = �A⟩⊗ �m⟩⊕ �t0⟩⊗ �0⟩⊕⋯⊕ �t

k
⟩⊗ �k⟩

= �A(t0,… , t
k
)⟩ = �cons

k
(A, t0,… , t

k
)⟩

	 7.	 Friston K. Learning and inference in the brain. Neural Netw.
2003;16:1325–52.

	 8.	 Spratling MW. A review of predictive coding algorithms. Brain
Cogn. 2017;112:92–7.

	 9.	 Haazebroek P, van Dantzig S, Hommel B. A computational model
of perception and action for cognitive robotics. Cogn Process.
2011;12(4):355.

	10.	 Cutsuridis V, Taylor JG. A cognitive control architecture for
the perception-action cycle in robots and agents. Cogn Comput.
2013;5(3):383–95.

	11.	 Römer R, beim Graben P, Huber M, Wolff M, Wirsching G,
Schmitt I. Behavioral control of cognitive agents using database
semantics and minimalist grammars. In Proceedings of the 10th
IEEE International Conference on Cognitive Infocommunications
(CogInfoCom), 2019. p. 73 – 78.

	12.	 Wolff M, Tschöpe C, Römer R, Wirsching G. Subsymbol-Symbol-
Transduktoren. In Petra Wagner, editor, Proceedings of ”Elektro-
nische Sprachsignalverarbeitung (ESSV)”, volume 65 of Studi-
entexte zur Sprachkommunikation, 2013. p. 197 – 204, Dresden.
TUDpress.

	13.	 Newell A, Simon HA. Computer science as empirical inquiry:
Symbols and search. Commun ACM. 1976;19(3):113–26.

	14.	 Karttunen L. Features and values. In Proceedings of the 10th
International Conference on Computational Linguistics, pages
28 – 33, Stroudsburg (PA), 1984. Association for Computational
Linguistics (ACL).

	15.	 Wegner P. Interactive foundations of computing. Theoret Comput
Sci. 1998;192:315–51.

	16.	 Skinner BF. Verbal Behavior. Appleton-Century-Crofts, New
York, 1957. Reprinted 2015.

	17.	 Gärdenfors P. Knowledge in Flux. Cambridge (MA): Modeling
the Dynamics of Epistemic States. MIT Press; 1988.

	18.	 Groenendijk J, Stokhof M. Dynamic predicate logic. Linguist
Philos. 1991;14(1):39–100.

	19.	 Kracht M. Dynamic semantics. Linguistische Berichte, Sonderheft
X:217 – 241, 2002.

	20.	 beim Graben, P. Order effects in dynamic semantics. Topics in
Cognitive Science. 2014;6(1):67–73.

	21.	 beim Graben P. Quantum representation theory for nonlinear
dynamical automata. In R. Wang, F. Gu, and E. Shen, editors,
Advances in Cognitive Neurodynamics, Proceedings of the Inter-
national Conference on Cognitive Neurodynamics, ICCN 2007,
pages 469 – 473, Berlin, 2008. Springer.

	22.	 Carmantini GS, beim Graben P, Desroches M, Rodrigues S. A
modular architecture for transparent computation in recurrent
neural networks. Neural Networks. 2017;85:85–105.

	23.	 Kan X, Karydis K. Minimalistic neural network architectures for
safe navigation of small mobile robots. In Proceedings of the 2018
IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). 2018. p. 1–8.

	24.	 Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80.

	25.	 Hupkes D, Dankers V, Mul M, Bruni E. Compositionality
decomposed: How do neural networks generalise? J Art Int Res.
2020;67:757–95.

	26.	 Ahmadi A, Tani J. How can a recurrent neurodynamic predictive
coding model cope with fluctuation in temporal patterns? robotic
experiments on imitative interaction. Neural Netw. 2017;92:3–16.

	27.	 beim Graben P, Liebscher T, Kurths J. Neural and cognitive mod-
eling with networks of leaky integrator units. In P. beim Graben,
C. Zhou, M. Thiel, and J. Kurths, editors, Lectures in Supercom-
putational Neuroscience: Dynamics in Complex Brain Networks,
Springer Complexity Series, chapter 7, pages 195 – 223. Springer,
Berlin, 2008.

	28.	 Chen CH, Honavar V. A neural network architecture for syntax
analysis. IEEE Trans Neural Networks. 1999;10:91–114.

746 Cognitive Computation (2022) 14:733–748

http://creativecommons.org/licenses/by/4.0/

1 3

	29.	 Pollack JB. The induction of dynamical recognizers. Mach Learn.
1991;7:227–52.

	30.	 Siegelmann HT, Sontag ED. On the computational power of neu-
ral nets. J Comput Syst Sci. 1995;50(1):132–50.

	31.	 Socher R, Manning CD, Ng AY. Learning continuous phrase rep-
resentations and syntactic parsing with recursive neural networks.
In Proceedings of the NIPS 2010 Deep Learning And Unsuper-
vised Feature Learning Workshop, volume 2010, pages 1 – 9,
2010.

	32.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;
521(7553):436–44.

	33.	 Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language mod-
eling with gated convolutional networks. arXiv:​1612.​08083 [cs.
CL], 2016.

	34.	 Patrick MK, Adekoya AF, Mighty AA, Edward BY. Capsule networks
– a survey. Journal of King Saud University, 2019.

	35.	 Yang M, Zhao W, Chen L, Qu Q, Zhao Z, Shen Y. Investigating
the transferring capability of capsule networks for text classifica-
tion. Neural Netw. 2019;118:247–61.

	36.	 Bengio Y, Courville A, Vincent P. Representation learning: A
review and new perspectives. IEEE Trans Pattern Anal Mach
Intell. 2013;35(8):1798–828.

	37.	 Otter DW, Medina JR, Kalita JK. A survey of the usages of deep
learning for natural language processing. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–21, 2020.

	38.	 Goldberg Y. Neural network methods for natural language pro-
cessing, volume 10 of Synthesis Lectures on Human Language
Technologies. Morgan & Claypool, Williston, 2017.

	39.	 Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M,
Gao J. Deep learning based text classification: A comprehensive
review. arXiv:​2004.​03705 [cs.CL], 2020.

	40.	 Palangi H, Smolensky P, He X, Deng L. Deep learning of
grammatically-interpretable representations through question-
answering. arXiv:​1705.​08432, 2017.

	41.	 Palangi H, Smolensky P, He X, Deng L. Question-answering with
grammatically-interpretable representations. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18), 2018.

	42.	 Tang S, Smolensky P, de Sa VR. A simple recurrent unit with
reduced tensor product representations. In Proceedings of ICLR
2020, 2019.

	43.	 Marcus G. The next decade in AI: Four steps towards robust arti-
ficial intelligence. arXiv:​2002.​06177 [cs.AI], 2020.

	44.	 Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR, edi-
tors. Explainable AI: Interpreting. Cham: Explaining and Visual-
izing Deep Learning. Springer; 2019.

	45.	 Adadi A, Berrada M. Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI). IEEE Access.
2018;6:52138–60.

	46.	 Arrieta AB, Díaz-Rodríguez NN, Del Ser J, Bennetot A, Tabik
S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R,
Chatila R, Herrera F. Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges toward responsi-
ble ai. Info Fus. 2020;58:82–115.

	47.	 Samek W, Müller KR. Towards explainable artificial intelli-
gence. pages 5–22. In SamekEA19, 2019.

	48.	 Doran D, Schulz S, Besold TR. What does explainable AI really
mean? A new conceptualization of perspectives. arXiv:​1710.​
00794 [cs.AI], 2017.

	49.	 Russell S, Norvig P. Artificial Intelligence: A Modern Approach.
Pearson, 3rd edition, 2010.

	50.	 Winograd T. Understanding natural language. Cogn Psychol.
1972;3(1):1–191.

	51.	 Hopcroft JE, Ullman JD. Introduction to Automata Theory, Lan-
guages, and Computation. Menlo Park, California: Addison-Wesley;
1979.

	52.	 Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need
to build explainable AI systems for the medical domain? arXiv:​
1712.​09923 [cs.AI], 2017.

	53.	 Došilović FK, Brčić M, Hlupić N. Explainable artificial intelli-
gence: A survey. In Proceedings of the 41st International Conven-
tion on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 0210–0215, 2018.

	54.	 Steinbuch K, Schmitt E. Adaptive systems using learning matri-
ces. In H. L. Oestericicher and D. R. Moore, editors, Biocybernet-
ics in Avionics, pages 751 – 768. Gordon and Breach, New York,
1967. Reprinted in J. A. Anderson, Pellionisz and E. Rosenfeld
(1990), pp. 65ff.

	55.	 Schmidhuber J. Deep learning in neural networks: An overview.
Neural Netw. 2015;61:85–117.

	56.	 Smolensky P. Tensor product variable binding and the representa-
tion of symbolic structures in connectionist systems. Artif Intell.
1990;46(1–2):159–216.

	57.	 Mizraji E. Context-dependent associations in linear distributed
memories. Bull Math Biol. 1989;51(2):195–205.

	58.	 Plate TA. Holographic reduced representations. IEEE Trans Neu-
ral Networks. 1995;6(3):623–41.

	59.	 beim Graben P, Potthast R. Inverse problems in dynamic cognitive
modeling. Chaos, 2009;19(1):015103.

	60.	 Kanerva P. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors. Cogn Comput. 2009;1(2):139–59.

	61.	 Gayler RW. Vector symbolic architectures are a viable alternative
for Jackendoff’s challenges. Behav Brain Sci. 2006;29:78–79.

	62.	 Levy SD, Gayler R. Vector Symbolic Architectures: A new build-
ing material for artificial general intelligence. In Proceedings of
the Conference on Artificial General Intelligence, pages 414–418,
2008.

	63.	 Jones MN, Mewhort DJK. Representing word meaning and order
information in a composite holographic lexicon. Psychol Rev.
2007;114(1):1–37.

	64.	 Schmitt I, Wirsching G, Wolff M. Quantum-based modelling of
database states. In: Aerts D, Khrennikov A, Melucci M, Bourama
T, editors. Quantum-Like Models for Information Retrieval and
Decision-Making. STEAM-H: Science, Technology, Engineering,
Agriculture, Mathematics & Health. Cham: Springer; 2019. p.
115–27.

	65.	 Moore C, Crutchfield JP. Quantum automata and quantum gram-
mars. Theoret Comput Sci. 2000;237:275–306.

	66.	 beim Graben P, Potthast R. Universal neural field computation.
In S. Coombes, P. beim Graben, R. Potthast, and J. J. Wright, edi-
tors, Neural Fields: Theory and Applications, chapter 11, pages
299–318. Springer, Berlin, 2014.

	67.	 Recchia G, Sahlgren M, Kanerva P, Jones MN. Encoding sequen-
tial information in semantic space models: Comparing holo-
graphic reduced representation and random permutation. Comput
Intell Neurosci. 2015;2015:58.

	68.	 Emruli B, Gayler RW, Sandin F. Analogical mapping and infer-
ence with binary spatter codes and sparse distributed memory.
In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2013.

	69.	 Widdows D, Cohen T. Reasoning with vectors: A continuous model
for fast robust inference. Logic J IGPL. 2014;23(2):141–173.

	70.	 Mizraji E. Vector logic allows counterfactual virtualization by the
square root of NOT. Logic J IGPL. 07 2020.

	71.	 Kleyko D, Osipov E, Gayler RW. Recognizing permuted words
with vector symbolic architectures: A Cambridge test for machines.
Procedia Computer Science, 88:169 – 175, 2016. Proceedings of
the 7th Annual International Conference on Biologically Inspired
Cognitive Architectures (BICA 2016).

	72.	 Kuhlmann M. Mildly non-projective dependency grammar. Com-
put Linguist. 2013;39(2):355–87.

747Cognitive Computation (2022) 14:733–748

http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/2004.03705
http://arxiv.org/abs/1705.08432
http://arxiv.org/abs/2002.06177
http://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1712.09923
http://arxiv.org/abs/1712.09923

1 3

	73.	 beim Graben P, Gerth S. Geometric representations for minimalist
grammars. J Logic Lang Info. 2012;21(4):393–432.

	74.	 Gritsenko VI, Rachkovskij DA, Frolov AA, Gayler R, Kleyko
D, Osipov E. Neural distributed autoassociative memories :
A survey. Cybernetics and Computer Engineering Journal.
2017;188(2):5–35.

	75.	 Mizraji E, Pomi A, Lin J. Improving neural models of language with
input-output tensor contexts. In: Karpov A, Jokisch O, Potapova R,
editors. Speech and Computer. pp. Cham: Springer; 2018. p. 430–40.

	76.	 Fock V. Konfigurationsraum und zweite Quantelung. Z Phys.
1932;75(9):622–47.

	77.	 Aerts D. Quantum structure in cognition. J Math Psychol.
2009;53(5):314–48.

	78.	 Stabler EP. Derivational minimalism. In: Retoré C, editor. Logical
Aspects of Computational Linguistics, vol. 1328. Lecture Notes
in Computer Science. New York: Springer; 1997. p. 68–95.

	79.	 Wolff M, Wirsching G, Huber M, beim Graben P, Römer R, and
Schmitt I. A Fock space toolbox and some applications in compu-
tational cognition. In: Karpov A, Jokisch O, Potapova R, editors.
Speech and Computer. pp. Cham: Springer; 2018. p. 757–67.

	80.	 Seki H, Matsumura T, Fujii M, Kasami T. On multiple context-
free grammars. Theoret Comput Sci. 1991;88(2):191–229.

	81.	 Kracht M. The Mathematics of Language. Number 63 in Studies
in Generative Grammar. Mouton de Gruyter, Berlin. 2003.

	82.	 Hale JT. What a rational parser would do. Cogn Sci. 2011;
35(3):399–443.

	83.	 Smolensky P. Harmony in linguistic cognition. Cogn Sci. 2006;
30:779–801.

	84.	 Kanerva P. The binary spatter code for encoding concepts at many
levels. In M. Marinaro and P. Morasso, editors, Proceedings of
International Conference on Artificial Neural Networks (ICANN
1994), volume 1, pages 226 – 229, London, 1994. Springer.

	85.	 Dirac PAM. A new notation for quantum mechanics. Math Proc
Cambridge Philos Soc. 1939;35(3):416–8.

	86.	 Smolensky P. Symbolic functions from neural computation.
Philosophical Transactions of the Royal Society London, A.
2012;370(1971):3543–69.

	87.	 Hebb DO. The Organization of Behavior. New York (NY): Wiley;
1949.

	88.	 Young S. Cognitive user interfaces. IEEE Signal Process Mag.
2010;27(3):128–40.

	89.	 Huber M, Wolff M, Meyer W, Jokisch O, Nowack K. Some design
aspects of a cognitive user interface. Online J Appl Knowl Manag.
2018;6(1):15–29.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

748 Cognitive Computation (2022) 14:733–748

	Vector Symbolic Architectures for Context-Free Grammars
	Abstract
	Introduction
	Perception Action Cycle
	Neural Networks
	Explainability
	Vector Symbolic Architectures

	Methods
	Context-Free Grammars
	Algebraic Description
	Vector Symbolic Architectures

	Results
	Discussion
	Conclusion
	References

