
Vol:.(1234567890)

Cognitive Computation (2023) 15:1132–1152
https://doi.org/10.1007/s12559-021-09931-9

1 3

neurolib: A Simulation Framework for Whole‑Brain Neural Mass
Modeling

Caglar Cakan1,2 · Nikola Jajcay1,2,3 · Klaus Obermayer1,2

Received: 3 March 2021 / Accepted: 29 August 2021 / Published online: 12 October 2021
© The Author(s) 2021

Abstract
neurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models
that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions
are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain.
neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and
organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in
order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model
analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a
function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using
evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass
models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical
experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of
whole-brain models.

Keywords Whole-brain model · Neural mass model · Brain networks · Neuroinformatics

Introduction

Mathematical modeling and computer simulations are fun-
damental for understanding complex natural systems. This
is especially true in the field of computational neurosci-
ence where models are used to represent neural systems
at many different scales. At the macroscopic scale, we can
study whole-brain networks that model a brain that consists
of brain regions which are coupled via long-range axonal
connections. A number of technological and theoretical
advancements have transformed whole-brain modeling from
an experimental proof-of-concept into a widely used method

that is now part of a computational neuroscientist’s toolkit,
the first of which is the widespread availability of compu-
tational resources.

An integral contribution to this development can be attrib-
uted to the success of mathematical neural mass models that
represent the population activity of a neural network, often
by using mean-field theory [1, 2] which employs methods
from statistical physics [3]. While microscopic simulations
of neural systems often rely on large spiking neural network
simulations where the membrane voltage of every neuron is
simulated and kept track of, neural mass models typically
consist of a system of differential equations that govern the
macroscopic variables of a large system, such as the popu-
lation firing rate. Therefore, these models are considered
useful for representing the average activity of a large neural
population, e.g., a brain area. Biophysically realistic popula-
tion models are often derived from networks of excitatory
(E) and inhibitory (I) spiking neurons by assuming the num-
ber of neurons to be very large, their connectivity sparse and
random, and the post-synaptic currents to be small [4]. At
the other end of the spectrum of neural mass models, simple
phenomenological oscillator models [5–8] are also used to

 * Caglar Cakan
 cakan@ni.tu-berlin.de

1 Department of Software Engineering and Theoretical
Computer Science, Technische Universitát Berlin, Berlin,
Germany

2 Bernstein Center for Computational Neuroscience, Berlin,
Germany

3 Institute of Computer Science, Czech Academy of Sciences,
Prague, Czech Republic

http://orcid.org/0000-0002-1902-5393
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09931-9&domain=pdf

1133Cognitive Computation (2023) 15:1132–1152

1 3

represent the activity of a single brain area, sacrificing bio-
physical realism for computational and analytical simplicity.

In the past, whole-brain models have been employed in a
wide range of problems, including demonstrating the abil-
ity of whole-brain models to reproduce BOLD correlations
from functional magnetic resonance imaging (fMRI) dur-
ing resting-state [9, 10] and sleep [11], explaining features
of EEG [12] and MEG [5, 6] recordings, studying the role
of signal transmission delays between brain areas [13, 14],
the differential effects of neuromodulators [7, 15], mod-
eling electrical stimulation of the brain in-silico [16–19],
or explaining the propagation of brain waves [20] such as
in slow-wave sleep [21]. Previous work often focused on
finding the parameters of optimal working points of a whole-
brain model, given a functional dataset [22].

However, although it is clear that whole-brain mod-
eling has become a widely-used paradigm in computa-
tional neuroscience, many researchers rely on a custom
code base for their simulation pipeline. This can result in
slow performance, avoidable work due to repetitive imple-
mentations, the use of lengthy boilerplate code, and, more
generally, a state in which the reproduction of scientific
results is made harder. In order to address these points, we
present neurolib, a computational framework and a Python
library, which helps users to set up whole-brain simula-
tions. With neurolib, parameter explorations of models can
be conducted in large-scale parallel simulations. neurolib
also offers an optimization module for fitting models to
experimental data, such as from fMRI or EEG, using evo-
lutionary algorithms. Custom neural mass models can be
implemented easily into the existing code base. The main

goal of neurolib is to provide a fast and reliable framework
for numerical experiments that encourages customization,
depending on the individual needs of the researcher. neu-
rolib is available as free open-source software released
under the MIT license.

Results

Whole‑Brain Modeling

A whole-brain model is a network model which consists
of coupled brain regions (see Fig. 1). Each brain region
is represented by a neural mass model which is connected
to other brain regions according to the underlying net-
work structure of the brain, also known as the connectome
[23]. The structural connectivity of the brain is typically
obtained by diffusion tensor imaging (DTI) which is used
to infer the long-range axonal white matter tracts in the
brain, a method known as fiber tractography. When com-
bined with a parcellation scheme that divides the brain
into N different brain regions, also known as an atlas, the
brain can be represented as a brain network with the N
brain regions being its nodes and the white matter tracts
being its edges. Figure 1 shows structural connectivity
matrices that represent the number of fibers and the aver-
age fiber length between any two regions. In a simulation,
each brain area produces activity, for example a population
firing rate, and a BOLD signal. To assess the validity of
a model, the simulated output can then be compared to
empirical brain recordings.

Fig. 1 Construction of a whole-brain model. Structural connectiv-
ity from DTI tractography is combined with a neural mass model that
represents a single brain area in each of the N = 80 brain regions.
The depicted neural mass model consists of an excitatory (red) and
an inhibitory (blue) subpopulation. The default output of each region,

e.g., the excitatory firing rate, is converted to a BOLD signal using
the hemodynamic Balloon–Windkessel model. For model optimiza-
tion, the models’ output is compared to empirical data, such as an
EEG power spectrum or to fMRI functional connectivity (FC) and its
temporal dynamics (FCD)

1134 Cognitive Computation (2023) 15:1132–1152

1 3

Framework Architecture

In the following, we will describe the design principles of
neurolib and provide a brief summary of the structure of the
Python package (see Fig. 2). Later, the individual parts of
the framework will be discussed in more detail. At the core
of neurolib is the Model base class from which all models
inherit their functionality. The base class initializes and runs
models, manages parameters, and handles simulation out-
puts. To reduce memory the footprint of long simulations,
chunkwise integration can be performed using the autochunk
feature, which will be described later. The outputs of a model
can be converted into a BOLD signal using a hemodynamic
model which allows for a comparison of the simulated out-
puts to empirical fMRI data. The Dataset class handles
structural and functional datasets. A set of post-processing
functions and a Signal class is provided for computing
functional connectivity (FC) matrices, applying temporal fil-
ters to model outputs, computing power spectra, and more.
The simulation pipeline interacts with two additional mod-
ules that provide parameter exploration capabilities using the
BoxSearch class, and enable model optimization using the
Evolution class. Both modules utilize the Parameter-
Space class which provides the appropriate parameters
ranges for exploration and optimization.

Installation and Dependencies

The easiest way to install neurolib is through the Python
Package Index PyPI using the command pip install
neurolib. This will make the package available for
import. For reading and editing the source code of neurolib
(which is advised for more advanced users), we recommend

cloning the GitHub repository directly. Detailed instruc-
tions for this are provided on neurolib’s GitHub page https://
github. com/ neuro lib- dev/ neuro lib. In this paper, we pre-
sent a set of examples with code and describe use cases for
whole-brain modeling. However, for a more extensive list
of examples, the reader is advised to explore the Jupyter
Notebooks provided in the examples directory on neurolib’s
GitHub page.

The main Python dependencies of neurolib’s high-level
functions include pypet [24], a Python parameter explora-
tion toolbox which provides parallelization and data storage
capabilities, and DEAP [25], which is used for optimization
with evolutionary algorithms. Data arrays are provided using
the packages numpy [26], pandas [27], and xarray [28] and
signal processing is handled by the scipy [29] package. The
numerical integration is accelerated using numba [30], a
just-in-time compiler for Python. All dependencies will be
automatically installed when installing neurolib using pip.
All presented results and the code in this paper is based on
neurolib’s release version 0.6.

Neural Mass Models

Several neural mass models for simulating the activity of a
brain area are implemented in neurolib (see Table 1). Some
neural mass models, for example the ALN model [31, 32] or
the Wilson–Cowan model [33, 34], consist of multiple neural
populations, namely an excitatory (E) and an inhibitory (I)
one, which are referred to as subpopulations in order to dis-
tinguish them from an entire brain area, which we refer to as
a node. Every brain area is a node coupled to other nodes in
the whole-brain network. It should be noted that some phe-
nomenological models like the Hopf model [35] only have a

Fig. 2 Framework architec-
ture. Class names are in cursive
letters

Model

Dataset (DTI, fMRI)

autochunk
output BOLD

functions Signal

FC, FCD, filtering,
power spectrum, ...

D
at

a
flo

w

Postprocessing

Simulation

Empirical data

ParameterSpace

Exploration

BoxSearch, ...

Evolution, ...

Optimization

https://github.com/neurolib-dev/neurolib
https://github.com/neurolib-dev/neurolib

1135Cognitive Computation (2023) 15:1132–1152

1 3

single variable that represents neural activity, and therefore,
the distinction between E and I subpopulations does not apply.

Phenomenological and Biophysical Models

Biophysically grounded neural mass models that are derived
from an underlying network of spiking neurons produce an
output that is a firing rate, akin to the mean spiking rate of
a neural network. An example of such a model is the ALN
model, which is based on a network of spiking adaptive
exponential (AdEx) integrate-and-fire neurons [36]. Phe-
nomenological models usually represent a simplified dynami-
cal landscape of a neural network and produce outputs that
are abstract and do not have physical units. An example is
the Hopf model, where the system dynamics can be used to
describe the transition from steady-state firing to neural oscil-
lations [6]. The Wilson–Cowan model can be mentioned as a
middle ground between simple and realistic. It describes the
activity of excitatory and inhibitory neurons while relying
on simplifications such as representing the fraction of active
neurons, rather than the actual firing rate of the population,
and uses an analytical firing rate transfer function.

Model Equations

The core module of neurolib consists of the Model class that
manages the whole-brain model and its parameters. Every
model is implemented as a separate class that inherits from the
Model class and represents the entire brain network. Typi-
cally, a model is implemented as a system of ordinary differ-
ential equations which can be generally expressed as

Here, the vector �i = (xi1, ..., xid) describes the d-dimensional
state of the i-th brain region which follows the local node

(1)

d

dt
�i(t) = � (�i(t))

⏟⏟⏟

Local

dynamics

+

N∑

j=0

�(Gij, �i(t), �j(t − Dij))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Global coupling

+ �i(t)
⏟⏟⏟

Local

noise

.

dynamics � , with i ∈ [0,N − 1] and N being the number of
brain regions. This vector contains all state variables of the
system, including, for example, firing rates and synaptic cur-
rents. The second term describes the coupling between the
i-th and j-th brain regions, given by a coupling scheme � .
This coupling term typically depends on the N × N adja-
cency matrix � (with elements Gij), the current state vector
of the i-th brain area, and the time-delayed state vector of
the j-th brain area, which itself depends on the N × N inter-
areal signal delay matrix � (with elements Dij). The matrices
� and � are defined by the empirical structural connectiv-
ity datasets. The third term �i(t) represents a noise input to
every node which is simulated as a stochastic process for
each brain area (or subpopulation) individually.

The main difference between the implemented neural mass
models is the local node dynamics � . Some models, such as
the Hopf model, additionally support either an additive cou-
pling scheme � , where the coupling term only depends on the
activity of the afferent node �j , or a diffusive coupling scheme,
where the coupling term depends on the difference between
the activity of the afferent and efferent nodes, i.e., �i − �j .
Other coupling schemes, such as nonlinear coupling, can be
also implemented by the user.

Noise Input

Every subpopulation � , with for example � ∈ {E, I} , of each
brain area i (index omitted) receives an independent noise
input ��(t) , which, for the models in Table 1, comes from an
Ornstein–Uhlenbeck process [42],

where �ext
�

 represents the mean of the process and can be
thought of as a constant external input, �ou is the time scale,
and �(t) is a white noise process sampled from a normal dis-
tribution with zero mean and unit variance. The noise strength
parameter �ou determines the standard deviation of the process,
and, therefore, the amplitude of fluctuations around the mean.

(2)d

dt
�� = −

�ext
�

− ��

�ou
+ �ou�(t),

Table 1 Implemented neural mass models. Mean-field models of
spiking neurons are abbreviated as MFM. Models with excitatory and
inhibitory subpopulations are abbreviated as E-I. The integrate-and-

fire neuron model is abbreviated as IF and the adaptive exponential
integrate-and-fire model as AdEx

Class name Model name Description

ALNModeL ALN [31, 32] MFM of AdEx neurons, delay-coupled E-I, nonlinear synapses
WWModeL Wong-Wang [37] MFM of IF neurons, E-I, nonlinear synapses
WCModeL Wilson-Cowan [35] E-I
FHNModeL Fitz-Hugh Nagumo [38, 39] Simplified Hodgkin–Huxley model
KurModeL Kuramoto [40] Phase oscillator
HopFModeL Stuart-Landau [33, 34] Normal form of Hopf bifurcation
THALAMiCMAssModeL Thalamus [41] Thalamic neural mass model that generates sleep spindles

1136 Cognitive Computation (2023) 15:1132–1152

1 3

Bifurcation Diagrams

Figure 3 shows the bifurcation diagrams (or state spaces) of
a single node of a selection of models in order of increas-
ing complexity. The diagrams serve as a demonstration of
the parameter exploration module of neurolib, which we
will describe in more detail in a later section. Understand-
ing the state space of a single node allows one to interpret
its behavior in the coupled case. Starting from the Hopf
model (Fig. 3a), we can see how the transition to the oscil-
latory state is caused by an eponymous supercritical Hopf
bifurcation controlled by the parameter a. Figures 3b and
c show the time series of the activity variable (including
noise) in the steady-state, i.e., a fixed point, for a < 0 , and
an oscillatory state, i.e., a limit cycle, for a > 0 , respectively.
The Wilson–Cowan model (Fig. 3d) has two Hopf bifurca-
tions, where the low-activity down-state is separated from
the high-activity up-state by a limit cycle region in which
the activity alternates between the E and I subpopulations.

The time series of the activity variable in Fig. 3e shows the
system in the down-state with short excursions into the limit
cycle due to the noise in the system, whereas in Fig. 3f, the
system is placed inside the limit cycle and reaches the up-
and the down-state occasionally. The bifurcation diagram
of the ALN model in Fig. 3g has a more complex structure
and its validity has been verified using large spiking network
simulations before [32]. Here, we can see that the down-
state and the up-state are separated by a limit cycle as well.
Therefore, the bifurcation structure of the Wilson—Cowan
model can be thought of as a simplified version of a slice
through the limit cycle of this two-dimensional diagram in
the horizontal plane. In Fig. 3h, the ALN model is placed
in the down-state close to the limit cycle and the time series
of the excitatory firing rate re shows brief excursions into
the oscillatory state. Without the adaptation mechanism that
is derived from the underlying AdEx neuron, we can also
observe a bistable regime in the bifurcation diagram Fig. 3g,
where both up- and down-state coexist. An example time

0

20

40

60

80

M
ax. rE [H

z]

0

1

2

3

4

In
pu

t t
o

I [
m

V/
m

s]

0 1 2 3 4
Input to E [mV/ms]

down

up

bi

1
LC

EI

ALN AdExHopf model Wilson-Cowan model

down

up

LCLCFP

Time [s] Time [s] Time [s]

r e
[H

z]

x E

a

b

c

d

e

f

g

h

i

b c
down

e f LLLCLCLCLCLCLC Eh

bi

i

Fig. 3 Overview of neural mass models. (a) Bifurcation diagram of
the Hopf model. For a < 0 , solutions converge to a fixed point (FP).
For a > 0 , solutions converge to a limit cycle (LC). (b) Example
time series of x of the Hopf model in the FP with a = −0.25 , noise
strength �ou = 0.001 , and noise time scale �ou = 20.0ms. (c) Time
series at the bifurcation point a = 0 with the same noise properties
as in (b). (d) Wilson–Cowan model with the activity of the excitatory
population (E) plotted against the external input Eext. The system has
two fixed-points with low (down) and high (up) activity and a limit
cycle in between. (e) Time series of E with Eext= 0.5 , �ou = 0.01 ,
and �ou = 100.0ms. (f) Eext= 1.9 . (g) Two-dimensional bifurcation
diagram of the ALN model depending on the input currents to the

excitatory (E) and inhibitory (I) subpopulation. The color denotes the
maximum firing rate rE of the E population. Regions of low-activity
down-states (down) and high-activity up-states (up) are indicated.
Dashed green contours indicate bistable (bi) regions where both
states coexist. Solid white contour indicates oscillatory states within
the fast E-I limit cycle (LCEI). (h) Time series of rE with mean input
currents �ext

E
= 0.5 mV/ms and �ext

I
= 0.5 mV/ms and noise param-

eters like in (e). (i) �ext
E

= 2.0 mV/ms and �ext
I

= 2.5 mV/ms and
�ou = 0.3 . Each point in the bifurcation diagrams was simulated with-
out noise for 5 seconds and the activity of the last second was used
to determine the depicted state. All remaining parameters are kept at
their default values

1137Cognitive Computation (2023) 15:1132–1152

1 3

series is shown in Fig. 3i, where the activity shows noise-
induced transitions between the up- and down-states. When
the adaptation mechanism of the underlying AdEx model is
enabled (not shown), the bistable region transforms into a
new, slowly oscillating limit cycle [32, 43].

Numerical Integration

The models are integrated using the Euler–Maruyama inte-
gration scheme [44]. The numerical integration is written
explicitly in Python and then accelerated using the just-in-
time compiler numba [30], providing a performance similar
to running native C code. Compared to pure Python code,
this offers a speedup in simulation time on the order of 104 .
For computational efficiency, each neural mass model is
implemented as a coupled network such that the single-node
case is a special case of a network with N = 1 nodes. Like-
wise, the noise process in Eq. 2 is also implemented within
every model’s integration and then added to the appropriate
state variables of the system, i.e., the membrane currents of
E and I in the case of the ALN model.

Example: Single Node Simulation

In the example in Listing 1, we load a single isolated (E-I)
node of the ALNModeL and initialize it. Every model has
a set of default parameters (defined in each model’s param-
eter definition file defaultParams.py) which we can be
changed by setting entries of the pArAMs dictionary attrib-
ute. To demonstrate this, we set the external noise strength
which is simulated as an Ornstein–Uhlenbeck process with a
standard deviation �ou = 0.1 (Eq. 2) and then run the model.
The results from this simulation can be accessed via the
ModeL object’s attributes T which contains the simulation
time steps, and output which contains the firing rate of the
excitatory population. All other state variables of a model
can be accessed via the dictionary attribute ouTpuTs. An
example time series of the excitatory firing rate is shown
in Figure 3h.

Empirical Datasets

Loading Datasets from Disk

For simulating whole-brain models where multiple neural
mass models are coupled in a network, neurolib provides
an interface for loading structural and functional datasets
from disk using the Dataset class (Listing 2). Datasets

are stored as MATLAB .mat matrices in the data direc-
tory. An instance of the Dataset class makes subject-wise
as well as group-averaged matrices available to the user as
numpy [26] arrays. Structural matrices can be normalized
using one of the available methods. An example of how to
load a dataset is shown in Listing 2.

Structural connectivity data are stored as N × N matrices,
and functional time series are N × t matrices, N being the num-
ber of brain regions and t the number of time steps. Example
datasets are included in neurolib and custom datasets can be
added by placing them in the dataset directory. Throughout this
paper, we use preprocessed data from the ConnectomeDB of
the Human Connectome Project (HCP) [45] with N = 80 corti-
cal brain regions defined by the AAL2 atlas [46].

Structural DTI Data

For a given parcellation of the brain into N brain regions, the
N × N adjacency matrix Cmat, i.e., the structural connectiv-
ity matrix, determines the coupling strengths between brain
areas. The fiber length matrix Dmat determines the signal
transmission delays, i.e., the time it takes for a signal to
travel from one brain region to another. Example structural
matrices are shown in Fig. 1.

In the following, we outline the preprocessing steps nec-
essary to extract fiber count and fiber length matrices from
T1- and diffusion-weighted images (DTI) using FSL [47].
The resulting structural matrices are included in neurolib.
Any other processing pipeline that results in a matrix of
connection strengths and signal transmission delays between
brain regions, such as with the fiber tractography software
DSIStudio [48], is equally applicable. The following should
serve as a rough guideline only.

First, the non-brain tissue was removed form the
T1-weighted anatomical images and a brain mask was gen-
erated using the brain extraction toolbox (BET) in FSL. The
same extraction was then applied to the DTI, followed by head
motion and eddy current distortion correction. Then, a proba-
bilistic diffusion model was fitted to the DTI using the BED-
POSTX toolbox in FSL. Each subject’s b0 image was linearly

registered to the corresponding T1-weighted image, and the
high-resolution volume mask from the AAL2 atlas was trans-
formed from MNI space to subject space. Probabilistic tractog-
raphy was performed with 5000 random seeds per voxel using
FSL’s probabilistic tractography algorithm PROBTRACKX
[49]. The resulting N × N adjacency matrix with N = 80
cortical brain regions, as defined by the AAL2 atlas, contains
the total fiber counts from each region to any other region as

1138 Cognitive Computation (2023) 15:1132–1152

1 3

the elements. The fiber length matrix of the same shape was
obtained during the same procedure, containing the average
fiber length of all fibers connecting any two regions in units of
mm. This procedure was done for every subject individually.

Connectivity Matrix Normalization

The elements of the structural connectivity matrix Cmat typi-
cally contain the number of reconstructed fibers from DTI trac-
tography. Since the number of fibers depends on the method and
the parameters of the (probabilistic or deterministic) tractography,
they need to be normalized using one of the three implemented
methods in the Dataset class which can be automatically
applied upon initialization by the use of the appropriate argument,
i.e., Dataset(name, normalizeCmats=method),
where name refers to the name of the data set used, and method
to one of the following methods.

The first method max is applied by default and simply
divides the entries of Cmat by the largest entry, such that
the largest entry becomes 1. The second method waytotal
divides the entries of each column of Cmat by the number of
fiber tracts generated from the respective brain region during
probabilistic tractography in FSL, which is contained in the
waytotal.txt file. The third method nvoxel divides the
entries of each column of Cmat by the size, i.e., the number of
voxels, of the corresponding brain area. The last two methods
yield asymmetric connectivity matrices, while with the first
one they remain symmetric. Normalization is applied on the
subject-wise matrices (accessible via the attributes Cmats and
Dmats). Finally, group-averaged matrices are computed for the
dataset and made available as the attributes Cmat and Dmat.

Functional MRI Data

Subject-wise fMRI time series are in a (N × t)-dimensional
format, where N is the number of brain regions and t the length
of the time series. Each region-wise time series represents the
BOLD activity averaged across all voxels of that region, which
can be also obtained from software like FSL. Functional con-
nectivity (FC) matrices capture the spatial correlation structure
of the BOLD time series across the entire time of the recording.
Subject-wise FC matrices are accessible via the attribute FCs
and are generated by computing the Pearson correlation of the
time series between all regions, yielding a N × N matrix for
each subject. Example FC matrices from resting-state fMRI
(rs-fMRI) recordings are shown in Fig. 1.

To capture the temporal fluctuations of time-dependent
FC(t), which are lost when computing correlations across
the entire recording time series, functional connectivity
dynamics matrices (FCDs) are computed as the element-
wise Pearson correlation of time-dependent FC(t) matrices
in a moving window across the BOLD time series [50] of a
chosen window length of, for example, 1 min. This yields a
tFCD × tFCD FCD matrix for each subject, with tFCD being the
number of steps the window was moved.

The rs-fMRI data included in neurolib were processed
using the FSL FEAT toolbox [51]. First, head motion
was corrected using the McFLIRT algorithm. Functional
images were linearly registered to each subject’s anatomical
image using FLIRT. A brain mask was created using BET.
MELODICA ICA was conducted and artefacts (motion,
non-neural physiological artefacts, scanner artefacts) were
removed using the ICA FIX FSL toolbox [52, 53]. Finally,
the AAL2 mask volumes were transformed from MNI space
to each subject’s functional space and the average BOLD
time series for each brain region was extracted using the
fslmeants command in Fslutils.

Example: Whole‑Brain Simulation

In a whole-brain model, the main activity variables of each
neural mass are coupled with each other. If the neural mass
model has E and I subpopulations, the coupling is usually
implemented between the activity variables of the E sub-
populations, resulting in a whole-brain model with global
excitation and local inhibition. The adjacency matrix Cmat
determines the relative coupling strengths between all brain
areas. The elements of the delay matrix Dmat contain the
average fiber lengths between any two brain regions.

In all of the following brain network examples, we use the
empirical dataset from the HCP loaded using the Dataset
class (Listing 2). As discussed above, this dataset contains
structural matrices Cmat and Dmat for N = 80 cortical
nodes from the AAL2 atlas, as well as averaged BOLD time
series of 10 minute length for all N brain regions.

Given the structural matrices, we initialize a brain network
model by passing the group-averaged matrices Cmat and
Dmat to the model’s constructor. We set a long-enough simu-
lation time of 10 minutes in order to match the length of the
empirical BOLD data. Finally, we choose to simulate a BOLD
signal by using the appropriate argument in the run method.

1139Cognitive Computation (2023) 15:1132–1152

1 3

Whole‑Brain Model Parameters

If left unchanged, all parameters of a model are kept at their
default values, which are defined in each model’s parameter
definition file (i.e., defaultParams.py). Each model
has their specific set of local parameters. Examples for the
ALNModel are the noise strength sigma_ou (see List-
ing 2), the synaptic time constants tau_se and tau_si,
internal delays between E and I nodes de and di, and more
(see Table 2).

However, all implemented models also share a common
set of global parameters that apply on the network level and
affect the coupling between nodes. These are the global
coupling strength Ke_gl and the signal transmission speed
signalV. To determine the absolute coupling strength
between any two nodes, the relative coupling strengths con-
tained in the adjacency matrix Cmat are multiplied by Ke_
gl. The entries of the fiber length matrix Dmat are divided
by signalV to determine the time delay in units of ms for
signal transmission between brain regions.

BOLD Model

Every brain area has a predefined default output variable
which is typically one of its state variables. The default out-
put variable of the ALN model, for example, is the firing
rate of the excitatory subpopulation of every brain area. The
default output can be used to simulate a BOLD signal using
the implemented Balloon–Windkessel model [54–56]. The
BOLD signal is governed by a set of differential equations that

model the hemodynamic response of a brain area to neural
activity. After integration, the BOLD signal is then subsam-
pled at 0.5hz to match the sampling rate of fMRI recordings.
The BOLD signal is integrated alongside the neural mass
model and stored in the model’s outputs. To enable the simu-
lation of the BOLD signal, the user simply passes the argu-
ment bold = True to the run method (see Listing 2).

Example: Custom Model Implementation

In the following, we present how a custom model can be
implemented in neurolib. Every model consists of two parts.
The first part is the class that implements the model and that
inherits most of its functionality from the Model base class.
The second part is the timeIntegration() function
that governs the numerical integration over space and time.
In this example, we implement a simple linear model with
the following equation

This class of models is popular due to its analytical trac-
tability and can be used to apply linear control theory to
brain networks [19, 57]. As before, this equation represents
N nodes that are coupled in a network. xi are the elements
of an N-dimensional state vector � , � is the decay time con-
stant, Gij are elements of the adjacency matrix � , and K is
the global coupling strength. We implement this model as
the class LinearModel in Listing 3.

(3)
d

dt
xi(t) = −

xi(t)

�
+

N∑

j=0

KGijxj(t).

1140 Cognitive Computation (2023) 15:1132–1152

1 3

In the definition of the model class, we specified necessary
information, such as the names of the state variables state_
vars, the default output of the model default_output,
and the variable names init_vars, holding the initial
conditions at t = 0 . The timeIntegration() function
has two parts: One, in which the variables for the simulation
are prepared, and another, where the actual time integration
takes place, i.e., njit_int(). The latter has a decorator
@numba.njit which ensures that the integration will be
accelerated with the just-in-time compiler numba. The equa-
tions of the model are then integrated using the Euler–Maruy-
ama integration scheme. This simple model can be run like the
other models before, supports features like chunkwise integra-
tion (see below), and can produce a BOLD signal.

Chunkwise Integration for Memory‑Intensive
Experiments

Some of the important applications of whole-brain modeling
require very long simulation times in order to extract meaningful
data from the model and to compare it to empirical recordings.
Examples are computing BOLD correlations, such as FC and
FCD matrices, from time series with a very low sampling rate
of around 0.5 Hz, or the computation of power spectra over a
long time period, or measuring event statistics based on, for
example, transitions between up- and down-states [21]. This
poses a major resource problem, since the neural dynamics is
usually simulated with an integration time step on the order of
0.1 ms or less, producing large amounts of data that an ordinary
computer is not able to handle efficiently in its memory (RAM).

To overcome this issue, we designed a chunkwise
integration scheme called autochunk which can be ena-
bled by running a model using the command model.
run(chunkwise=True). It supports all models that follow
the implementation guidelines. In this scheme, all dynamical
equations are integrated for a short duration Tchunk (e.g., 10
seconds) as defined by the number of time steps of a chunk,
chunksize. The chunk duration Tchunk largely determines
the amount of necessary RAM for a simulation and is typi-
cally a lot smaller than the total duration of the simulation
Ttotal . This means that the entire simulation will be integrated
in ⌈[⌉

�
Ttotal∕Tchunk chunks.

After the i-th chunk is integrated, only the last state vector
of the system, �i(Tchunk) , is temporarily kept in memory, which

in the case of a delayed system is a n × (dmax + 1) matrix,
with n being the number of state variables, and dmax being the
number of time steps according to the maximum delay of the
system. In the next step, all memory is cleared, and �i(Tchunk)
is used as an initial state vector �i+1(0) for the next chunk. If
BOLD simulation is enabled, it will be integrated in parallel to
the main integration and kept in memory, while the system’s
past state variables, such as the firing rates, will be forgotten.
After a long simulation is finished, the output attribute of
the model will contain the long BOLD time series (e.g., 5 min-
utes) with a low sampling rate and the firing rates of the last
simulated chunk (e.g., 10 seconds) with a high sampling rate.

Parameter Exploration

One of the main features of neurolib is its ability to perform
parameter explorations in a unified way across models. Param-
eter explorations are useful for determining the behavior of a
dynamical system when certain parameters are changed. The
exploration module of neurolib relies on pypet [24] which
manages the parallelization and the data storage of all simula-
tions. The user can define the range of parameters that should
be explored in a grid using the ParameterSpace class
and pass it, together with the model, as an argument to the
BoxSearch class (Listing 4). All simulated output will be
automatically stored in an HDF5 file for later analysis.

Example: State Space Exploration of a Single Node

A useful example for parameter exploration is a state space
exploration of a neural mass model in the case of an isolated
single node. For example, by measuring the minimum and
maximum activity of a model given a parameter configuration,
we can draw bifurcation diagrams that depict changes in the
model’s dynamical state, i.e., transitions from constant activity
to an oscillatory state. Figure 3 shows the bifurcation diagrams
of the Hopf model, the Wilson–Cowan model, and the ALN
model. Given these diagrams, we can choose the parameters of
the system in order to produce a desired dynamical state. The
time series in Fig. 3 show how the models behave at different
points in the bifurcation diagrams. Listing 4 shows how to set
up a parameter exploration of the ALNModel for changing
input currents to the E and I subpopulations.

1141Cognitive Computation (2023) 15:1132–1152

1 3

Here, we use the numpy [26] function np.linspace to
define the parameters in a linear space between 0 and 3 in 31
steps. The ParameterSpace class then computes the Carte-
sian product of the parameters to produce a configuration for all
parameter combinations. When the exploration is done, the results
can be loaded from disk using search.loadResults(),
which organizes all simulations and their outputs as a pandas
DataFrame [27] available as the attribute dfResults.

The result of this exploration is shown in Fig. 3g as a two-
dimensional state space diagram of a single node. A contour
around states with a finite amplitude of the excitatory firing
rate indicates bifurcations from states with constant firing
rates to oscillatory states. Drawing bifurcation diagrams in
terms of the external input parameters, as in Fig. 3d and g,
is particularly useful because it allows an interpretation of
how the dynamics of an individual node in a brain network
would change depending on the inputs from other brain areas.
When the system is in the down-state, for example, enough
excitatory external input from other brain areas would be able
to push it over the bifurcation line into the oscillatory state.

It should be noted that, when the exploration of local
model parameters is used in the case of a whole-brain model,
in the default implementation, all parameters are homoge-
neous across nodes, meaning that, in the example above,
we change the external input currents to all brain regions
at once. However, adjusting a model to work with hetero-
geneous parameters is easy and simply requires the use of
vector-valued parameters instead of scalar ones. The numeri-
cal integration needs then to be adapted to use the elements
of the parameter vector for each node accordingly.

Example: Frequency‑Dependent Effects of Brain
Stimulation

In this example, we demonstrate how neurolib can be used to
simulate the effects of stationary or time-dependent stimula-
tion on brain activity, an ongoing research topic in the field
of whole-brain modeling [58, 59]. neurolib offers a conveni-
ent way of constructing stimuli using the Stimulus class,
which includes a variety of different types of stimuli such
as sinusoidal inputs, step inputs, noisy inputs, and others.
Stimuli can be concatenated and added to another using the
operators & and + to help the user design a wide range of dif-
ferent stimulus time series. In Listing 5, we show how to cre-
ate a simple sinusoidal stimulus and set the appropriate input
parameter, i.e., ext_exc_current for the ALNModel,
to couple the stimulus to the model.

We can use the Stimulus class in combination with the
exploration module to stimulate the brain network with sinu-
soidal stimuli of variable frequencies. In the ALNModel,
an equivalent electric field stimulus can be incorporated as
externally induced mean membrane currents of the neural
excitatory population [32]. We chose the zero-to-peak ampli-
tude of the sinusoidal stimulus as 0.025 mV/ms, which is
equivalent to an extracellular electric field strength of around
1 V/m [60]. If the stimulus is a one-dimensional vector, by
default, it is delivered to all brain areas simultaneously. If
it is N-dimensional (N being the number of brain regions),
each brain region receives an independent input. The whole-
brain model is parameterized to be in the bistable regime in
the bifurcation diagram in Fig. 3g and was previously fitted
to resting-state fMRI and sleep EEG data to yield the same
power spectrum as observed in deep sleep, with a peak in
the slow oscillation regime at around 0.25 Hz. The fitting
procedure is outlined in the Model optimization section
below with the resulting parameters provided in Table 2.
Similar to Listing 4, we use the BoxSearch class to run
the whole-brain model with different stimulus frequencies
ranging from 0 Hz to 2 Hz in 21 linear steps. We run each
configuration for 5 minutes and repeat each run 10 times
with independent noise realizations to obtain statistically
meaningful results.

In Fig. 4a, we show how the stimulus frequency affects
the statistics of the whole-brain oscillations. First, we deter-
mine for each brain area in every time step, whether it is in a
down-state by simply thresholding the firing rate for values
below 5 Hz, which is always lower than the up-state activity
(see Fig. 3g). We can then measure the number of local and
global oscillations for each stimulus frequency. We define
a local oscillation as one in which between 25%-75% of all
brain areas simultaneously participated in a down-state.
Global oscillations are defined as a participation of at least
75% of brain areas in the down-state. We classify each oscil-
lation as either local or global and count their occurrence for
each stimulus condition. In Fig. 4a, we can observe a clear
peak around 0.5 Hz, where the number of local oscillations
is in a minimum and the number of global oscillations is at a
maximum. Interestingly, observing the frequency spectrum
in Fig. 4b, we see that the peak of the frequency spectrum
of the system without stimulation is at around 0.25 Hz. This
peak is clearly amplified with a stimulus frequency of 0.5
Hz, which is in line with the approximately 15 oscillations
per minute observed in Fig. 4a. Figure 4b shows the firing
rate of the system averaged across all brain regions with and

1142 Cognitive Computation (2023) 15:1132–1152

1 3

without stimulation. With stimulation, oscillations have a
larger amplitude and reach an brain-averaged firing rate of
nearly 0 Hz more often, indicating many global oscillations
into the down-state, i.e, a participation of nearly 100% is
reached in multiple oscillation cycles.

Model Optimization

Model optimization, in general, refers to a search for
model parameters that maximize (or minimize) an objec-
tive function that depends on the output of a model, lead-
ing to a progression towards a predefined target or goal.
In the case of whole-brain models, the goal is often to
reproduce patterns from (i.e., fit the model to) empirical
brain recordings. Optimizations can also be carried out
for a single node. An example of this is finding local node
parameters that produce an oscillation of a certain fre-
quency, in which case the objective to minimize is the dif-
ference between the oscillation frequency of the model’s
activity and a predefined target frequency, which could be
based on, for example, empirical EEG or MEG recordings.

Whole-brain models are often fitted to empirical resting-
state BOLD functional connectivity (FC) data from fMRI
measurements [10]. The goodness of fit to the empirical
data is determined by computing the element-wise Pearson
correlation coefficient between the simulated FC matrix
and the empirical FC matrix. If the optimization is success-
ful, the model produces similar spatial BOLD correlations
as was measured in the empirical data. The FC Pearson

correlation ranges from 0 to 1, where 1 means maximum
similarity between simulated and empirical data.

To ensure that a model also produces temporal correla-
tion patterns similar to fMRI recordings, the functional
connectivity dynamics (FCD) matrix can also be fitted to
empirical data [61]. The FCD matrix measures the similar-
ity of the temporal correlations between time-dependent FC
matrices in a sliding window. The similarity between simu-
lated and empirical matrices is usually determined by the
Kolmogorov–Smirnoff (KS) distance [62] between the dis-
tributions of the entries of both matrices. The KS distance
ranges from 0 to 1, where 0 means maximum similarity.

In a whole-brain model, the relevant parameters that
affect these correlations are typically the distance to a bifur-
cation line that separates the steady-state from an oscillatory
state (see Figs. 3a, d, and g), the global coupling strength K
that determines how strongly all brain regions are coupled
with each other, and other parameters, such as the signal
transmission speed or the strength of the external noise.

Example: Fitting a Whole‑Brain Model to fMRI Data

Before we demonstrate the optimization features of neurolib in
the following sections, we want to approach the task of find-
ing optimal model parameters using a parameter exploration
approach first. In this example, we present a common scenario
in which the simulated BOLD functional connectivity of a
whole-brain model is compared to an empirical data set, e.g.,
resting-state fMRI recordings from the HCP dataset. Using the
parameter exploration module, we investigate how the quality

a b

c

0.5 Hz
stimulus

No
stimulus

0.0 0.5 1.0 1.5 2.0
Stimulation frequency [Hz]

10

20

30

40
O

sc
illa

tio
ns

 [1
/m

in
] Local (25%-75%)

Global (> 75%) 0

25

0

25

R
at

e
[H

z]

Time [s]

0 30 60

0.0 0.5 1.0 1.5 2.0 2.5
Frequency [Hz]

100

101

Po
w

er
[H

z
/H

z]
2

No stimulus
0.5 Hz
2.0 Hz

Fig. 4 Effect of whole-brain stimulation on oscillations. (a) Num-
ber of local (red) and global (green) down-state waves across the
whole brain as a function of stimulation frequency. Each measure-
ment was repeated 10 times with independent noise realizations. The
shaded regions indicate the standard deviation around the mean and
the lines indicate the mean values across 10 runs. The dashed hori-

zontal lines indicate the average number of oscillations without stim-
ulation. (b) Node-averaged power spectra obtained with getMean-
PowerSpectrum without stimulation (black) and with stimulation
(colored). (c) Time series of the averaged firing rate across the brain
without stimulation (top panel) and with 0.5 Hz stimulation (bottom
panel)

1143Cognitive Computation (2023) 15:1132–1152

1 3

of the fit changes as a function of model parameters, and thus
can identify optimal operating points for our model.

One of the most important parameters of a whole-brain
model is the global coupling strength Ke_gl, which scales
the relative coupling strength between brain regions given by
the adjacency matrix Cmat. The coupling strength Ke_gl
affects the global dynamics and can amplify correlations of
the BOLD activity between brain regions. Therefore, this
parameter is often used to characterize changes in whole-
brain dynamics of brain networks [61, 63].

Note that the default behavior of BoxSearch is to
simulate the model and store its outputs to the file system.
Alternatively, as shown in Listing 6, the user can pass the
argument evalFunction which calls a separate function
for every parameter combination instead. This enables the
user to perform pre- and postprocessing steps for each run,
such as computing the fit to the data set. In this example, we
determine of the fit by computing the FC matrix correlation
of the simulated output to the empirical fMRI dataset for
each subject separately and then average across all subjects.
Similarly, we also determine the KS distance for the entire
fMRI data set.

The exploration produces similar results as reported in
previous studies: We observe a broad peak of high FC cor-
relations depending on the coupling strength Ke_gl [61,
63] that moves with changing noise strength sigma_ou
(Fig. 5a). When overlaying the FCD fit with the FC fit in
Fig. 5b, we can also see that the region of overall good
fits becomes narrower with sharp drops of the KS distance
at around Ke_gl = 250 while the FC correlation remains

fairly high at values above 0.5, which is also similar to pre-
vious reports [64, 65].

Evolutionary Algorithms

neurolib supports model optimization through evolutionary
algorithms built using the evolutionary algorithm frame-
work DEAP [25]. Evolutionary algorithms are stochastic
optimization methods that are inspired by the mechanisms
of biological evolution and natural selection. Multi-objective
optimization methods, such as the NSGA-II algorithm [66],
are crucial in a setting in which a model is fit to multiple
independent targets. These could be features from fMRI
recordings, such as FC and FCD matrices, or from other
data modalities such as EEG. In a multi-objective setting,
not one single solution but a set of solutions can be con-
sidered optimal, called the Pareto front, which refers to the
set of solutions that cannot be improved in any one of the
objectives without diminishing its performance in another
one. These solutions are also called non-dominated.

In the evolutionary framework, a single simulation run
is called an individual. Its particular set of parameters are
called its genes and are represented as a vector with one ele-
ment for each free parameter that should be optimized. A set
of individuals is called a population. For every evolutionary
round, also called a generation, the fitness of every new indi-
vidual is evaluated by simulating the individual and comput-
ing the similarity of its output to the empirical data. With the
example fitness calculation shown in Listing 6, this would
result in a two-dimensional fitness vector with each element
of the vector representing the FC and FCD fits, respectively.

1144 Cognitive Computation (2023) 15:1132–1152

1 3

A schematic of a general evolutionary algorithm is shown
in Fig. 6a. The optimization can be separated into an initiali-
zation phase and the main evolutionary loop. In the initiali-
zation phase, all individuals are uniformly sampled from the
parameter space and are evaluated for their fitness. The opti-
mization then enters the second phase in which the popula-
tion is reduced to a subset of size Npop from which parents
are selected to generate offspring for the next generation.
These offspring are mutated, added to the total population,
and the procedure is repeated until a stopping condition is
reached, such as a maximum number of generations.

As an alternative to the NSGA-II algorithm, which is
particularly useful for multi-objective optimization set-
tings, an adaptive evolutionary algorithm [67] is also
implemented. In the adaptive algorithm, the mutation
step size, which is analogous to a learning rate, is also
learned during the evolution by treating it as an additional
gene during the optimization. This algorithm has been suc-
cessfully used to optimize whole-brain models with up to
8 free parameters; however, it is not guaranteed to pro-
duce satisfactory results in a multi-objective optimization

setting. All steps in the evolutionary algorithm can be
modified by implementing custom operators or by using
the ones available in DEAP.

Example: Brain Network Model Optimization

In the following, we show how an evolutionary optimization
is set up in neurolib using the NSGA-II algorithm. We use
the brain network model from Listing 2 and fit the BOLD
output of the model to the empirical BOLD data to capture
its spatiotemporal properties, as described above. In Listing
7, we specify the parameters to optimize and their respec-
tive boundaries, and define a weight vector that determines
whether each fitness value is to be maximized (+1) or mini-
mized (-1). In our case, we want to maximize the first meas-
ure, which is the FC correlation, and minimize the second,
which is the FCD distance. The size of the initial population
Ninit , the ongoing population Npop size, and the number of
generations Ngen largely determine the time for the optimiza-
tion to complete.

0 250 500
Coupling st rength Kgl

0.0

0.2

0.4

0.6

FC
 c

or
re

la
tio

n

Noise
st rength σou

0.20
0.25
0.30

a b

0 250 500
Coupling st rength Kgl

0.00

0.25

0.50

0.75 FC
FCD

Fig. 5 Model fit to resting-state fMRI data. (a) Correlation
between simulated and empirical functional connectivity (FC, higher
is better) as a function of the global coupling strength Ke_gl is
shown for three levels of noise strength sigma_ou. The correla-

tion was averaged across all subjects. (b) The FC correlation and the
functional connectivity dynamics distance (FCD, lower is better) for
all 7 subjects from the HCP dataset are plotted individually. All other
parameters are as in Listing 6

1145Cognitive Computation (2023) 15:1132–1152

1 3

Fi
g.

 6

Ev
ol

ut
io

na
ry

 o
pt

im
iz

at
io

n
(a

) S
ch

em
at

ic
 o

f t
he

 e
vo

lu
tio

na
ry

 a
lg

or
ith

m
. T

he
 o

pt
im

iz
at

io
n

co
ns

ist
s o

f t
w

o
ph

as
es

, t
he

 in
iti

al
iz

at
io

n
ph

as
e

(r
ed

) i
n

w
hi

ch
 th

e
pa

ra
m

et
er

 sp
ac

e
is

 u
ni

fo
rm

ly

sa
m

pl
ed

, a
nd

 th
e

m
ai

n
ev

ol
ut

io
na

ry
 lo

op
 (b

lu
e)

. N
in
it
 is

 th
e

si
ze

 o
f t

he
 in

iti
al

 p
op

ul
at

io
n,

 N
p
o
p
 is

 th
e

si
ze

 o
f t

he
 p

op
ul

at
io

n
du

rin
g

th
e

ev
ol

ut
io

n.
 (b

) I
m

pr
ov

em
en

t o
f t

he
 fi

tn
es

s
ov

er
 a

ll
ge

ne
ra

-
tio

ns
 o

f a
 w

ho
le

-b
ra

in
 e

vo
lu

tio
na

ry
 o

pt
im

iz
at

io
n

w
ith

 th
e

co
lo

r i
nd

ic
at

in
g

th
e

sc
or

e
pe

r i
nd

iv
id

ua
l (

to
p

pa
ne

l)
an

d
av

er
ag

ed
 a

cr
os

s
th

e
po

pu
la

tio
n

(b
ot

to
m

 p
an

el
) w

ith
 th

e
m

in
im

um
 a

nd
 m

ax
i-

m
um

 ra
ng

e
in

 th
e

sh
ad

ed
 a

re
a.

 T
he

 fi
tn

es
s s

co
re

 is
 a

 w
ei

gh
te

d
su

m
 o

f a
ll

in
di

vi
du

al
 fi

tn
es

s v
al

ue
s,

i.e
.,

hi
gh

er
 v

al
ue

s a
re

 b
et

te
r.

(c
) O

pt
im

iz
at

io
n

re
su

lts
 fo

r t
he

 in
pu

t c
ur

re
nt

s t
o

th
e

E
an

d
I s

ub
-

po
pu

la
tio

ns
 d

ep
ic

te
d

in
 th

e
bi

fu
rc

at
io

n
di

ag
ra

m
 o

f t
he

 A
LN

 m
od

el
. G

re
en

 d
ot

s i
nd

ic
at

e
op

tim
al

 p
ar

am
et

er
s f

or
 fi

ts
 to

 fM
R

I d
at

a
on

ly
 (p

ro
gr

es
si

on
 sh

ow
n

in
 a

),
re

d
do

ts
 sh

ow
 fi

ts
 to

 fM
R

I+
EE

G

si
m

ul
ta

ne
ou

sly
. I

n
th

e
fM

R
I+

EE
G

 c
as

e,
 th

e
ad

ap
ta

tio
n

str
en

gt
h

b
an

d
tim

es
ca

le
 �
A
 w

er
e

al
lo

w
ed

 to
 v

ar
y.

 In
 th

e
fM

R
I-

on
ly

 c
as

e,
 b

=
0
 w

as
 k

ep
t c

on
st

an
t.

(d
) B

es
t fi

t r
es

ul
ts

 o
f t

he
 fM

R
I+

EE
G

ca

se
. S

im
ul

at
ed

 (t
op

 p
an

el
) a

nd
 e

m
pi

ric
al

 (b
ot

to
m

 p
an

el
) B

O
LD

 F
C

 m
at

ric
es

, (
e)

 F
C

D
 m

at
ric

es
, a

nd
 (f

) t
he

 a
ve

ra
ge

 p
ow

er
 s

pe
ct

ru
m

 o
f t

he
 s

im
ul

at
ed

 fi
rin

g
ra

te
 a

nd
 e

m
pi

ric
al

 E
EG

 d
at

a
du

rin
g

sl
ee

p
st

ag
e

N
3.

 T
he

 sp
ec

tra
 o

f t
he

 in
di

vi
du

al
 su

bj
ec

ts
 is

 sh
ow

n
in

 c
ol

or
, t

he
 av

er
ag

e
sp

ec
tru

m
 is

 sh
ow

n
in

 b
la

ck

1146 Cognitive Computation (2023) 15:1132–1152

1 3

We visualize the increasing score of the population in
Fig. 6b, defined as the weighted sum of all objectives, as the
evolution progresses. As expected, we find all good fits (with
FC correlation > 0.35 and FCD distance < 0.5) close to the
bifurcation line between the down-state and the limit cycle,
shown in Fig. 6c. Note that while we have optimized 4 param-
eters simultaneously, only the input current parameters to E
and I are shown, which correspond to the axis of the bifurca-
tion diagram in Fig. 3g. In another example, we also included
EEG power spectra in our optimization procedure to produce
a model with an appropriate spectral density. Here, we used
EEG data from sleep recordings during the sleep stage N3
[21], or slow-wave sleep, in which sleep slow oscillations are
prevalent. In order to assess the fit to the power spectrum, we
computed the mean of the power spectra of the excitatory
firing rate of all nodes during the last 60 seconds of the simu-
lation using the function getMeanPowerSpectrum()
which uses the implementation of Welch’s method [68] scipy.
signal.welch in SciPy [29] with a rolling Hanning window of
length 10s. The same method was applied to the channel-wise
EEG data to first compute subject-wise average power spectra,
and then average all subject-wise spectra to a single empiri-
cal power spectrum. To assess the similarity of the simulated
and the empirical data, we computed the Pearson correlation
between both power spectra in a range between 0 and 20 Hz.

In order for the model to produce slow oscillations that
fit the data, we included the spike-frequency adaptation
strength parameter b and the adaptation time scale �A in
our optimization, culminating in a total of six free param-
eters. In a single node, adaptation-induced oscillations can
have a frequency between roughly 0.5 and 5 Hz [32]. Fig-
ure 6 c shows the location of all good fits in the bifurcation
diagram (FC and FCD thresholds as above, EEG power
spectrum correlation > 0.7). All fits are close to where the
bistable regime is in the case without adaptation, where
the activity of an E-I system can slowly oscillate between
up- and down-states if the adaptation mechanism is strong
enough [32, 43, 69].

Figures 6 d-f show the simulated and empirical FC and
FCD matrices, as well as the power spectra of a randomly
chosen fit of the fMRI+EEG optimization from Fig. 6c.
The parameters of this fit are given in Table 2. The empiri-
cal FC and FCD matrices are shown for one subject only.
The correlation between simulated and empirical FC
matrices was 0.55 averaged across all subjects with the
best subject reaching 0.70. The KS distance of the distri-
bution of FCD matrix entries averaged across all subjects
was 0.28 with the best subject reaching 0.07. The correla-
tion coefficient between the power spectra of the simulated
firing rate EEG was 0.86.

Table 2 Model parameters.
Global parameters of the whole-
brain model (first four rows)
and a subset of the local neural
mass model parameters of the
ALNModel (rest) as a result
of the fitting procedure shown
in Fig. 6. All other parameters
are at their default values. The
Key column refers to the key
of the ALNModel’s params
dictionary. For all models, a
complete list of their default
parameter values are given in
each model’s directory

Symbol Key Value Description

dt dT 0.1 ms Integration time constant
N N 80 Number of brain areas (AAL2)
Kgl Ke_gL 265 Global coupling strength
vgl sigNALV 20 m/s Global signal speed
�ext

E
Mue_exT_MeAN 3.32 mV/ms Mean external input to E

�ext

I
Mui_exT_MeAN 3.68 mV/ms Mean external input to I

�ou sigMA_ou 0.37 mV∕ms3∕2 Noise strength
Ke Ke 800 Number of excitatory inputs per neuron
Ki Ki 200 Number of inhibitory inputs per neuron
cEE, cIE Cee, Cie 0.3 mV/ms Maximum AMPA PSC amplitude [70]
cEI , cII Cei, Cii 0.5 mV/ms Maximum GABA PSC amplitude [70]
JEE Jee_MAx 2.4 mV/ms Maximum synaptic current from E to E
JIE Jie_MAx 2.6 mV/ms Maximum synaptic current from E to I
JEI Jei_MAx −3.3 mV/ms Maximum synaptic current from I to E
JII Jii_MAx −1.6 mV/ms Maximum synaptic current from I to I
�s,E TAu_se 2 ms Excitatory synaptic time constant
�s,I TAu_si 5 ms Inhibitory synaptic time constant
dE de 4 ms Synaptic delay to excitatory neurons
dI di 2 ms Synaptic delay to inhibitory neurons
a A 0 nS Subthreshold adaptation conductance
b b 3.2 pA Spike-triggered adaptation increment
�A TAuA 4765 ms Adaptation time constant

1147Cognitive Computation (2023) 15:1132–1152

1 3

Heterogeneous Brain Modeling with MultiModel

Here, we present a recent addition to neurolib’s core
simulation capabilities called MultiModel, which
achieves heterogeneous brain modeling in which more
than one type of neural mass model, each with their
own set of differential equations, can be simulated in a
network. The dynamics of individual nodes are coupled
by an activity variable, which typically represents the
average population firing rate.

Models in MultiModel are implemented and simulated
in an hierarchical fashion with three different levels: The
first level is a neural mass, representing a single homo-
geneous neural population which is defined by a set of
differential equations. An example of this is the excita-
tory subpopulation of the ALNModel. The second level
is a node, defined as a collection of neural masses. The
subpopulations of a node are coupled via a local connec-
tivity matrix. An example of this is a single node of the
ALNModel with excitatory and inhibitory subpopula-
tions. Finally, in the third level, a collection of nodes is
represented as a network, in which nodes are connected
according to a global connectivity matrix. In the case of
a brain network, these are the fiber count and fiber length
matrices from DTI. The dynamical equations within all
levels in the hierarchy can be implemented by the user,
and, more importantly, once defined, can be reused and
“plugged together” with other models. MultiModel inte-
grates the equations of each neural mass on the lowest
level, and handles the synchronization and coupling of all
relevant variables according to the predefined local and
global coupling schemes on all higher levels.

Example: Thalamocortical Motif Fit to Sleep EEG
Power Spectrum

In this example, we use MultiModel to construct a thalamocor-
tical network model that consists of two separate neural mass
models, with one ThalamicMassModel representing a tha-
lamic node with excitatory (TCR) and inhibitory (TRN) subpop-
ulations [41], and another ALNModel representing a cortical
node with connectivity between nodes as shown in Fig. 7a. An
abbreviated implementation of this model is shown in Listing 8.

Our goal is to find model parameters that produce a sim-
ilar cortical power spectrum as the one observed in EEG
during sleep stage N3. In the power spectra shown Fig. 6f,
we can see that, while the EEG power spectrum has a peak
in the �-band between 10-14 Hz, the whole-brain model
does not. This is due to the fact that the cortical model
alone, when parameterized in the bistable regime and
adaptation is enabled, is only capable of generating slow
oscillations between up- and down-states with a major
peak in the power spectrum in the slow oscillation range
between 0.2-1.5 Hz. Indeed, the peak in the � band can
only be reproduced by a thalamic model that can gener-
ate spindle oscillations in the respective frequency bands
[41]. In this example, we use MultiModel to combine both
models such that the power spectrum of the cortical node
more closely resembles the EEG power spectrum during
N3 sleep.

The free parameters of the ThalamicMassModel
are the conductances of the K-leak current g_LK and the
rectifying current g_h. The parameters of the ALNModel
subject to optimization are the mean input currents input_
mu to the E and I subpopulations, and the strength and the

1148 Cognitive Computation (2023) 15:1132–1152

1 3

time scale of the adaptation currents b and tauA. Further-
more, we also optimize the coupling strength between the
ALNModel and the ThalamicMassModel in both direc-
tions. This makes a total of 8 free parameters.

We use the power spectrum analysis Python package
FOOOF [71] to compute the fitness of the model. We first
subtract a fitted 1/f baseline from the power spectrum of the
simulated firing rate and from the EEG power spectrum. We
then compute the Pearson correlation between both remain-
ders of the power spectra to measure the similarity between
the two. Subtracting the 1/f baseline ensures that the correla-
tion between the simulated and the empirical power remains
sensitive to the secondary peak in the spindle frequency
range in addition to the stronger peak in the slow oscillation
range. We then also use FOOOF to compute the power of
the two main peaks in the simulated power spectrum. This
results in a three-dimensional fitness vector containing the

correlation with the empirical spectrum, the power of the
slow oscillation peak, and the power of the spindle oscilla-
tion peak. We set up an optimization that maximizes all of
these measures, similar as in Listing 7. We run the evolution
for 50 generations with an initial population size of 960 and
an ongoing population size of 640. A detailed description
of the fitting procedure, the fitness calculation, and the defi-
nition of the entire model would exceed the scope of this
article and are thus provided in the examples directory of
neurolib’s GitHub repository.

The resulting optimized parameters for the input cur-
rents to E and I of the ALNModel, as well as the conduct-
ances of the ThalamicMassModel can be seen in 7b.
The input currents for the ALNModel again cluster in the
bistable regime in which slow oscillations are generated in
the presence of adaptation (similar to Fig. 6c). The con-
ductances of the ThalamicMassModel also cluster in a

Table 3 Optimized
thalamocortical model
parameters. Parameters of
the best-fitting MultiModel
depicted in Fig. 7a with the time
series shown in Fig. 7c

Symbol Key Value Description

�ext

E
*exC*Mu 2.30 mV/ms Cortical input current to E

�ext

I
*iNH*Mu 3.44 mV/ms Cortical input current to I

�A *TAuA 1040 ms Cortical adaptation time constant of the E subpopulation
b *b 19.5 pA Cortical spike-frequency adaptation strength of the E subpopulation
gLK *g_LK 0.1 mS/cm2 Thalamic conductance of the K-leak current
gh *g_H 0.1 mS/cm2 Thalamic conductance of the rectifying current
cALN,Th Ad_TH 0.02 Connection strength from cortical to thalamic node
cTh,ALN TH_Ad 0.15 Connection strength from thalamic to cortical node

EXC INH

TCR TRN

Cortex

Thalamus

Cortex Thalamus
a b

c

d

16 18 20 22 24
Time [s]

10

20

30

r
[H

z]
E

16 18 20 22 24
Time [s]

100

200

300

r
[H

z]
TC

R

−1

0

1

2

lo
g

(P
ow

er
)[

µV
/H

z]
10

2

EEG
1/f fit

0 5 10 15 20
Frequency [Hz]

−2

−1

0

lo
g

(P
ow

er
)[

H
z

/H
z]

10
2 EXC0 2 4 6

Input to EXC [mV/ms]

0

1

2

3

4

5

6

In
pu

t t
o

IN
H

 [m
V/

m
s]

0.00 0.02 0.04 0.06 0.08
Thalamus [mS/cm]gLK

2

0.00

0.02

0.04

0.06

0.08

Th
al
am

us
[m

S/
cm

]
g h

2

Fig. 7 Optimization of the power spectrum of a thalamocortical
motif. (a) Schematic of the thalamocortical motif with excitatory
(red) and inhibitory (blue) populations of the cortical module (top)
and the thalamic module (bottom). Arrows indicate connections
between neural masses, with black (gray) arrows denoting excitatory
(inhibitory) connections. (b) Parameter spaces of the cortical module
(left panel) with respect to the mean input currents to the excitatory
and inhibitory subpopulations and the thalamic module (right) with
respect to the conductances of the K-leak current gLK and rectifying
current gh of the TCR population. The blue contours indicate regions
with slow oscillations (left) and spindle oscillations (right) present.

Green dots show all results of the optimization that produced a Pear-
son correlation above 0.7 between the 1/f-subtracted power spectra
of the EEG and the simulated cortical excitatory firing rate. (c) Time
series of the firing rates of the excitatory subpopulations of the cor-
tical (left panel) and the thalamic (right) modules of the best fitting
model. Parameters are given in Table 3. (d) Power spectrum of the
EEG data in sleep stage N3 (top panel) and the firing rates (bottom)
of the excitatory subpopulation of the cortical module shown in (c)
with peaks in the slow oscillation (0.2-1.5 Hz) and the spindle oscil-
lation (10-14 Hz) regimes. The blue dashed line shows the 1/f fit. The
Pearson correlation between the 1/f-subtracted remainders is 0.87

1149Cognitive Computation (2023) 15:1132–1152

1 3

range in which the model generates spindle oscillations with
a typical waning and waxing dynamics, in agreement with
the regime previously reported [41]. The time series of the
best fitting model in Fig. 7c shows that indeed the cortical
ALNModel shows slow transitions between a down- and
an up-state, whereas the ThalamicMassModel produces
waxing and waning spindles. The parameters of this model
are given in Table 3. The spindle oscillations generated in
the thalamic node modulate the cortical firing rate in the
sigma band, which is visible as a corresponding peak in the
cortical power spectrum in Fig 7d (bottom panel).

Summary and Discussion

In this paper, we introduced neurolib, a Python library
for simulating whole-brain networks using coupled neural
mass models. We demonstrated how to simulate a single
neural mass model, how neurolib handles empirical data
from fMRI and DTI measurements, and how to simulate
a whole-brain network. A set of neural mass models that
are part of the library were presented, as well as how to
implement a custom neural mass model.

We demonstrated how to conduct parameter explora-
tions with neurolib which can be used to characterize the
dynamical landscape of a model. Lastly, we presented how
the multi-objective evolutionary optimization algorithm in
neurolib can be used to fit a whole-brain model to func-
tional empirical data from fMRI and EEG as well as how
to construct a hybrid thalamocortical model.

Existing Software

Numerous software frameworks have been developed in
the past to facilitate the simulation of neural systems.
Many of these projects focus on microscopic neuron mod-
els. Examples include NEST [72], Brian [73], NetPyNE
[74], and NEURON [75] which are particularly useful for
simulating large networks of spiking neurons, with a focus
on point neurons in the case of NEST and Brian, or mor-
phologically extended neurons in the case of NetPyNE
and NEURON. In many cases, the accuracy of neural mass
models can be validated using these software frameworks
by simulating large networks of neurons from which neu-
ral mass models are often derived [32]. Other existing
frameworks are specifically designed for simulating meso-
scopic systems, such as NENGO [76], which focuses on
applications in cognitive science, or the Brain Modeling
Toolkit [77] which focuses on simulating multiscale neu-
ral population circuits. The mentioned frameworks can be

used to simulate systems with a few populations but are
rarely used (and not specifically designed and optimized)
for macroscopic whole-brain modeling, partly due to the
computational costs and the resulting difficulty for cali-
brating model parameters.

For macroscopic whole-brain modeling, a well-established
alternative to neurolib is The Virtual Brain (TVB) [78, 79]
which is an easy-to-use platform for running brain network
simulations. TVB can load structural connectivity data, has a
long list of implemented models for simulating brain regions,
and allows users to set up monitors to record activity. TVB
can also simulate BOLD signals and various other forward
models, such as simulated electroencephalography (EEG),
magnetoencephalography (MEG) and local field potentials
(LFP). Many of the features of TVB can be accessed and
configured using a graphical user interface (GUI); however,
more complex use cases, such as fitting a model to empirical
data, or further analyzing model outputs, need to be managed
outside of the graphical environment.

In contrast, neurolib does not have a GUI and encour-
ages users with programming experience to modify the
code of the framework itself to suit their individual use
case, to implement their own models, and to use their
own datasets to run large numerical experiments. neurolib
also offers parameter exploration and model optimiza-
tion capabilities. The simple and efficient architecture of
neurolib allows for fast prototyping of custom models.

Performance and Parallelization

To accelerate the numerical integration of models and thus
enhance the single-core performance of simulations, models
that are implemented in Python use the just-in-time com-
piler numba. Although TVB also uses accelerated numba
code, only the calculation of the derivatives of the models
are accelerated but not the integration itself. In neurolib, the
entire numerical integration, including the loops across all
nodes of the brain network, are accelerated, resulting in a
simulation speed that is 8-24x faster compared to TVB (see
Fig. 8) when comparing single-threaded simulations.

In order to speed up parameter explorations and optimi-
zations on a multi-core architecture, neurolib utilizes the
parallelization capabilities of pypet [24] which can run mul-
tiple simulations on a single CPU simultaneously. To deploy
simulations on distributed systems, such as large comput-
ing clusters, pypet can run jobs on multiple machines using
the Python module SCOOP [80]. A lightweight alternative
to this is is the mopet [81] Python package, which can run
parameter explorations on multiple machines simultaneously
using the distributed computing framework Ray [82].

1150 Cognitive Computation (2023) 15:1132–1152

1 3

Future Development

Current work on neurolib focuses on improving the per-
formance of the MultiModel framework and adding more
specialized models for different brain areas with the ulti-
mate goal of heterogeneous whole-brain modeling, such as
combining a cortical model with models of thalamic or hip-
pocampal neural populations. This will enable us to model
different brain rhythms generated in specialized neural cir-
cuits and study their whole-brain interactions.

Another goal of the development efforts is to support
more sophisticated forward models like the ones used in
TVB. This includes making use of lead-field matrices to
simulate an EEG/MEG signal that is more spatially accu-
rate in sensor space, making comparisons to real recordings
more faithful than by simply analyzing neural activity in
source space.

Conclusion

The primary development philosophy of neurolib is to build
a framework that is lightweight and easily extensible. Future
work will also include the implementation and support for
more neural mass models. Since neurolib is open source
software, we welcome contributions from the computational
neuroscience community. Lastly, our main focus in devel-
oping neurolib is the computational efficiency with which
simulations, explorations, and optimizations can be exe-
cuted. We believe that this not only has the potential to save
valuable time, but allows researchers to pursue ideas and
conduct numerical experiments that would otherwise be only
achievable with access to a large computing infrastructure.

Funding Information Open Access funding enabled and organized by
Projekt DEAL. This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project number
327654276 - SFB 1315 and by the Operational Programme Research,
Development and Education, Ministry of Education, Youth and Sport
of the Czech Republic (co-funded by the EU) - project no. CZ.02.2.6
9/0.0/0.0/19_074/0016209

Data Availability All of our code including examples and documenta-
tion can be accessed on our public GitHub repository which can be
found at https:// github. com/ neuro lib- dev/ neuro lib. The documentation
including more examples of how to use neurolib can be found at https://
neuro lib- dev. github. io/.

Declarations

Conflict of Interest Caglar Cakan, Nikola Jajcay, and Klaus Obermay-
er declare that they have no conflict of interest.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Amit DJ, Brunel N. Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cor-
tex. Cereb Cortex. 1997;7(3):237–52. http:// www. ncbi. nlm. nih.
gov/ pubmed/ 91434 44.

 2. van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science (New
York, N.Y.). 1996;274:1724–1726.

 3. Haken H. Cooperative phenomena in systems far from thermal equilib-
rium and in nonphysical systems. Rev Mod Phys. 1975;47(1):67–121.

 4. Renart A, Brunel N, Wang XJ. Mean field theory of irregularly spik-
ing neuronal populations and working memory in recurrent cortical
networks. 2004. http:// www. cns. nyu. edu/ wangl ab/ publi catio ns/ pdf/
renar t2003b. pdf

 5. Cabral J, Luckhoo H, Woolrich M, Joensson M, Mohseni H, Baker
A, Kringelbach ML, Deco G. Exploring mechanisms of spon-
taneous functional connectivity in MEG: How delayed network
interactions lead to structured amplitude envelopes of band-pass
filtered oscillations. NeuroImage. 2014;90:423–35. https:// doi. org/
10. 1016/j. neuro image. 2013. 11. 047.

 6. Deco G, Cabral J, Woolrich MW, Stevner AB, van Hartevelt TJ,
Kringelbach ML. Single or multiple frequency generators in on-
going brain activity: A mechanistic whole-brain model of empiri-
cal MEG data. NeuroImage. 2017;152:538–50. https:// doi. org/ 10.
1016/j. neuro image. 2017. 03. 023.

 7. Demirtas M, Burt JB, Helmer M, Ji JL, Adkinson BD, Glasser
MF, Van Essen DC, Sotiropoulos SN, Anticevic A, Murray JD.

Fig. 8 Performance comparison. Wall time (real time) plotted
against the simulated time in neurolib (orange) and The Virtual Brain
(TVB) (blue) for different models. The dashed gray line indicates the
identity line at which simulated time is equal to wall time. At each
data point, a whole-brain model with 76 brain regions was simulated.
Before each measurement, the simulation was run once to avoid addi-
tional waiting times due to precompilation of the code. Performance
was measured on a MacBook Pro 2019 with a 2.8 GHz Quad-Core
Intel Core i7 CPU

https://github.com/neurolib-dev/neurolib
https://neurolib-dev.github.io/
https://neurolib-dev.github.io/
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed/9143444
http://www.ncbi.nlm.nih.gov/pubmed/9143444
http://www.cns.nyu.edu/wanglab/publications/pdf/renart2003b.pdf
http://www.cns.nyu.edu/wanglab/publications/pdf/renart2003b.pdf
https://doi.org/10.1016/j.neuroimage.2013.11.047
https://doi.org/10.1016/j.neuroimage.2013.11.047
https://doi.org/10.1016/j.neuroimage.2017.03.023
https://doi.org/10.1016/j.neuroimage.2017.03.023

1151Cognitive Computation (2023) 15:1132–1152

1 3

Hierarchical Heterogeneity across Human Cortex Shapes Large-
Scale Neural Dynamics. Neuron. 2019;101(6):1181-1194.e13.

 8. Schmidt R, LaFleur KJR, de Reus MA, van den Berg LH, van
den Heuvel MP. Kuramoto model simulation of neural hubs and
dynamic synchrony in the human cerebral connectome. BMC
Neurol. 2015;16(1):54. http:// bmcne urosci. biome dcent ral. com/
artic les/ 10. 1186/ s12868- 015- 0193-z.

 9. Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional
connectivity dynamics: Modeling the switching behavior of the
resting state. NeuroImage. 2015;105:525–35. http:// dx. doi. org/ 10.
1016/j. neuro image. 2014. 11. 001.

 10. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R,
Hagmann P. Predicting human resting-state functional connectivity
from structural connectivity. Proceedings of the National Academy
of Sciences of the United States of America. 2009;106(6):2035–
40. http:// www. pnas. org/ conte nt/ 106/6/ 2035. short.

 11. Jobst BM, Hindriks R, Laufs H, Tagliazucchi E, Hahn G, Ponce-
Alvarez A, Stevner ABA, Kringelbach ML, Deco G. Increased
stability and breakdown of brain effective connectivity during
slow-wave sleep: mechanistic insights from whole-brain compu-
tational modelling. Sci Rep. 2017;7(1):4634. http:// www. nature.
com/ artic les/ s41598- 017- 04522-x.

 12. Endo H, Hiroe N, Yamashita O. Evaluation of resting spatio-
temporal dynamics of a neural mass model using resting fMRI
connectivity and EEG microstates. Front Comput Neurosci.
2020;13:1–11.

 13. Cabral J, Hugues E, Sporns O, Deco G. Role of local network
oscillations in resting-state functional connectivity. NeuroImage.
2011;57(1):130–9. http:// www. ncbi. nlm. nih. gov/ pubmed/ 21511 044.

 14. Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R. Key role of
coupling, delay, and noise in resting brain fluctuations. Proc Natl
Acad Sci. 2009;106(25):10302–7. https:// www. pnas. org/ conte nt/
106/ 25/ 10302. short

 15. Kringelbach ML, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris
R, Whybrow PC, Logothetis NK, Deco G. Dynamic coupling of
whole-brain neuronal and neurotransmitter systems. Proc Natl
Acad Sci U S A. 2020;117(17):9566–76.

 16. Chouzouris T, Roth N, Cakan C, Obermayer K. Applications of
nonlinear control to a whole-brain network of FitzHugh-Nagumo
oscillators. arXiv preprint. 2021. http:// arxiv. org/ abs/ 2102. 08524.
2102. 08524.

 17. Gollo LL, Roberts JA, Cocchi L. Mapping how local perturba-
tions influence systems-level brain dynamics. NeuroImage.
2017;160:97–112. http:// dx. doi. org/ 10. 1016/j. neuro image. 2017.
01. 057. 1609. 00491.

 18. Griffiths JD, McIntosh AR, Lefebvre J. A Connectome-Based,
Corticothalamic Model of State- and Stimulation-Dependent
Modulation of Rhythmic Neural Activity and Connectivity. Front
Comput Neurosci. 2020;14:113. https:// www. front iersin. org/ artic
les/ 10. 3389/ fncom. 2020. 575143/ full.

 19. Muldoon SF, Pasqualetti F, Gu S, Cieslak M, Grafton ST, Vettel
JM, Bassett DS. Stimulation-Based Control of Dynamic Brain
Networks. PLoS Comput Biol. 2016;12:9.

 20. Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB,
Woolrich MW, Breakspear M. Metastable brain waves. Nat Com-
mun. 2019;10(1):1–17. https:// doi. org/ 10. 1038/ s41467- 019- 08999-0.

 21. Cakan C, Dimulescu C, Khakimova L, Obst D, Flöel A, Obermayer K.
A deep sleep model of the human brain: How slow waves emerge due
to adaptation and are guided by the connectome. arXiv. 2020. http://
arxiv. org/ abs/ 2011. 14731. 2011. 14731.

 22. Breakspear M. Dynamic models of large-scale brain activity. Nat
Neurosci. 2017;20(3):340–52. http:// www. nature. com/ doifi nder/
10. 1038/ nn. 4497.

 23. Sporns O, Tononi G, Kötter R. The human connectome: A
structural description of the human brain. PLoS Comput Biol.
2005;1(4):0245–51.

 24. Meyer R, Obermayer K. Pypet: A python toolkit for data
management of parameter explorations. Frontiers in
Neuroinformatics. 2016;10:1–15.

 25. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagńe C.
DEAP: Evolutionary algorithms made easy. J Mach Learn Res.
2012;13:2171–5.

 26. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen
P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ. Array
programming with NumPy. Nature. 2020;585(7825):357–62.

 27. McKinney W. Pandas: a foundational Python library for data
analysis and statistics. Python for High Performance and Sci-
entific Computing. 2011;14(9):1–9.

 28. Hoyer S, Hamman J. xarray: ND labeled arrays and datasets in
Python. J Open Res Softw. 2017;5:1.

 29. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J.
SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat Methods. 2020;17(3):261–272.

 30. Lam SK, Pitrou A, Seibert S. Numba: A LLVM-based python
JIT compiler. Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC - LLVM ’15. 2015;1–
6. http:// dl. acm. org/ citat ion. cfm? doid= 28331 57. 28331 62.

 31. Augustin M, Ladenbauer J, Baumann F, Obermayer K. Low-
dimensional spike rate models derived from networks of adap-
tive integrate-and-fire neurons: comparison and implementa-
tion. PLoS Comput Biol. 2017;13.

 32. Cakan C, Obermayer K. Biophysically grounded mean-field
models of neural populations under electrical stimulation. PLoS
Comput Biol. 2020;16(4). http:// dx. doi. org/ 10. 1371/ journ al.
pcbi. 10078 22. 1906. 00676.

 33. Landau LD. On the problem of turbulence. In Dokl Akad Nauk
USSR. 1944;44:311.

 34. Stuart JT. On the non-linear mechanics of wave disturbances in
stable and unstable parallel flows Part 1. The basic behaviour
in plane Poiseuille flow. J Fluid Mech. 1960;9(3):353–370.

 35. Wilson HR, Cowan JD. Excitatory and inhibitory interac-
tions in localized populations of model neurons. Biophys J.
1972;12(1):1–24. http:// www. cell. com/ artic le/ S0006 34957
28606 85/ fullt ext.

 36. Brette R, Gerstner W. Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. J Neu-
rophysiol. 2005;94(5):3637–42. http:// www. ncbi. nlm. nih. gov/
pubmed/ 16014 787.

 37. Wong KF. A Recurrent Network Mechanism of Time Integration
in Perceptual Decisions. J Neurosci. 2006;26(4):1314–28. http://
www. jneur osci. org/ cgi/ doi/ 10. 1523/ JNEUR OSCI. 3733- 05. 2006.

 38. FitzHugh R. Impulses and physiological states in theoretical mod-
els of nerve membrane. Biophys J. 1961;1(6):445–66.

 39. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission
line simulating nerve axon*. Proc IRE. 1962;50(10):2061–70.

 40. Kuramoto Y. Chemical oscillations, waves and turbulence.
arXiv:1011.1669v3. https:// www. sprin ger. com/ gp/ book/
 97836 42696 916

 41. Schellenberger Costa M, Weigenand A, Ngo HVV, Marshall L,
Born J, Martinetz T, Claussen JC. A Thalamocortical Neural Mass
Model of the EEG during NREM Sleep and Its Response to Audi-
tory Stimulation. PLoS Comput Biol. 2016;12(9):1–20.

 42. Uhlenbeck GE, Ornstein LS. On the theory of the Brownian
motion. Phys Rev. 1930;36(5):823.

 43. Tartaglia EM, Brunel N. Bistability and up/down state alterna-
tions in inhibition-dominated randomly connected networks of
LIF neurons. Sci Rep. 2017;7(1):1–14. http:// dx. doi. org/ 10. 1038/
s41598- 017- 12033-y.

 44. Kloeden PE, Pearson RA. The numerical solution of stochastic
differential equations. The Journal of the Australian Mathematical
Society. Series B. Applied Mathematics. 1977;20(1): 8–12.

http://bmcneurosci.biomedcentral.com/articles/10.1186/s12868-015-0193-z
http://bmcneurosci.biomedcentral.com/articles/10.1186/s12868-015-0193-z
http://dx.doi.org/10.1016/j.neuroimage.2014.11.001
http://dx.doi.org/10.1016/j.neuroimage.2014.11.001
http://www.pnas.org/content/106/6/2035.short
http://www.nature.com/articles/s41598-017-04522-x
http://www.nature.com/articles/s41598-017-04522-x
http://www.ncbi.nlm.nih.gov/pubmed/21511044
https://www.pnas.org/content/106/25/10302.short
https://www.pnas.org/content/106/25/10302.short
http://arxiv.org/abs/2102.08524.2102.08524
http://arxiv.org/abs/2102.08524.2102.08524
http://dx.doi.org/10.1016/j.neuroimage.2017.01.057.1609.00491
http://dx.doi.org/10.1016/j.neuroimage.2017.01.057.1609.00491
https://www.frontiersin.org/articles/10.3389/fncom.2020.575143/full
https://www.frontiersin.org/articles/10.3389/fncom.2020.575143/full
https://doi.org/10.1038/s41467-019-08999-0
http://arxiv.org/abs/2011.14731.2011.14731
http://arxiv.org/abs/2011.14731.2011.14731
http://www.nature.com/doifinder/10.1038/nn.4497
http://www.nature.com/doifinder/10.1038/nn.4497
http://dl.acm.org/citation.cfm?doid=2833157.2833162
http://dx.doi.org/10.1371/journal.pcbi.1007822.1906.00676
http://dx.doi.org/10.1371/journal.pcbi.1007822.1906.00676
http://www.cell.com/article/S0006349572860685/fulltext
http://www.cell.com/article/S0006349572860685/fulltext
http://www.ncbi.nlm.nih.gov/pubmed/16014787
http://www.ncbi.nlm.nih.gov/pubmed/16014787
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3733-05.2006
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3733-05.2006
https://www.springer.com/gp/book/9783642696916
https://www.springer.com/gp/book/9783642696916
http://dx.doi.org/10.1038/s41598-017-12033-y
http://dx.doi.org/10.1038/s41598-017-12033-y

1152 Cognitive Computation (2023) 15:1132–1152

1 3

 45. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E,
Ugurbil K, Wu-Minn HCP Consortium. The WU-Minn human con-
nectome project: an overview. Neuroimage. 2013;80:62–79.

 46. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new
parcellation of the orbitofrontal cortex in the automated anatomical
labeling atlas. NeuroImage. 2015;122:1–5.

 47. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith
SM. Fsl. Neuroimage. 2012;62(2):782–90.

 48. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng
WYI. Deterministic diffusion fiber tracking improved by quantitative
anisotropy. PloS One. 2013;8(11).

 49. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW.
Probabilistic diffusion tractography with multiple fibre orientations:
What can we gain? NeuroImage. 2007;34(1):144–55.

 50. Preti MG, Bolton TAW, Van De Ville D. The dynamic functional
connectome: State-of-the-art and perspectives. NeuroImage. 2017.

 51. Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocor-
relation in univariate linear modeling of FMRI data. Neuroimage.
2001;14(6):1370–86.

 52. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ,
Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N,
Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K,
Miller KL, Smith SM. ICA-based artefact removal and acceler-
ated fMRI acquisition for improved resting state network imag-
ing. NeuroImage. 2014;95:232–47.

 53. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF,
Griffanti L, Smith SM. Automatic denoising of functional MRI
data: Combining independent component analysis and hierarchi-
cal fusion of classifiers. NeuroImage. 2014;90:449–68.

 54. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P,
Corbetta M. Resting-state functional connectivity emerges from
structurally and dynamically shaped slow linear fluctuations. The
Journal of neuroscience: The Official Journal of the Society for Neu-
roscience. 2013;33:27.

 55. Friston K, Harrison L, Penny W. Dynamic causal modelling. Neu-
roImage. 2003;19(4):1273–302. http:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S1053 81190 30020 27.

 56. Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in
fMRI: The balloon model, Volterra kernels, and other hemodynam-
ics. NeuroImage. 2000;12(4):466–77.

 57. Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Med-
aglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS. Controllabil-
ity of structural brain networks. Nat Commun. 2015;6:8414. http://
www. nature. com/ doifi nder/ 10. 1038/ ncomm s9414.

 58. Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A. Transcranial
direct current stimulation changes resting state functional connectiv-
ity: A large-scale brain network modeling study. NeuroImage. 2016.

 59. Ponce-Alvarez A, He BJ, Hagmann P, Deco G. Task-driven activity
Reduces the cortical activity space of the brain: experiment and whole-
brain modeling. PLoS Comput Biol. 2015;11(8):e1004445. http://
journ als. plos. org/ plosc ompbi ol/ artic le? id= 10. 1371/ journ al. pcbi.
10044 45.

 60. Aspart F, Ladenbauer J, Obermayer K. Extending integrate-and-
fire model neurons to account for the effects of weak electric fields
and Input Filtering Mediated by the Dendrite. PLoS Comput Biol.
2016;12(11):1–29.

 61. Hansen ECA, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional
connectivity dynamics: Modeling the switching behavior of the rest-
ing state. Neuroimage. 2015;105:525–35.

 62. Hodges JL. The significance probability of the Smirnov two-sample
test. Arkiv för Matematik. 1958;3(5):469–86.

 63. Deco G, Jirsa VK. Ongoing cortical activity at rest: Criticality, multi-
stability, and ghost attractors. J Neurosci. 2012;32(10):3366–75.

 64. Deco G, Kringelbach ML. Metastability and Coherence: Extend-
ing the Communication through Coherence Hypothesis Using
A Whole-Brain Computational Perspective. Trends Neurosci.

2016;39(3):125–35. http:// www. scien cedir ect. com/ scien ce/ artic le/
pii/ S0166 22361 60000 23.

 65. Triebkorn P, Zimmermann J, Stefanovski L, Roy D, Solodkin A,
Jirsa V, Breakspear M, Mcintosh AR, Ritter P. Identifying optimal
working points of individual virtual brains: a large-scale brain net-
work modelling study short title : optimal working points of indi-
vidual virtual brain. BioRxiv. 2020.

 66. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput.
2002;6(2):182–97.

 67. Eiben AE, Smith JE. Introduction to evolutionary computing, vol.
53. Springer. 2003.

 68. Welch P. The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified peri-
odograms. IEEE Trans Audio Electroacoust. 1967;15(2):70–3.

 69. Nghiem TAE, Tort-Colet N, Górski T, Ferrari U, Moghimyfiroozabad
S, Goldman JS, Teleńczuk B, Capone C, Bal T, di Volo M, Destexhe
A. Cholinergic switch between two types of slow waves in cerebral
cortex. Cereb Cortex. 2020;1–16.

 70. Brunel N. What Determines the frequency of fast network oscillations
with irregular neural discharges? I. Synaptic dynamics and excitation-
inhibition balance. J Neurophysiol. 2003;90(1):415–430. http:// jn.
physi ology. org/ cgi/ doi/ 10. 1152/ jn. 01095. 2002. arXiv:1011.1669v3.

 71. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao
R, Noto T, Lara AH, Wallis JD, Knight RT. Parameterizing neural
power spectra into periodic and aperiodic components. Nat Neuro-
sci. 2020;23(12):1655–65.

 72. Gewaltig M-O, Diesmann M. NEST (NEural Simulation Tool).
Scholarpedia. 2007;2(4):1430.

 73. Stimberg M, Goodman DFM, Benichoux V, Brette R. Equation-
oriented specification of neural models for simulations. Front Neu-
roinform. 2014;8:6.

 74. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A,
Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin
SA. NetPyNE, a tool for data-driven multiscale modeling of brain
circuits. Elife. 2019;8:e44494.

 75. Carnevale, NT, Hines ML. The NEURON book. Cambridge Uni-
versity Press. 2006.

 76. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC,
Rasmussen D, Choo X, Voelker A, Eliasmith C. Nengo: a Python
tool for building large-scale functional brain models. Front Neu-
roinform. 2014;7:48.

 77. Dai K, Gratiy SL, Billeh YN, Xu R, Cai B, Cain N, Rimehaug AE,
Stasik AJ, Einevoll GT, Mihalas S. Brain Modeling ToolKit: An
open source software suite for multiscale modeling of brain circuits.
PLoS Comput Biol. 2020;16(11).

 78. Ritter P, Schirner M, Mcintosh AR, Jirsa VK. The Virtual Brain
Integrates Computational Modeling and Multimodal Neuroimaging.
Brain Connect. 2013;3(2):121–45.

 79. Sanzleon P, Knock SA, Woodman MM, Domide L, Mersmann J,
Mcintosh AR, Jirsa V. The virtual brain: A simulator of primate
brain network dynamics. Front Neuroinform. 2013;7.

 80. Hold-Geoffroy Y, Gagnon O, Parizeau M. Once you SCOOP,
no need to fork. In Proceedings of the 2014 Annual Conference
on Extreme Science and Engineering Discovery Environment.
2014;1–8.

 81. Cakan C, Rebscher L. Mopet: The mildly ominous parameter explo-
ration toolkit. 2021. https:// zenodo. org/ record/ 45416 67.

 82. Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang
E, Elibol M, Yang Z, Paul, W, Jordan MI. Ray: A distributed
framework for emerging AI applications. In 13th Symposium
on Operating Systems Design and Implementation (OSDI 18).
2018;561–577.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.sciencedirect.com/science/article/pii/S1053811903002027
http://www.sciencedirect.com/science/article/pii/S1053811903002027
http://www.nature.com/doifinder/10.1038/ncomms9414
http://www.nature.com/doifinder/10.1038/ncomms9414
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004445
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004445
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004445
http://www.sciencedirect.com/science/article/pii/S0166223616000023
http://www.sciencedirect.com/science/article/pii/S0166223616000023
http://jn.physiology.org/cgi/doi/10.1152/jn.01095.2002
http://jn.physiology.org/cgi/doi/10.1152/jn.01095.2002
https://zenodo.org/record/4541667

	neurolib: A Simulation Framework for Whole-Brain Neural Mass Modeling
	Abstract
	Introduction
	Results
	Whole-Brain Modeling
	Framework Architecture
	Installation and Dependencies
	Neural Mass Models
	Phenomenological and Biophysical Models
	Model Equations
	Noise Input
	Bifurcation Diagrams
	Numerical Integration
	Example: Single Node Simulation
	Empirical Datasets
	Loading Datasets from Disk
	Structural DTI Data
	Connectivity Matrix Normalization
	Functional MRI Data

	Example: Whole-Brain Simulation
	Whole-Brain Model Parameters
	BOLD Model

	Example: Custom Model Implementation
	Chunkwise Integration for Memory-Intensive Experiments

	Parameter Exploration
	Example: State Space Exploration of a Single Node
	Example: Frequency-Dependent Effects of Brain Stimulation

	Model Optimization
	Example: Fitting a Whole-Brain Model to fMRI Data
	Evolutionary Algorithms
	Example: Brain Network Model Optimization
	Heterogeneous Brain Modeling with MultiModel
	Example: Thalamocortical Motif Fit to Sleep EEG Power Spectrum

	Summary and Discussion
	Existing Software
	Performance and Parallelization

	Future Development
	Conclusion

	References

