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Abstract
neurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models 
that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions 
are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain. 
neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and 
organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in 
order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model 
analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a 
function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using 
evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass 
models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical 
experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of 
whole-brain models.
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Introduction

Mathematical modeling and computer simulations are fun-
damental for understanding complex natural systems. This 
is especially true in the field of computational neurosci-
ence where models are used to represent neural systems 
at many different scales. At the macroscopic scale, we can 
study whole-brain networks that model a brain that consists 
of brain regions which are coupled via long-range axonal 
connections. A number of technological and theoretical 
advancements have transformed whole-brain modeling from 
an experimental proof-of-concept into a widely used method 

that is now part of a computational neuroscientist’s toolkit, 
the first of which is the widespread availability of compu-
tational resources.

An integral contribution to this development can be attrib-
uted to the success of mathematical neural mass models that 
represent the population activity of a neural network, often 
by using mean-field theory [1, 2] which employs methods 
from statistical physics [3]. While microscopic simulations 
of neural systems often rely on large spiking neural network 
simulations where the membrane voltage of every neuron is 
simulated and kept track of, neural mass models typically 
consist of a system of differential equations that govern the 
macroscopic variables of a large system, such as the popu-
lation firing rate. Therefore, these models are considered 
useful for representing the average activity of a large neural 
population, e.g., a brain area. Biophysically realistic popula-
tion models are often derived from networks of excitatory 
(E) and inhibitory (I) spiking neurons by assuming the num-
ber of neurons to be very large, their connectivity sparse and 
random, and the post-synaptic currents to be small [4]. At 
the other end of the spectrum of neural mass models, simple 
phenomenological oscillator models [5–8] are also used to 
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represent the activity of a single brain area, sacrificing bio-
physical realism for computational and analytical simplicity.

In the past, whole-brain models have been employed in a 
wide range of problems, including demonstrating the abil-
ity of whole-brain models to reproduce BOLD correlations 
from functional magnetic resonance imaging (fMRI) dur-
ing resting-state [9, 10] and sleep [11], explaining features 
of EEG [12] and MEG [5, 6] recordings, studying the role 
of signal transmission delays between brain areas [13, 14], 
the differential effects of neuromodulators [7, 15], mod-
eling electrical stimulation of the brain in-silico [16–19], 
or explaining the propagation of brain waves [20] such as 
in slow-wave sleep [21]. Previous work often focused on 
finding the parameters of optimal working points of a whole-
brain model, given a functional dataset [22].

However, although it is clear that whole-brain mod-
eling has become a widely-used paradigm in computa-
tional neuroscience, many researchers rely on a custom 
code base for their simulation pipeline. This can result in 
slow performance, avoidable work due to repetitive imple-
mentations, the use of lengthy boilerplate code, and, more 
generally, a state in which the reproduction of scientific 
results is made harder. In order to address these points, we 
present neurolib, a computational framework and a Python 
library, which helps users to set up whole-brain simula-
tions. With neurolib, parameter explorations of models can 
be conducted in large-scale parallel simulations. neurolib 
also offers an optimization module for fitting models to 
experimental data, such as from fMRI or EEG, using evo-
lutionary algorithms. Custom neural mass models can be 
implemented easily into the existing code base. The main 

goal of neurolib is to provide a fast and reliable framework 
for numerical experiments that encourages customization, 
depending on the individual needs of the researcher. neu-
rolib is available as free open-source software released 
under the MIT license.

Results

Whole‑Brain Modeling

A whole-brain model is a network model which consists 
of coupled brain regions (see Fig. 1). Each brain region 
is represented by a neural mass model which is connected 
to other brain regions according to the underlying net-
work structure of the brain, also known as the connectome 
[23]. The structural connectivity of the brain is typically 
obtained by diffusion tensor imaging (DTI) which is used 
to infer the long-range axonal white matter tracts in the 
brain, a method known as fiber tractography. When com-
bined with a parcellation scheme that divides the brain 
into N different brain regions, also known as an atlas, the 
brain can be represented as a brain network with the N 
brain regions being its nodes and the white matter tracts 
being its edges. Figure 1 shows structural connectivity 
matrices that represent the number of fibers and the aver-
age fiber length between any two regions. In a simulation, 
each brain area produces activity, for example a population 
firing rate, and a BOLD signal. To assess the validity of 
a model, the simulated output can then be compared to 
empirical brain recordings.

Fig. 1  Construction of a whole-brain model. Structural connectiv-
ity from DTI tractography is combined with a neural mass model that 
represents a single brain area in each of the N = 80 brain regions. 
The depicted neural mass model consists of an excitatory (red) and 
an inhibitory (blue) subpopulation. The default output of each region, 

e.g., the excitatory firing rate, is converted to a BOLD signal using 
the hemodynamic Balloon–Windkessel model. For model optimiza-
tion, the models’ output is compared to empirical data, such as an 
EEG power spectrum or to fMRI functional connectivity (FC) and its 
temporal dynamics (FCD)
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Framework Architecture

In the following, we will describe the design principles of 
neurolib and provide a brief summary of the structure of the 
Python package (see Fig. 2). Later, the individual parts of 
the framework will be discussed in more detail. At the core 
of neurolib is the Model base class from which all models 
inherit their functionality. The base class initializes and runs 
models, manages parameters, and handles simulation out-
puts. To reduce memory the footprint of long simulations, 
chunkwise integration can be performed using the autochunk 
feature, which will be described later. The outputs of a model 
can be converted into a BOLD signal using a hemodynamic 
model which allows for a comparison of the simulated out-
puts to empirical fMRI data. The Dataset class handles 
structural and functional datasets. A set of post-processing 
functions and a Signal class is provided for computing 
functional connectivity (FC) matrices, applying temporal fil-
ters to model outputs, computing power spectra, and more. 
The simulation pipeline interacts with two additional mod-
ules that provide parameter exploration capabilities using the 
BoxSearch class, and enable model optimization using the 
Evolution class. Both modules utilize the Parameter-
Space class which provides the appropriate parameters 
ranges for exploration and optimization.

Installation and Dependencies

The easiest way to install neurolib is through the Python 
Package Index PyPI using the command pip install 
neurolib. This will make the package available for 
import. For reading and editing the source code of neurolib 
(which is advised for more advanced users), we recommend 

cloning the GitHub repository directly. Detailed instruc-
tions for this are provided on neurolib’s GitHub page https:// 
github. com/ neuro lib- dev/ neuro lib. In this paper, we pre-
sent a set of examples with code and describe use cases for 
whole-brain modeling. However, for a more extensive list 
of examples, the reader is advised to explore the Jupyter 
Notebooks provided in the examples directory on neurolib’s 
GitHub page.

The main Python dependencies of neurolib’s high-level 
functions include pypet [24], a Python parameter explora-
tion toolbox which provides parallelization and data storage 
capabilities, and DEAP [25], which is used for optimization 
with evolutionary algorithms. Data arrays are provided using 
the packages numpy [26], pandas [27], and xarray [28] and 
signal processing is handled by the scipy [29] package. The 
numerical integration is accelerated using numba [30], a 
just-in-time compiler for Python. All dependencies will be 
automatically installed when installing neurolib using pip. 
All presented results and the code in this paper is based on 
neurolib’s release version 0.6.

Neural Mass Models

Several neural mass models for simulating the activity of a 
brain area are implemented in neurolib (see Table 1). Some 
neural mass models, for example the ALN model [31, 32] or 
the Wilson–Cowan model [33, 34], consist of multiple neural 
populations, namely an excitatory (E) and an inhibitory (I) 
one, which are referred to as subpopulations in order to dis-
tinguish them from an entire brain area, which we refer to as 
a node. Every brain area is a node coupled to other nodes in 
the whole-brain network. It should be noted that some phe-
nomenological models like the Hopf model [35] only have a 

Fig. 2  Framework architec-
ture. Class names are in cursive 
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single variable that represents neural activity, and therefore, 
the distinction between E and I subpopulations does not apply.

Phenomenological and Biophysical Models

Biophysically grounded neural mass models that are derived 
from an underlying network of spiking neurons produce an 
output that is a firing rate, akin to the mean spiking rate of 
a neural network. An example of such a model is the ALN 
model, which is based on a network of spiking adaptive 
exponential (AdEx) integrate-and-fire neurons [36]. Phe-
nomenological models usually represent a simplified dynami-
cal landscape of a neural network and produce outputs that 
are abstract and do not have physical units. An example is 
the Hopf model, where the system dynamics can be used to 
describe the transition from steady-state firing to neural oscil-
lations [6]. The Wilson–Cowan model can be mentioned as a 
middle ground between simple and realistic. It describes the 
activity of excitatory and inhibitory neurons while relying 
on simplifications such as representing the fraction of active 
neurons, rather than the actual firing rate of the population, 
and uses an analytical firing rate transfer function.

Model Equations

The core module of neurolib consists of the Model class that 
manages the whole-brain model and its parameters. Every 
model is implemented as a separate class that inherits from the 
Model class and represents the entire brain network. Typi-
cally, a model is implemented as a system of ordinary differ-
ential equations which can be generally expressed as

Here, the vector �i = (xi1, ..., xid) describes the d-dimensional 
state of the i-th brain region which follows the local node 

(1)

d

dt
�i(t) = � (�i(t))

⏟⏟⏟

Local

dynamics

+

N∑

j=0

�(Gij, �i(t), �j(t − Dij))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Global coupling

+ �i(t)
⏟⏟⏟

Local

noise

.

dynamics � , with i ∈ [0,N − 1] and N being the number of 
brain regions. This vector contains all state variables of the 
system, including, for example, firing rates and synaptic cur-
rents. The second term describes the coupling between the 
i-th and j-th brain regions, given by a coupling scheme � . 
This coupling term typically depends on the N × N  adja-
cency matrix � (with elements Gij ), the current state vector 
of the i-th brain area, and the time-delayed state vector of 
the j-th brain area, which itself depends on the N × N inter-
areal signal delay matrix � (with elements Dij ). The matrices 
� and � are defined by the empirical structural connectiv-
ity datasets. The third term �i(t) represents a noise input to 
every node which is simulated as a stochastic process for 
each brain area (or subpopulation) individually.

The main difference between the implemented neural mass 
models is the local node dynamics � . Some models, such as 
the Hopf model, additionally support either an additive cou-
pling scheme � , where the coupling term only depends on the 
activity of the afferent node �j , or a diffusive coupling scheme, 
where the coupling term depends on the difference between 
the activity of the afferent and efferent nodes, i.e., �i − �j . 
Other coupling schemes, such as nonlinear coupling, can be 
also implemented by the user.

Noise Input

Every subpopulation � , with for example � ∈ {E, I} , of each 
brain area i (index omitted) receives an independent noise 
input ��(t) , which, for the models in Table 1, comes from an 
Ornstein–Uhlenbeck process [42],

where �ext
�

 represents the mean of the process and can be 
thought of as a constant external input, �ou is the time scale, 
and �(t) is a white noise process sampled from a normal dis-
tribution with zero mean and unit variance. The noise strength 
parameter �ou determines the standard deviation of the process, 
and, therefore, the amplitude of fluctuations around the mean.

(2)d

dt
�� = −

�ext
�

− ��

�ou
+ �ou�(t),

Table 1  Implemented neural mass models. Mean-field models of 
spiking neurons are abbreviated as MFM. Models with excitatory and 
inhibitory subpopulations are abbreviated as E-I. The integrate-and-

fire neuron model is abbreviated as IF and the adaptive exponential 
integrate-and-fire model as AdEx

Class name Model name Description

ALNModeL ALN [31, 32] MFM of AdEx neurons, delay-coupled E-I, nonlinear synapses
WWModeL Wong-Wang [37] MFM of IF neurons, E-I, nonlinear synapses
WCModeL Wilson-Cowan [35] E-I
FHNModeL Fitz-Hugh Nagumo [38, 39] Simplified Hodgkin–Huxley model
KurModeL Kuramoto [40] Phase oscillator
HopFModeL Stuart-Landau [33, 34] Normal form of Hopf bifurcation
THALAMiCMAssModeL Thalamus [41] Thalamic neural mass model that generates sleep spindles



1136 Cognitive Computation (2023) 15:1132–1152

1 3

Bifurcation Diagrams

Figure 3 shows the bifurcation diagrams (or state spaces) of 
a single node of a selection of models in order of increas-
ing complexity. The diagrams serve as a demonstration of 
the parameter exploration module of neurolib, which we 
will describe in more detail in a later section. Understand-
ing the state space of a single node allows one to interpret 
its behavior in the coupled case. Starting from the Hopf 
model (Fig. 3a), we can see how the transition to the oscil-
latory state is caused by an eponymous supercritical Hopf 
bifurcation controlled by the parameter a. Figures 3b and 
c show the time series of the activity variable (including 
noise) in the steady-state, i.e., a fixed point, for a < 0 , and 
an oscillatory state, i.e., a limit cycle, for a > 0 , respectively. 
The Wilson–Cowan model (Fig. 3d) has two Hopf bifurca-
tions, where the low-activity down-state is separated from 
the high-activity up-state by a limit cycle region in which 
the activity alternates between the E and I subpopulations. 

The time series of the activity variable in Fig. 3e shows the 
system in the down-state with short excursions into the limit 
cycle due to the noise in the system, whereas in Fig. 3f, the 
system is placed inside the limit cycle and reaches the up- 
and the down-state occasionally. The bifurcation diagram 
of the ALN model in Fig. 3g has a more complex structure 
and its validity has been verified using large spiking network 
simulations before [32]. Here, we can see that the down-
state and the up-state are separated by a limit cycle as well. 
Therefore, the bifurcation structure of the Wilson—Cowan 
model can be thought of as a simplified version of a slice 
through the limit cycle of this two-dimensional diagram in 
the horizontal plane. In Fig. 3h, the ALN model is placed 
in the down-state close to the limit cycle and the time series 
of the excitatory firing rate re shows brief excursions into 
the oscillatory state. Without the adaptation mechanism that 
is derived from the underlying AdEx neuron, we can also 
observe a bistable regime in the bifurcation diagram Fig. 3g, 
where both up- and down-state coexist. An example time 

0

20

40

60

80

M
ax. rE  [H

z]

0

1

2

3

4

In
pu

t t
o 

I [
m

V/
m

s]

0 1 2 3 4
Input to E [mV/ms]

down

up

bi

1
LC

EI

ALN AdExHopf model Wilson-Cowan model

down

up

LCLCFP

Time [s] Time [s] Time [s]

r e 
[H

z]

x E

a

b

c

d

e

f

g

h

i

b c
down

e f LLLCLCLCLCLCLC Eh

bi

i

Fig. 3  Overview of neural mass models. (a) Bifurcation diagram of 
the Hopf model. For a < 0 , solutions converge to a fixed point (FP). 
For a > 0 , solutions converge to a limit cycle (LC). (b) Example 
time series of x of the Hopf model in the FP with a = −0.25 , noise 
strength �ou = 0.001 , and noise time scale �ou = 20.0ms. (c) Time 
series at the bifurcation point a = 0 with the same noise properties 
as in (b). (d) Wilson–Cowan model with the activity of the excitatory 
population (E) plotted against the external input  Eext. The system has 
two fixed-points with low (down) and high (up) activity and a limit 
cycle in between. (e) Time series of E with  Eext= 0.5 , �ou = 0.01 , 
and �ou = 100.0ms. (f)  Eext= 1.9 . (g) Two-dimensional bifurcation 
diagram of the ALN model depending on the input currents to the 

excitatory (E) and inhibitory (I) subpopulation. The color denotes the 
maximum firing rate rE of the E population. Regions of low-activity 
down-states (down) and high-activity up-states (up) are indicated. 
Dashed green contours indicate bistable (bi) regions where both 
states coexist. Solid white contour indicates oscillatory states within 
the fast E-I limit cycle  (LCEI). (h) Time series of rE with mean input 
currents �ext

E
= 0.5 mV/ms and �ext

I
= 0.5 mV/ms and noise param-

eters like in (e). (i) �ext
E

= 2.0 mV/ms and �ext
I

= 2.5 mV/ms and 
�ou = 0.3 . Each point in the bifurcation diagrams was simulated with-
out noise for 5 seconds and the activity of the last second was used 
to determine the depicted state. All remaining parameters are kept at 
their default values
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series is shown in Fig. 3i, where the activity shows noise-
induced transitions between the up- and down-states. When 
the adaptation mechanism of the underlying AdEx model is 
enabled (not shown), the bistable region transforms into a 
new, slowly oscillating limit cycle [32, 43].

Numerical Integration

The models are integrated using the Euler–Maruyama inte-
gration scheme [44]. The numerical integration is written 
explicitly in Python and then accelerated using the just-in-
time compiler numba [30], providing a performance similar 
to running native C code. Compared to pure Python code, 
this offers a speedup in simulation time on the order of 104 . 
For computational efficiency, each neural mass model is 
implemented as a coupled network such that the single-node 
case is a special case of a network with N = 1 nodes. Like-
wise, the noise process in Eq. 2 is also implemented within 
every model’s integration and then added to the appropriate 
state variables of the system, i.e., the membrane currents of 
E and I in the case of the ALN model.

Example: Single Node Simulation

In the example in Listing 1, we load a single isolated (E-I) 
node of the ALNModeL and initialize it. Every model has 
a set of default parameters (defined in each model’s param-
eter definition file defaultParams.py) which we can be 
changed by setting entries of the pArAMs dictionary attrib-
ute. To demonstrate this, we set the external noise strength 
which is simulated as an Ornstein–Uhlenbeck process with a 
standard deviation �ou = 0.1 (Eq. 2) and then run the model. 
The results from this simulation can be accessed via the 
ModeL object’s attributes T which contains the simulation 
time steps, and output which contains the firing rate of the 
excitatory population. All other state variables of a model 
can be accessed via the dictionary attribute ouTpuTs. An 
example time series of the excitatory firing rate is shown 
in Figure 3h.

Empirical Datasets

Loading Datasets from Disk

For simulating whole-brain models where multiple neural 
mass models are coupled in a network, neurolib provides 
an interface for loading structural and functional datasets 
from disk using the Dataset class (Listing 2). Datasets 

are stored as MATLAB .mat matrices in the data direc-
tory. An instance of the Dataset class makes subject-wise 
as well as group-averaged matrices available to the user as 
numpy [26] arrays. Structural matrices can be normalized 
using one of the available methods. An example of how to 
load a dataset is shown in Listing 2.

Structural connectivity data are stored as N × N matrices, 
and functional time series are N × t matrices, N being the num-
ber of brain regions and t the number of time steps. Example 
datasets are included in neurolib and custom datasets can be 
added by placing them in the dataset directory. Throughout this 
paper, we use preprocessed data from the ConnectomeDB of 
the Human Connectome Project (HCP) [45] with N = 80 corti-
cal brain regions defined by the AAL2 atlas [46].

Structural DTI Data

For a given parcellation of the brain into N brain regions, the 
N × N adjacency matrix Cmat, i.e., the structural connectiv-
ity matrix, determines the coupling strengths between brain 
areas. The fiber length matrix Dmat determines the signal 
transmission delays, i.e., the time it takes for a signal to 
travel from one brain region to another. Example structural 
matrices are shown in Fig. 1.

In the following, we outline the preprocessing steps nec-
essary to extract fiber count and fiber length matrices from 
T1- and diffusion-weighted images (DTI) using FSL [47]. 
The resulting structural matrices are included in neurolib. 
Any other processing pipeline that results in a matrix of 
connection strengths and signal transmission delays between 
brain regions, such as with the fiber tractography software 
DSIStudio [48], is equally applicable. The following should 
serve as a rough guideline only.

First, the non-brain tissue was removed form the 
T1-weighted anatomical images and a brain mask was gen-
erated using the brain extraction toolbox (BET) in FSL. The 
same extraction was then applied to the DTI, followed by head 
motion and eddy current distortion correction. Then, a proba-
bilistic diffusion model was fitted to the DTI using the BED-
POSTX toolbox in FSL. Each subject’s b0 image was linearly 

registered to the corresponding T1-weighted image, and the 
high-resolution volume mask from the AAL2 atlas was trans-
formed from MNI space to subject space. Probabilistic tractog-
raphy was performed with 5000 random seeds per voxel using 
FSL’s probabilistic tractography algorithm PROBTRACKX 
[49]. The resulting N × N adjacency matrix with N = 80 
cortical brain regions, as defined by the AAL2 atlas, contains 
the total fiber counts from each region to any other region as 
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the elements. The fiber length matrix of the same shape was 
obtained during the same procedure, containing the average 
fiber length of all fibers connecting any two regions in units of 
mm. This procedure was done for every subject individually.

Connectivity Matrix Normalization

The elements of the structural connectivity matrix Cmat typi-
cally contain the number of reconstructed fibers from DTI trac-
tography. Since the number of fibers depends on the method and 
the parameters of the (probabilistic or deterministic) tractography, 
they need to be normalized using one of the three implemented 
methods in the Dataset class which can be automatically 
applied upon initialization by the use of the appropriate argument, 
i.e., Dataset(name, normalizeCmats=method), 
where name refers to the name of the data set used, and method 
to one of the following methods.

The first method max is applied by default and simply 
divides the entries of Cmat by the largest entry, such that 
the largest entry becomes 1. The second method waytotal 
divides the entries of each column of Cmat by the number of 
fiber tracts generated from the respective brain region during 
probabilistic tractography in FSL, which is contained in the 
waytotal.txt file. The third method nvoxel divides the 
entries of each column of Cmat by the size, i.e., the number of 
voxels, of the corresponding brain area. The last two methods 
yield asymmetric connectivity matrices, while with the first 
one they remain symmetric. Normalization is applied on the 
subject-wise matrices (accessible via the attributes Cmats and 
Dmats). Finally, group-averaged matrices are computed for the 
dataset and made available as the attributes Cmat and Dmat.

Functional MRI Data

Subject-wise fMRI time series are in a (N × t)-dimensional 
format, where N is the number of brain regions and t the length 
of the time series. Each region-wise time series represents the 
BOLD activity averaged across all voxels of that region, which 
can be also obtained from software like FSL. Functional con-
nectivity (FC) matrices capture the spatial correlation structure 
of the BOLD time series across the entire time of the recording. 
Subject-wise FC matrices are accessible via the attribute FCs 
and are generated by computing the Pearson correlation of the 
time series between all regions, yielding a N × N matrix for 
each subject. Example FC matrices from resting-state fMRI 
(rs-fMRI) recordings are shown in Fig. 1.

To capture the temporal fluctuations of time-dependent 
FC(t), which are lost when computing correlations across 
the entire recording time series, functional connectivity 
dynamics matrices (FCDs) are computed as the element-
wise Pearson correlation of time-dependent FC(t) matrices 
in a moving window across the BOLD time series [50] of a 
chosen window length of, for example, 1 min. This yields a 
tFCD × tFCD FCD matrix for each subject, with tFCD being the 
number of steps the window was moved.

The rs-fMRI data included in neurolib were processed 
using the FSL FEAT toolbox [51]. First, head motion 
was corrected using the McFLIRT algorithm. Functional 
images were linearly registered to each subject’s anatomical 
image using FLIRT. A brain mask was created using BET. 
MELODICA ICA was conducted and artefacts (motion, 
non-neural physiological artefacts, scanner artefacts) were 
removed using the ICA FIX FSL toolbox [52, 53]. Finally, 
the AAL2 mask volumes were transformed from MNI space 
to each subject’s functional space and the average BOLD 
time series for each brain region was extracted using the 
fslmeants command in Fslutils.

Example: Whole‑Brain Simulation

In a whole-brain model, the main activity variables of each 
neural mass are coupled with each other. If the neural mass 
model has E and I subpopulations, the coupling is usually 
implemented between the activity variables of the E sub-
populations, resulting in a whole-brain model with global 
excitation and local inhibition. The adjacency matrix Cmat 
determines the relative coupling strengths between all brain 
areas. The elements of the delay matrix Dmat contain the 
average fiber lengths between any two brain regions.

In all of the following brain network examples, we use the 
empirical dataset from the HCP loaded using the Dataset 
class (Listing 2). As discussed above, this dataset contains 
structural matrices Cmat and Dmat for N = 80 cortical 
nodes from the AAL2 atlas, as well as averaged BOLD time 
series of 10 minute length for all N brain regions.

Given the structural matrices, we initialize a brain network 
model by passing the group-averaged matrices Cmat and 
Dmat to the model’s constructor. We set a long-enough simu-
lation time of 10 minutes in order to match the length of the 
empirical BOLD data. Finally, we choose to simulate a BOLD 
signal by using the appropriate argument in the run method.
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Whole‑Brain Model Parameters

If left unchanged, all parameters of a model are kept at their 
default values, which are defined in each model’s parameter 
definition file (i.e., defaultParams.py). Each model 
has their specific set of local parameters. Examples for the 
ALNModel are the noise strength sigma_ou (see List-
ing 2), the synaptic time constants tau_se and tau_si, 
internal delays between E and I nodes de and di, and more 
(see Table 2).

However, all implemented models also share a common 
set of global parameters that apply on the network level and 
affect the coupling between nodes. These are the global 
coupling strength Ke_gl and the signal transmission speed 
signalV. To determine the absolute coupling strength 
between any two nodes, the relative coupling strengths con-
tained in the adjacency matrix Cmat are multiplied by Ke_
gl. The entries of the fiber length matrix Dmat are divided 
by signalV to determine the time delay in units of ms for 
signal transmission between brain regions.

BOLD Model

Every brain area has a predefined default output variable 
which is typically one of its state variables. The default out-
put variable of the ALN model, for example, is the firing 
rate of the excitatory subpopulation of every brain area. The 
default output can be used to simulate a BOLD signal using 
the implemented Balloon–Windkessel model [54–56]. The 
BOLD signal is governed by a set of differential equations that 

model the hemodynamic response of a brain area to neural 
activity. After integration, the BOLD signal is then subsam-
pled at 0.5hz to match the sampling rate of fMRI recordings. 
The BOLD signal is integrated alongside the neural mass 
model and stored in the model’s outputs. To enable the simu-
lation of the BOLD signal, the user simply passes the argu-
ment bold = True to the run method (see Listing 2).

Example: Custom Model Implementation

In the following, we present how a custom model can be 
implemented in neurolib. Every model consists of two parts. 
The first part is the class that implements the model and that 
inherits most of its functionality from the Model base class. 
The second part is the timeIntegration() function 
that governs the numerical integration over space and time. 
In this example, we implement a simple linear model with 
the following equation

This class of models is popular due to its analytical trac-
tability and can be used to apply linear control theory to 
brain networks [19, 57]. As before, this equation represents 
N nodes that are coupled in a network. xi are the elements 
of an N-dimensional state vector � , � is the decay time con-
stant, Gij are elements of the adjacency matrix � , and K is 
the global coupling strength. We implement this model as 
the class LinearModel in Listing 3.

(3)
d

dt
xi(t) = −

xi(t)

�
+

N∑

j=0

KGijxj(t).
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In the definition of the model class, we specified necessary 
information, such as the names of the state variables state_
vars, the default output of the model default_output, 
and the variable names init_vars, holding the initial 
conditions at t = 0 . The timeIntegration() function 
has two parts: One, in which the variables for the simulation 
are prepared, and another, where the actual time integration 
takes place, i.e., njit_int(). The latter has a decorator 
@numba.njit which ensures that the integration will be 
accelerated with the just-in-time compiler numba. The equa-
tions of the model are then integrated using the Euler–Maruy-
ama integration scheme. This simple model can be run like the 
other models before, supports features like chunkwise integra-
tion (see below), and can produce a BOLD signal.

Chunkwise Integration for Memory‑Intensive 
Experiments

Some of the important applications of whole-brain modeling 
require very long simulation times in order to extract meaningful 
data from the model and to compare it to empirical recordings. 
Examples are computing BOLD correlations, such as FC and 
FCD matrices, from time series with a very low sampling rate 
of around 0.5 Hz, or the computation of power spectra over a 
long time period, or measuring event statistics based on, for 
example, transitions between up- and down-states [21]. This 
poses a major resource problem, since the neural dynamics is 
usually simulated with an integration time step on the order of 
0.1 ms or less, producing large amounts of data that an ordinary 
computer is not able to handle efficiently in its memory (RAM).

To overcome this issue, we designed a chunkwise 
integration scheme called autochunk which can be ena-
bled by running a model using the command model.
run(chunkwise=True). It supports all models that follow 
the implementation guidelines. In this scheme, all dynamical 
equations are integrated for a short duration Tchunk (e.g., 10 
seconds) as defined by the number of time steps of a chunk, 
chunksize. The chunk duration Tchunk largely determines 
the amount of necessary RAM for a simulation and is typi-
cally a lot smaller than the total duration of the simulation 
Ttotal . This means that the entire simulation will be integrated 
in ⌈[⌉

�
Ttotal∕Tchunk chunks.

After the i-th chunk is integrated, only the last state vector 
of the system, �i(Tchunk) , is temporarily kept in memory, which 

in the case of a delayed system is a n × (dmax + 1) matrix, 
with n being the number of state variables, and dmax being the 
number of time steps according to the maximum delay of the 
system. In the next step, all memory is cleared, and �i(Tchunk) 
is used as an initial state vector �i+1(0) for the next chunk. If 
BOLD simulation is enabled, it will be integrated in parallel to 
the main integration and kept in memory, while the system’s 
past state variables, such as the firing rates, will be forgotten. 
After a long simulation is finished, the output attribute of 
the model will contain the long BOLD time series (e.g., 5 min-
utes) with a low sampling rate and the firing rates of the last 
simulated chunk (e.g., 10 seconds) with a high sampling rate.

Parameter Exploration

One of the main features of neurolib is its ability to perform 
parameter explorations in a unified way across models. Param-
eter explorations are useful for determining the behavior of a 
dynamical system when certain parameters are changed. The 
exploration module of neurolib relies on pypet [24] which 
manages the parallelization and the data storage of all simula-
tions. The user can define the range of parameters that should 
be explored in a grid using the ParameterSpace class 
and pass it, together with the model, as an argument to the 
BoxSearch class (Listing 4). All simulated output will be 
automatically stored in an HDF5 file for later analysis.

Example: State Space Exploration of a Single Node

A useful example for parameter exploration is a state space 
exploration of a neural mass model in the case of an isolated 
single node. For example, by measuring the minimum and 
maximum activity of a model given a parameter configuration, 
we can draw bifurcation diagrams that depict changes in the 
model’s dynamical state, i.e., transitions from constant activity 
to an oscillatory state. Figure 3 shows the bifurcation diagrams 
of the Hopf model, the Wilson–Cowan model, and the ALN 
model. Given these diagrams, we can choose the parameters of 
the system in order to produce a desired dynamical state. The 
time series in Fig. 3 show how the models behave at different 
points in the bifurcation diagrams. Listing 4 shows how to set 
up a parameter exploration of the ALNModel for changing 
input currents to the E and I subpopulations.
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Here, we use the numpy [26] function np.linspace to 
define the parameters in a linear space between 0 and 3 in 31 
steps. The ParameterSpace class then computes the Carte-
sian product of the parameters to produce a configuration for all 
parameter combinations. When the exploration is done, the results 
can be loaded from disk using search.loadResults(), 
which organizes all simulations and their outputs as a pandas 
DataFrame [27] available as the attribute dfResults.

The result of this exploration is shown in Fig. 3g as a two-
dimensional state space diagram of a single node. A contour 
around states with a finite amplitude of the excitatory firing 
rate indicates bifurcations from states with constant firing 
rates to oscillatory states. Drawing bifurcation diagrams in 
terms of the external input parameters, as in Fig. 3d and g, 
is particularly useful because it allows an interpretation of 
how the dynamics of an individual node in a brain network 
would change depending on the inputs from other brain areas. 
When the system is in the down-state, for example, enough 
excitatory external input from other brain areas would be able 
to push it over the bifurcation line into the oscillatory state.

It should be noted that, when the exploration of local 
model parameters is used in the case of a whole-brain model, 
in the default implementation, all parameters are homoge-
neous across nodes, meaning that, in the example above, 
we change the external input currents to all brain regions 
at once. However, adjusting a model to work with hetero-
geneous parameters is easy and simply requires the use of 
vector-valued parameters instead of scalar ones. The numeri-
cal integration needs then to be adapted to use the elements 
of the parameter vector for each node accordingly.

Example: Frequency‑Dependent Effects of Brain 
Stimulation

In this example, we demonstrate how neurolib can be used to 
simulate the effects of stationary or time-dependent stimula-
tion on brain activity, an ongoing research topic in the field 
of whole-brain modeling [58, 59]. neurolib offers a conveni-
ent way of constructing stimuli using the Stimulus class, 
which includes a variety of different types of stimuli such 
as sinusoidal inputs, step inputs, noisy inputs, and others. 
Stimuli can be concatenated and added to another using the 
operators & and + to help the user design a wide range of dif-
ferent stimulus time series. In Listing 5, we show how to cre-
ate a simple sinusoidal stimulus and set the appropriate input 
parameter, i.e., ext_exc_current for the ALNModel, 
to couple the stimulus to the model.

We can use the Stimulus class in combination with the 
exploration module to stimulate the brain network with sinu-
soidal stimuli of variable frequencies. In the ALNModel, 
an equivalent electric field stimulus can be incorporated as 
externally induced mean membrane currents of the neural 
excitatory population [32]. We chose the zero-to-peak ampli-
tude of the sinusoidal stimulus as 0.025 mV/ms, which is 
equivalent to an extracellular electric field strength of around 
1 V/m [60]. If the stimulus is a one-dimensional vector, by 
default, it is delivered to all brain areas simultaneously. If 
it is N-dimensional (N being the number of brain regions), 
each brain region receives an independent input. The whole-
brain model is parameterized to be in the bistable regime in 
the bifurcation diagram in Fig. 3g and was previously fitted 
to resting-state fMRI and sleep EEG data to yield the same 
power spectrum as observed in deep sleep, with a peak in 
the slow oscillation regime at around 0.25 Hz. The fitting 
procedure is outlined in the Model optimization section 
below with the resulting parameters provided in Table 2. 
Similar to Listing 4, we use the BoxSearch class to run 
the whole-brain model with different stimulus frequencies 
ranging from 0 Hz to 2 Hz in 21 linear steps. We run each 
configuration for 5 minutes and repeat each run 10 times 
with independent noise realizations to obtain statistically 
meaningful results.

In Fig. 4a, we show how the stimulus frequency affects 
the statistics of the whole-brain oscillations. First, we deter-
mine for each brain area in every time step, whether it is in a 
down-state by simply thresholding the firing rate for values 
below 5 Hz, which is always lower than the up-state activity 
(see Fig. 3g). We can then measure the number of local and 
global oscillations for each stimulus frequency. We define 
a local oscillation as one in which between 25%-75% of all 
brain areas simultaneously participated in a down-state. 
Global oscillations are defined as a participation of at least 
75% of brain areas in the down-state. We classify each oscil-
lation as either local or global and count their occurrence for 
each stimulus condition. In Fig. 4a, we can observe a clear 
peak around 0.5 Hz, where the number of local oscillations 
is in a minimum and the number of global oscillations is at a 
maximum. Interestingly, observing the frequency spectrum 
in Fig. 4b, we see that the peak of the frequency spectrum 
of the system without stimulation is at around 0.25 Hz. This 
peak is clearly amplified with a stimulus frequency of 0.5 
Hz, which is in line with the approximately 15 oscillations 
per minute observed in Fig. 4a. Figure 4b shows the firing 
rate of the system averaged across all brain regions with and 



1142 Cognitive Computation (2023) 15:1132–1152

1 3

without stimulation. With stimulation, oscillations have a 
larger amplitude and reach an brain-averaged firing rate of 
nearly 0 Hz more often, indicating many global oscillations 
into the down-state, i.e, a participation of nearly 100% is 
reached in multiple oscillation cycles.

Model Optimization

Model optimization, in general, refers to a search for 
model parameters that maximize (or minimize) an objec-
tive function that depends on the output of a model, lead-
ing to a progression towards a predefined target or goal. 
In the case of whole-brain models, the goal is often to 
reproduce patterns from (i.e., fit the model to) empirical 
brain recordings. Optimizations can also be carried out 
for a single node. An example of this is finding local node 
parameters that produce an oscillation of a certain fre-
quency, in which case the objective to minimize is the dif-
ference between the oscillation frequency of the model’s 
activity and a predefined target frequency, which could be 
based on, for example, empirical EEG or MEG recordings.

Whole-brain models are often fitted to empirical resting-
state BOLD functional connectivity (FC) data from fMRI 
measurements [10]. The goodness of fit to the empirical 
data is determined by computing the element-wise Pearson 
correlation coefficient between the simulated FC matrix 
and the empirical FC matrix. If the optimization is success-
ful, the model produces similar spatial BOLD correlations 
as was measured in the empirical data. The FC Pearson 

correlation ranges from 0 to 1, where 1 means maximum 
similarity between simulated and empirical data.

To ensure that a model also produces temporal correla-
tion patterns similar to fMRI recordings, the functional 
connectivity dynamics (FCD) matrix can also be fitted to 
empirical data [61]. The FCD matrix measures the similar-
ity of the temporal correlations between time-dependent FC 
matrices in a sliding window. The similarity between simu-
lated and empirical matrices is usually determined by the 
Kolmogorov–Smirnoff (KS) distance [62] between the dis-
tributions of the entries of both matrices. The KS distance 
ranges from 0 to 1, where 0 means maximum similarity.

In a whole-brain model, the relevant parameters that 
affect these correlations are typically the distance to a bifur-
cation line that separates the steady-state from an oscillatory 
state (see Figs. 3a, d, and g), the global coupling strength K 
that determines how strongly all brain regions are coupled 
with each other, and other parameters, such as the signal 
transmission speed or the strength of the external noise.

Example: Fitting a Whole‑Brain Model to fMRI Data

Before we demonstrate the optimization features of neurolib in 
the following sections, we want to approach the task of find-
ing optimal model parameters using a parameter exploration 
approach first. In this example, we present a common scenario 
in which the simulated BOLD functional connectivity of a 
whole-brain model is compared to an empirical data set, e.g., 
resting-state fMRI recordings from the HCP dataset. Using the 
parameter exploration module, we investigate how the quality 
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of the fit changes as a function of model parameters, and thus 
can identify optimal operating points for our model.

One of the most important parameters of a whole-brain 
model is the global coupling strength Ke_gl, which scales 
the relative coupling strength between brain regions given by 
the adjacency matrix Cmat. The coupling strength Ke_gl 
affects the global dynamics and can amplify correlations of 
the BOLD activity between brain regions. Therefore, this 
parameter is often used to characterize changes in whole-
brain dynamics of brain networks [61, 63].

Note that the default behavior of BoxSearch is to 
simulate the model and store its outputs to the file system. 
Alternatively, as shown in Listing 6, the user can pass the 
argument evalFunction which calls a separate function 
for every parameter combination instead. This enables the 
user to perform pre- and postprocessing steps for each run, 
such as computing the fit to the data set. In this example, we 
determine of the fit by computing the FC matrix correlation 
of the simulated output to the empirical fMRI dataset for 
each subject separately and then average across all subjects. 
Similarly, we also determine the KS distance for the entire 
fMRI data set.

The exploration produces similar results as reported in 
previous studies: We observe a broad peak of high FC cor-
relations depending on the coupling strength Ke_gl [61, 
63] that moves with changing noise strength sigma_ou 
(Fig. 5a). When overlaying the FCD fit with the FC fit in 
Fig. 5b, we can also see that the region of overall good 
fits becomes narrower with sharp drops of the KS distance 
at around Ke_gl = 250 while the FC correlation remains 

fairly high at values above 0.5, which is also similar to pre-
vious reports [64, 65].

Evolutionary Algorithms

neurolib supports model optimization through evolutionary 
algorithms built using the evolutionary algorithm frame-
work DEAP [25]. Evolutionary algorithms are stochastic 
optimization methods that are inspired by the mechanisms 
of biological evolution and natural selection. Multi-objective 
optimization methods, such as the NSGA-II algorithm [66], 
are crucial in a setting in which a model is fit to multiple 
independent targets. These could be features from fMRI 
recordings, such as FC and FCD matrices, or from other 
data modalities such as EEG. In a multi-objective setting, 
not one single solution but a set of solutions can be con-
sidered optimal, called the Pareto front, which refers to the 
set of solutions that cannot be improved in any one of the 
objectives without diminishing its performance in another 
one. These solutions are also called non-dominated.

In the evolutionary framework, a single simulation run 
is called an individual. Its particular set of parameters are 
called its genes and are represented as a vector with one ele-
ment for each free parameter that should be optimized. A set 
of individuals is called a population. For every evolutionary 
round, also called a generation, the fitness of every new indi-
vidual is evaluated by simulating the individual and comput-
ing the similarity of its output to the empirical data. With the 
example fitness calculation shown in Listing 6, this would 
result in a two-dimensional fitness vector with each element 
of the vector representing the FC and FCD fits, respectively.
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A schematic of a general evolutionary algorithm is shown 
in Fig. 6a. The optimization can be separated into an initiali-
zation phase and the main evolutionary loop. In the initiali-
zation phase, all individuals are uniformly sampled from the 
parameter space and are evaluated for their fitness. The opti-
mization then enters the second phase in which the popula-
tion is reduced to a subset of size Npop from which parents 
are selected to generate offspring for the next generation. 
These offspring are mutated, added to the total population, 
and the procedure is repeated until a stopping condition is 
reached, such as a maximum number of generations.

As an alternative to the NSGA-II algorithm, which is 
particularly useful for multi-objective optimization set-
tings, an adaptive evolutionary algorithm [67] is also 
implemented. In the adaptive algorithm, the mutation 
step size, which is analogous to a learning rate, is also 
learned during the evolution by treating it as an additional 
gene during the optimization. This algorithm has been suc-
cessfully used to optimize whole-brain models with up to 
8 free parameters; however, it is not guaranteed to pro-
duce satisfactory results in a multi-objective optimization 

setting. All steps in the evolutionary algorithm can be 
modified by implementing custom operators or by using 
the ones available in DEAP.

Example: Brain Network Model Optimization

In the following, we show how an evolutionary optimization 
is set up in neurolib using the NSGA-II algorithm. We use 
the brain network model from Listing 2 and fit the BOLD 
output of the model to the empirical BOLD data to capture 
its spatiotemporal properties, as described above. In Listing 
7, we specify the parameters to optimize and their respec-
tive boundaries, and define a weight vector that determines 
whether each fitness value is to be maximized (+1) or mini-
mized (-1). In our case, we want to maximize the first meas-
ure, which is the FC correlation, and minimize the second, 
which is the FCD distance. The size of the initial population 
Ninit , the ongoing population Npop size, and the number of 
generations Ngen largely determine the time for the optimiza-
tion to complete.
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We visualize the increasing score of the population in 
Fig. 6b, defined as the weighted sum of all objectives, as the 
evolution progresses. As expected, we find all good fits (with 
FC correlation > 0.35 and FCD distance < 0.5) close to the 
bifurcation line between the down-state and the limit cycle, 
shown in Fig. 6c. Note that while we have optimized 4 param-
eters simultaneously, only the input current parameters to E 
and I are shown, which correspond to the axis of the bifurca-
tion diagram in Fig. 3g. In another example, we also included 
EEG power spectra in our optimization procedure to produce 
a model with an appropriate spectral density. Here, we used 
EEG data from sleep recordings during the sleep stage N3 
[21], or slow-wave sleep, in which sleep slow oscillations are 
prevalent. In order to assess the fit to the power spectrum, we 
computed the mean of the power spectra of the excitatory 
firing rate of all nodes during the last 60 seconds of the simu-
lation using the function getMeanPowerSpectrum() 
which uses the implementation of Welch’s method [68] scipy.
signal.welch in SciPy [29] with a rolling Hanning window of 
length 10s. The same method was applied to the channel-wise 
EEG data to first compute subject-wise average power spectra, 
and then average all subject-wise spectra to a single empiri-
cal power spectrum. To assess the similarity of the simulated 
and the empirical data, we computed the Pearson correlation 
between both power spectra in a range between 0 and 20 Hz.

In order for the model to produce slow oscillations that 
fit the data, we included the spike-frequency adaptation 
strength parameter b and the adaptation time scale �A in 
our optimization, culminating in a total of six free param-
eters. In a single node, adaptation-induced oscillations can 
have a frequency between roughly 0.5 and 5 Hz [32]. Fig-
ure 6 c shows the location of all good fits in the bifurcation 
diagram (FC and FCD thresholds as above, EEG power 
spectrum correlation > 0.7). All fits are close to where the 
bistable regime is in the case without adaptation, where 
the activity of an E-I system can slowly oscillate between 
up- and down-states if the adaptation mechanism is strong 
enough [32, 43, 69].

Figures 6 d-f show the simulated and empirical FC and 
FCD matrices, as well as the power spectra of a randomly 
chosen fit of the fMRI+EEG optimization from Fig. 6c. 
The parameters of this fit are given in Table 2. The empiri-
cal FC and FCD matrices are shown for one subject only. 
The correlation between simulated and empirical FC 
matrices was 0.55 averaged across all subjects with the 
best subject reaching 0.70. The KS distance of the distri-
bution of FCD matrix entries averaged across all subjects 
was 0.28 with the best subject reaching 0.07. The correla-
tion coefficient between the power spectra of the simulated 
firing rate EEG was 0.86.

Table 2  Model parameters. 
Global parameters of the whole-
brain model (first four rows) 
and a subset of the local neural 
mass model parameters of the 
ALNModel (rest) as a result 
of the fitting procedure shown 
in Fig. 6. All other parameters 
are at their default values. The 
Key column refers to the key 
of the ALNModel’s params 
dictionary. For all models, a 
complete list of their default 
parameter values are given in 
each model’s directory

Symbol Key Value Description

dt dT 0.1 ms Integration time constant
N N 80 Number of brain areas (AAL2)
Kgl Ke_gL 265 Global coupling strength
vgl sigNALV 20 m/s Global signal speed
�ext

E
Mue_exT_MeAN 3.32 mV/ms Mean external input to E

�ext

I
Mui_exT_MeAN 3.68 mV/ms Mean external input to I

�ou sigMA_ou 0.37 mV∕ms3∕2 Noise strength
Ke Ke 800 Number of excitatory inputs per neuron
Ki Ki 200 Number of inhibitory inputs per neuron
cEE, cIE Cee, Cie 0.3 mV/ms Maximum AMPA PSC amplitude [70]
cEI , cII Cei, Cii 0.5 mV/ms Maximum GABA PSC amplitude [70]
JEE Jee_MAx 2.4 mV/ms Maximum synaptic current from E to E
JIE Jie_MAx 2.6 mV/ms Maximum synaptic current from E to I
JEI Jei_MAx −3.3 mV/ms Maximum synaptic current from I to E
JII Jii_MAx −1.6 mV/ms Maximum synaptic current from I to I
�s,E TAu_se 2 ms Excitatory synaptic time constant
�s,I TAu_si 5 ms Inhibitory synaptic time constant
dE de 4 ms Synaptic delay to excitatory neurons
dI di 2 ms Synaptic delay to inhibitory neurons
a A 0 nS Subthreshold adaptation conductance
b b 3.2 pA Spike-triggered adaptation increment
�A TAuA 4765 ms Adaptation time constant
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Heterogeneous Brain Modeling with MultiModel

Here, we present a recent addition to neurolib’s core 
simulation capabilities called MultiModel, which 
achieves heterogeneous brain modeling in which more 
than one type of neural mass model, each with their 
own set of differential equations, can be simulated in a 
network. The dynamics of individual nodes are coupled 
by an activity variable, which typically represents the 
average population firing rate.

Models in MultiModel are implemented and simulated 
in an hierarchical fashion with three different levels: The 
first level is a neural mass, representing a single homo-
geneous neural population which is defined by a set of 
differential equations. An example of this is the excita-
tory subpopulation of the ALNModel. The second level 
is a node, defined as a collection of neural masses. The 
subpopulations of a node are coupled via a local connec-
tivity matrix. An example of this is a single node of the 
ALNModel with excitatory and inhibitory subpopula-
tions. Finally, in the third level, a collection of nodes is 
represented as a network, in which nodes are connected 
according to a global connectivity matrix. In the case of 
a brain network, these are the fiber count and fiber length 
matrices from DTI. The dynamical equations within all 
levels in the hierarchy can be implemented by the user, 
and, more importantly, once defined, can be reused and 
“plugged together” with other models. MultiModel inte-
grates the equations of each neural mass on the lowest 
level, and handles the synchronization and coupling of all 
relevant variables according to the predefined local and 
global coupling schemes on all higher levels.

Example: Thalamocortical Motif Fit to Sleep EEG 
Power Spectrum

In this example, we use MultiModel to construct a thalamocor-
tical network model that consists of two separate neural mass 
models, with one ThalamicMassModel representing a tha-
lamic node with excitatory (TCR) and inhibitory (TRN) subpop-
ulations [41], and another ALNModel representing a cortical 
node with connectivity between nodes as shown in Fig. 7a. An 
abbreviated implementation of this model is shown in Listing 8.

Our goal is to find model parameters that produce a sim-
ilar cortical power spectrum as the one observed in EEG 
during sleep stage N3. In the power spectra shown Fig. 6f, 
we can see that, while the EEG power spectrum has a peak 
in the �-band between 10-14 Hz, the whole-brain model 
does not. This is due to the fact that the cortical model 
alone, when parameterized in the bistable regime and 
adaptation is enabled, is only capable of generating slow 
oscillations between up- and down-states with a major 
peak in the power spectrum in the slow oscillation range 
between 0.2-1.5 Hz. Indeed, the peak in the � band can 
only be reproduced by a thalamic model that can gener-
ate spindle oscillations in the respective frequency bands 
[41]. In this example, we use MultiModel to combine both 
models such that the power spectrum of the cortical node 
more closely resembles the EEG power spectrum during 
N3 sleep.

The free parameters of the ThalamicMassModel 
are the conductances of the K-leak current g_LK and the 
rectifying current g_h. The parameters of the ALNModel 
subject to optimization are the mean input currents input_
mu to the E and I subpopulations, and the strength and the 
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time scale of the adaptation currents b and tauA. Further-
more, we also optimize the coupling strength between the 
ALNModel and the ThalamicMassModel in both direc-
tions. This makes a total of 8 free parameters.

We use the power spectrum analysis Python package 
FOOOF [71] to compute the fitness of the model. We first 
subtract a fitted 1/f baseline from the power spectrum of the 
simulated firing rate and from the EEG power spectrum. We 
then compute the Pearson correlation between both remain-
ders of the power spectra to measure the similarity between 
the two. Subtracting the 1/f baseline ensures that the correla-
tion between the simulated and the empirical power remains 
sensitive to the secondary peak in the spindle frequency 
range in addition to the stronger peak in the slow oscillation 
range. We then also use FOOOF to compute the power of 
the two main peaks in the simulated power spectrum. This 
results in a three-dimensional fitness vector containing the 

correlation with the empirical spectrum, the power of the 
slow oscillation peak, and the power of the spindle oscilla-
tion peak. We set up an optimization that maximizes all of 
these measures, similar as in Listing 7. We run the evolution 
for 50 generations with an initial population size of 960 and 
an ongoing population size of 640. A detailed description 
of the fitting procedure, the fitness calculation, and the defi-
nition of the entire model would exceed the scope of this 
article and are thus provided in the examples directory of 
neurolib’s GitHub repository.

The resulting optimized parameters for the input cur-
rents to E and I of the ALNModel, as well as the conduct-
ances of the ThalamicMassModel can be seen in 7b. 
The input currents for the ALNModel again cluster in the 
bistable regime in which slow oscillations are generated in 
the presence of adaptation (similar to Fig. 6c). The con-
ductances of the ThalamicMassModel also cluster in a 

Table 3  Optimized 
thalamocortical model 
parameters. Parameters of 
the best-fitting MultiModel 
depicted in Fig. 7a with the time 
series shown in Fig. 7c

Symbol Key Value Description

�ext

E
*exC*Mu 2.30 mV/ms Cortical input current to E

�ext

I
*iNH*Mu 3.44 mV/ms Cortical input current to I

�A *TAuA 1040 ms Cortical adaptation time constant of the E subpopulation
b *b 19.5 pA Cortical spike-frequency adaptation strength of the E subpopulation
gLK *g_LK 0.1 mS/cm2 Thalamic conductance of the K-leak current
gh *g_H 0.1 mS/cm2 Thalamic conductance of the rectifying current
cALN,Th Ad_TH 0.02 Connection strength from cortical to thalamic node
cTh,ALN TH_Ad 0.15 Connection strength from thalamic to cortical node
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Fig. 7  Optimization of the power spectrum of a thalamocortical 
motif. (a) Schematic of the thalamocortical motif with excitatory 
(red) and inhibitory (blue) populations of the cortical module (top) 
and the thalamic module (bottom). Arrows indicate connections 
between neural masses, with black (gray) arrows denoting excitatory 
(inhibitory) connections. (b) Parameter spaces of the cortical module 
(left panel) with respect to the mean input currents to the excitatory 
and inhibitory subpopulations and the thalamic module (right) with 
respect to the conductances of the K-leak current gLK and rectifying 
current gh of the TCR population. The blue contours indicate regions 
with slow oscillations (left) and spindle oscillations (right) present. 

Green dots show all results of the optimization that produced a Pear-
son correlation above 0.7 between the 1/f-subtracted power spectra 
of the EEG and the simulated cortical excitatory firing rate. (c) Time 
series of the firing rates of the excitatory subpopulations of the cor-
tical (left panel) and the thalamic (right) modules of the best fitting 
model. Parameters are given in Table  3. (d) Power spectrum of the 
EEG data in sleep stage N3 (top panel) and the firing rates (bottom) 
of the excitatory subpopulation of the cortical module shown in (c) 
with peaks in the slow oscillation (0.2-1.5 Hz) and the spindle oscil-
lation (10-14 Hz) regimes. The blue dashed line shows the 1/f fit. The 
Pearson correlation between the 1/f-subtracted remainders is 0.87
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range in which the model generates spindle oscillations with 
a typical waning and waxing dynamics, in agreement with 
the regime previously reported [41]. The time series of the 
best fitting model in Fig. 7c shows that indeed the cortical 
ALNModel shows slow transitions between a down- and 
an up-state, whereas the ThalamicMassModel produces 
waxing and waning spindles. The parameters of this model 
are given in Table 3. The spindle oscillations generated in 
the thalamic node modulate the cortical firing rate in the 
sigma band, which is visible as a corresponding peak in the 
cortical power spectrum in Fig 7d (bottom panel).

Summary and Discussion

In this paper, we introduced neurolib, a Python library 
for simulating whole-brain networks using coupled neural 
mass models. We demonstrated how to simulate a single 
neural mass model, how neurolib handles empirical data 
from fMRI and DTI measurements, and how to simulate 
a whole-brain network. A set of neural mass models that 
are part of the library were presented, as well as how to 
implement a custom neural mass model.

We demonstrated how to conduct parameter explora-
tions with neurolib which can be used to characterize the 
dynamical landscape of a model. Lastly, we presented how 
the multi-objective evolutionary optimization algorithm in 
neurolib can be used to fit a whole-brain model to func-
tional empirical data from fMRI and EEG as well as how 
to construct a hybrid thalamocortical model.

Existing Software

Numerous software frameworks have been developed in 
the past to facilitate the simulation of neural systems. 
Many of these projects focus on microscopic neuron mod-
els. Examples include NEST [72], Brian [73], NetPyNE 
[74], and NEURON [75] which are particularly useful for 
simulating large networks of spiking neurons, with a focus 
on point neurons in the case of NEST and Brian, or mor-
phologically extended neurons in the case of NetPyNE 
and NEURON. In many cases, the accuracy of neural mass 
models can be validated using these software frameworks 
by simulating large networks of neurons from which neu-
ral mass models are often derived [32]. Other existing 
frameworks are specifically designed for simulating meso-
scopic systems, such as NENGO [76], which focuses on 
applications in cognitive science, or the Brain Modeling 
Toolkit [77] which focuses on simulating multiscale neu-
ral population circuits. The mentioned frameworks can be 

used to simulate systems with a few populations but are 
rarely used (and not specifically designed and optimized) 
for macroscopic whole-brain modeling, partly due to the 
computational costs and the resulting difficulty for cali-
brating model parameters.

For macroscopic whole-brain modeling, a well-established 
alternative to neurolib is The Virtual Brain (TVB) [78, 79] 
which is an easy-to-use platform for running brain network 
simulations. TVB can load structural connectivity data, has a 
long list of implemented models for simulating brain regions, 
and allows users to set up monitors to record activity. TVB 
can also simulate BOLD signals and various other forward 
models, such as simulated electroencephalography (EEG), 
magnetoencephalography (MEG) and local field potentials 
(LFP). Many of the features of TVB can be accessed and 
configured using a graphical user interface (GUI); however, 
more complex use cases, such as fitting a model to empirical 
data, or further analyzing model outputs, need to be managed 
outside of the graphical environment.

In contrast, neurolib does not have a GUI and encour-
ages users with programming experience to modify the 
code of the framework itself to suit their individual use 
case, to implement their own models, and to use their 
own datasets to run large numerical experiments. neurolib 
also offers parameter exploration and model optimiza-
tion capabilities. The simple and efficient architecture of 
neurolib allows for fast prototyping of custom models.

Performance and Parallelization

To accelerate the numerical integration of models and thus 
enhance the single-core performance of simulations, models 
that are implemented in Python use the just-in-time com-
piler numba. Although TVB also uses accelerated numba 
code, only the calculation of the derivatives of the models 
are accelerated but not the integration itself. In neurolib, the 
entire numerical integration, including the loops across all 
nodes of the brain network, are accelerated, resulting in a 
simulation speed that is 8-24x faster compared to TVB (see 
Fig. 8) when comparing single-threaded simulations.

In order to speed up parameter explorations and optimi-
zations on a multi-core architecture, neurolib utilizes the 
parallelization capabilities of pypet [24] which can run mul-
tiple simulations on a single CPU simultaneously. To deploy 
simulations on distributed systems, such as large comput-
ing clusters, pypet can run jobs on multiple machines using 
the Python module SCOOP [80]. A lightweight alternative 
to this is is the mopet [81] Python package, which can run 
parameter explorations on multiple machines simultaneously 
using the distributed computing framework Ray [82].
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Future Development

Current work on neurolib focuses on improving the per-
formance of the MultiModel framework and adding more 
specialized models for different brain areas with the ulti-
mate goal of heterogeneous whole-brain modeling, such as 
combining a cortical model with models of thalamic or hip-
pocampal neural populations. This will enable us to model 
different brain rhythms generated in specialized neural cir-
cuits and study their whole-brain interactions.

Another goal of the development efforts is to support 
more sophisticated forward models like the ones used in 
TVB. This includes making use of lead-field matrices to 
simulate an EEG/MEG signal that is more spatially accu-
rate in sensor space, making comparisons to real recordings 
more faithful than by simply analyzing neural activity in 
source space.

Conclusion

The primary development philosophy of neurolib is to build 
a framework that is lightweight and easily extensible. Future 
work will also include the implementation and support for 
more neural mass models. Since neurolib is open source 
software, we welcome contributions from the computational 
neuroscience community. Lastly, our main focus in devel-
oping neurolib is the computational efficiency with which 
simulations, explorations, and optimizations can be exe-
cuted. We believe that this not only has the potential to save 
valuable time, but allows researchers to pursue ideas and 
conduct numerical experiments that would otherwise be only 
achievable with access to a large computing infrastructure.
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