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Abstract
To understand and approach the spread of the SARS-CoV-2 epidemic, machine learning offers fundamental tools. This study 
presents the use of machine learning techniques for projecting COVID-19 infections and deaths in Mexico. The research has 
three main objectives: first, to identify which function adjusts the best to the infected population growth in Mexico; second, 
to determine the feature importance of climate and mobility; third, to compare the results of a traditional time series statisti-
cal model with a modern approach in machine learning. The motivation for this work is to support health care providers in 
their preparation and planning. The methods compared are linear, polynomial, and generalized logistic regression models to 
describe the growth of COVID-19 incidents in Mexico. Additionally, machine learning and time series techniques are used to 
identify feature importance and perform forecasting for daily cases and fatalities. The study uses the publicly available data 
sets from the John Hopkins University of Medicine in conjunction with the mobility rates obtained from Google’s Mobility 
Reports and climate variables acquired from the Weather Online API. The results suggest that the logistic growth model fits 
best the pandemic’s behavior, that there is enough correlation of climate and mobility variables with the disease numbers, 
and that the Long short-term memory network can be exploited for predicting daily cases. Given this, we propose a model 
to predict daily cases and fatalities for SARS-CoV-2 using time series data, mobility, and weather variables.

Keywords  Covid19 · Data science · Time series forecasting · Recurrent neural networks.

Introduction

As referenced by the World Health Organization, the first 
case of COVID-19 was in Wuhan, China, on December 31, 
2019 [1]. On May 21, 2020, there had been over 5,102,424 
confirmed cases, which resulted in more than 332,924 fatali-
ties around the world [2]. The pandemic is severe, and it 
continues to affect billions of people.

In this study, we compare three curve fitting models: lin-
ear, polynomial, and generalized logistic model (GLM) and 

two multivariate time series models: a long-short term mem-
ory (LSTM) neural network and a traditional time series, 
vector autoregression (VAR) model to explore the behavior 
of COVID-19 daily cases and fatalities in Mexico.

This study’s motivation is to contribute to the knowledge 
necessary to fight the disease and characterize its course in 
Mexico, with the attempt to display more preparedness and 
promote more logical actions by the policymakers and the 
population in general.

The generalized logistic model has been successfully 
applied in other studies to describe previous epidemics [3]. 
The LSTM algorithm, which uses a type of recurrent neu-
ral network (RNN), was previously used in other studies to 
predict infections over time [4]. Risk factors such as climate 
features and adherence to social distancing were previously 
hypothesized to affect the number of daily cases. However, 
we did not find a previous study analyzing the significance 
of these factors using machine learning techniques in time 
series forecasts.

For the data exploration and model training, we used 
the dataset obtained from the Resource Center at the John 
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Hopkins University of Medicine GitHub repository [5]. We 
supplemented it with information about climate information 
obtained from the Weather Online API [6] and the social 
mobility rate obtained from Google’s COVID-19 Commu-
nity Mobility Reports [7].

This paper’s remainder is structured as follows: Sec-
tion 1 describes related studies on the topic, and Section 2 
describes the methods and dataset used in the research. In 
Section 3, we present data exploration and preparation for 
modeling. Section 4 presents the results of the models. Sec-
tion 5 presents the discussion of the products and future 
directions for this project. Lastly, Section 6 presents the con-
clusions of this study.

Related Work

With the same purpose of forecasting COVID-19 confirmed 
cases, we were able to identify the following related work, 
which mainly consists of studies using multivariate time 
series regressions and curve-fitting models.

The related work includes the work of Chae, Kwon, and 
Lee [4] who compared a deep neural network and LSTM 
with the ordinary least squares methods (OLS) and the 
autoregressive integrated moving average (ARIMA) to 
predict three infectious diseases (chickenpox, scarlet fever, 
and malaria). This study showed that both deep learning 
models had better performance than the traditional OLS and 
ARIMA methods, with an average of 20% improvement on 
the root-mean-square error (RMSE).

A second related work is Liu et al. [8], who analyzed the 
impact of meteorological factors on COVID-19 in China’s 
provinces. The results obtained from this study indicated 
that the transmission could be affected by factors such 
as low temperature, low humidity, and mild diurnal tem-
perature range. Thirdly, this study is related to the work of 
Chakraborty and Ghosh [9], who forecasted the number of 
COVID-19 cases for multiple countries, Canada, France, 
India, South Korea, and the UK. The research uses tradi-
tional time series models and analyzes the demographical 
features affecting the spread in these countries, showing how 
a conventional ARIMA model can describe the spread’s 
nonlinear and nonstationary behavior in various countries.

This work is similar to the work done by Tomar and 
Gupta [10] and the recent work performed by Chimmula and 
Zhang [11]. In the former study, curve-fitting methods and 
LSTM were used to predict the number of COVID-19 cases 
in India and measuring how preventive steps like social iso-
lation and lockdown affected the spread of COVID-19. The 
results indicated that the preventive measures (social isola-
tion and lockdown) worked well in containing the virus in 
India. The study also included a graph showing how the 
forecasted numbers with the logistic curve fitting closely 
resembled the official data. The latter paper applied LSTM 

networks to predict the termination point of the outbreak 
for Canada, achieve an RMSE of 45.7 for long-term predic-
tions, and forecast that the potential ending point would be 
around June 2020.

Regarding statistical models, Schuttler et al. [12] ana-
lyzed the spread of COVID using a sigmoid function. The 
authors showed how this simple fitting model could help 
estimate the diseases’ peak in many European countries and 
China. These results were similar to the ones in Andreas 
et al. [13], which determined Italy’s cases’ inflection point 
and obtained a coefficient of determination of 0.99. These 
studies on the COVID pandemic show how the disease’s 
growth can be described with an S-shaped curve and how 
the data can be fitted by applying traditional nonlinear least 
squares to the equation [14]. Furthermore, there have been 
previous studies where this function has been used in pre-
dicting other epidemic diseases [15, 16].

Moreover, previous studies [17–19] on the application 
of the susceptible–exposed–infected–removed (SEIR) 
framework (or some variations) on the data of COVID-19 
confirmed cases solely for its prediction. Undoubtedly, the 
analysis of this literature has covered a wide range of topics 
on applying epidemiological methods. Nevertheless, these 
models are subject to limitations, such as not providing the 
impact and interaction of additional variables [20]. This has 
provided a potential area of opportunity for the data-driven 
techniques of machine learning. The present study contrib-
utes to the literature by applying machine learning tech-
niques to identify the pandemic impacts and compare these 
techniques with the more traditional time series models.

Methods

This research compares different techniques to forecast 
COVID-19 incidences and obtain insights into the COVID-
19 outbreak. The exploration and visualization of the data 
and the machine learning modeling were performed using 
Python programming and ran in the open-source Jupyter 
Notebook platform. The program is available on GitHub1.

Datasets

The dataset used for this analysis comes from the Resource 
Center at the John Hopkins University of Medicine. The data 
collected is open source and is available through a GitHub 
Repository [5], which is updated daily at 9 am EST.

The dataset contains information for the accumulated 
confirmed cases and fatalities in 173 countries. The follow-
ing features are available in this data set:

1  https://​github.​com/​DRAE-​1 MLP/​COVID​19_​Mexico

https://jupyter.org/
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–	 Country: Provided for 173 countries,
–	 Province: Only for Australia, Canada, China, Denmark, 

France, Netherlands, United Kingdom, United States,
–	 Date: Days since January 22, 2020, to March 31, 2020 

(70 days),
–	 Confirmed Cases: Total number of confirmed COVID-19 

cases, and
–	 Fatalities: Total number of deaths.

The John Hopkins data were supplemented with additional 
covariates: climate variables and social mobility rates. The 
weather information was extracted from the Weather Online 
API [6], and the variables include max temperature, min 
temperature, UV index, humidity, precipitation, pressure, 
and wind speed. In contrast, the social mobility rate was 
obtained from Google’s COVID-19 Community Mobility 
Reports [7]. It includes the following variables, which rep-
resent a percent change from the baseline: retail and recrea-
tion, grocery and pharmacy, parks, transit stations, work-
places, and residential. These rates show how visits and stays 
differ from the baseline, which is the week’s corresponding 
day’s median value.

Univariate Growth Curve Models

The growth curve models, also called curve fitting models, 
are multilevel models mainly used to describe how a con-
tinuous outcome changes over time, focused on the between-
individual variations [21]. Different types of these models 
include linear, polynomial of various degrees, logarithmic 
curve fit, and nonlinear curve fit  [22].

In this paper, we used three different growth models: 
linear regression, polynomial regression, and generalized 
logistic regression. We fitted them the data of the confirmed 
accumulated cases and fatalities in Mexico to identify the 
mathematical function that provided the best fit to the line 
or curves in the dataset. The linear regression approximates 
a straight line, while polynomial and generalized logistic 
regression are nonlinear regressions that approach the data 
by a curved equation.

The curve fitting models hypothesize that the GLM 
adjusts better to the population growth (COVID-19 cases). 
By obtaining the lower part of the curve, we can acquire the 
function parameters and get the complete curve, which can 
help us estimate the inflection point and limiting value.

The equations for each of these techniques are listed 
below. Equation (1) is for linear regression and considers 
the slope of the line as a and b as the intercept of the value 
of f(x) when x = 0 . Equation 2 shows the fitting of a polyno-
mial regression with a being the set of coefficients and n, the 
polynomial degree. Finally, Equation 3 considers e as Euler’s 
number, x

0
 as the x value of the sigmoid’s midpoint, L as the 

curve’s maximum value, and k is the logistic growth rate.

The reason for using these models is that they can capture 
many trends and patterns. In the first model, we adopt a 
pessimistic approach assuming that the exponential trend 
will continue indefinitely in the future. The second model 
captures many additives and multiplicative patterns in the 
data. Finally, the third model assumes convergence, which 
means that a stable state can be achieved.

Point of Inflection and Limiting Value

In this study, we predicted the point of inflection and limit-
ing value by using the generalized logistic function. The 
inflection point is the steepest part of the graph, representing 
the time of the most rapid growth of the curve. The limiting 
value is the population’s carrying capacity and shows us 
the total number of predicted cases in the final stage of the 
epidemic [23].

Multivariate Time Series Models

When approaching time series forecasting, the most tra-
ditional statistical methods are autoregressive integrated 
moving average (ARIMA), exponential smoothing tech-
niques  [24], and vector autoregression (VAR) meth-
ods [25]. In machine learning, the most common technique 
to approach this problem is the long-short term memory 
(LSTM) network. However, other nonparametric algorithms 
can also be useful in this approach. This study compares 
the results of a traditional time series model (VAR) with a 
neural network model (LSTM) to better predict the number 
of cases and fatalities in Mexico.

VAR

The vector autoregressive model is an extension of the uni-
variate autoregression model for multivariate time series 
data. We decided to use this method, as VAR has proven to 
be one of the most suitable and flexible multivariate time 
series analysis models.

The model consists of a multi equation system that 
treats all variables as endogenous (dependent) and is a 
linear function of past observations [26]. The equation 

(1)f (x) = ax + b

(2)f (x) =

i
∑

n=0

anx
n

(3)f (x) =
L

1 + e−k(x−x0)
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includes lagged values for each of the dependent variables 
in the system in its reduced form. This form is shown in 
equation 4 where Yt represents the vector of the time series 
variable, a is the vector of intercepts, Ai is the coefficients 
matrices, and �t is the vector of white noises.

LSTM

The long-short term memory is an artificial recurrent neu-
ral network (RNN) architecture used in the field of deep 
learning [27]. This multilayered neural network can avoid 
the long-term dependency problem by adapting nonlineari-
ties in the datasets [28], making it a significant performer 
in time series analysis [29].

This network’s concept consists of three nonlinear 
gates: the forget gate, the input gate and the output gate, 
and one “memory” cell. The “memory” cell transports 
relevant information through a sequence chain, and it can 
maintain its state value over a long time. In the process, 
the cell loses and wins information, and the gates are 
responsible for deciding what information should be added 
to the next time step and what should be removed. In these 
gates, the information is transformed with the logistic or 
sigmoid function into values between cero and one to 
make a “Yes”/“No” decision. A hyperbolic tangent(� ) is 
used to transform the information to values between -1 and 
1 to make a ‘‘negative”/“neutral”/“positive” decision [28].

The role played by the first gate, the forget gate(f), is 
in deciding what is to be forgotten from the previous state 
data and which weighted previously hidden state informa-
tion is to be remembered. The second gate, the input gate 
(i), determines what information is relevant to be written 
onto the Internal Cell State. Inside the LSTM cell unit, 
there are three outputs: C(t), y(t), and h(t); the calculation 
performed is shown in the equations below. Equations 5, 
6, and 7, where w

0
 represents the weights, g

0
 represents 

a nonlinear function, which can be the sigmoid function, 
and f f f(t) represents an internal forget gate inside the 
input gate.

Finally, the output gate(o9) determines what the output (hid-
den state) is from the Internal Cell State; this is achieved by 
multiplying the f f f(t) result by the current cell state with 
values from -1 and 1.

(4)Yt = a + A
1
Yt−1 + A

2
Yt−2 +⋯ + ApYt−p + �t

(5)C(t) ∶= f (t)C(t − 1) + i(t)

(6)y(t) ∶= g
0
((w

0
h(t)))

(7)h(t) ∶= f f f (t)�(C(t))

Evaluation Metrics

We compute the following metrics to measure the per-
formance of each of the models: The RMSE measures 
how close the fitted values are to the real values, and the 
Bayesian information criterion (BIC) to obtain the esti-
mated likelihood to predict a model and to test how well 
the model fits the data [30]. The formulas for RMSE and 
BIC are shown in Eq. 8 and 9, respectively. In the RMSE 
formula, n represents the number of samples, pi is the 
forecasted values, and oi is the actual observed values. In 
the BIC equation, K is the number of model parameters, 
and the L is the maximized value of the likelihood of the 
model.

Exploratory Data Analysis

We compute the data’s main statistics during data explora-
tion and perform analysis through graphs and plot visu-
alization. First, we obtained an initial table from the data 
set variables (Table 1). A bar graph with the cumulative 
number of confirmed cases (blue line) and the number of 
fatalities (orange line) reported worldwide can be observed 
in Fig. 1.

Next, to visualize the pandemic’s course in Mexico 
compared to other Latin American countries, we evalu-
ated the confirmed cases and fatalities from five different 
countries: Mexico, Chile, Brazil, Peru, and Ecuador. The 
statistics of each of the selected countries’ features are 
shown in Table 2. The growth factor of daily new infected 
cases is the daily new cases’ division by the total number 
of accumulated infected people in the previous day. The 

(8)RMSE =

√

√

√

√

1

n

n
∑

i=1

(pi − oi)
2

(9)BIC = −2ln(L) + Klog(n)

Table 1   Statistical summary of confirmed cases and fatalities datasets

Confirmed Cases Fatalities

mean 5,757 380
std 49,991 3414
min 0 0
25% 0 0
50% 28 0
75% 547 0
max 1,699,176 100,417
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growth factor of daily new fatalities is the daily new fatali-
ties’ division by the total number of accumulated fatalities. 
Finally, the average mortality rate is the number of daily 
fatalities divided by the daily cases.

The countries of interest are plotted with their con-
firmed cases shown in Fig.  2a and fatalities shown in 
Fig. 2b. These graphs show the countries’ number of cases 
increasing over time. We can observe that even though 
Brazil has a higher number of daily cases, Mexico has a 
higher average mortality rate. We can also see some gaps 
in Ecuador’s data, as there are some sharp steps observed 
in the graph.

Data Preparation

The data preparation phase consists mainly of data clean-
ing and feature reduction. The data set included confirmed 

cases and fatalities for Mexico, obtained from John Hop-
kins Repository, is clean in terms that it does not contain 
inconsistent or missing values. The same case is for climate 
data. Concerning the social mobility rate, there were missing 
values in the most recent dates. The data is until March 21st. 
Due to this limitation, the models used in this study consider 
this date as the last one.

Besides, a data transformation was performed in the lin-
ear growth model’s dependent variable. As we identified 
in the visualization phase, the data does not have a linear 
evolution through time but exponentially. For this reason, we 
made a natural logarithmic transformation to the output vari-
able (confirmed cases) to simulate a linear behavior and use 
it for prediction. Next, we included a row with the resulting 
logarithmic transformation in our table. Fig. 3b shows the 
log transformation. The data was transformed to add a new 
variable showing the number of days since the start date of 

Fig. 1   Accumulated worldwide 
COVID-19 confirmed cases 
since January 22, 2020

Table 2   Data summary of five 
Latin America countries

Country Mexico Chile Brazil Peru Ecuador

Start 2/28/20 3/3/20 2/26/20 3/6/20 3/1/20
End 5/21/20 5/21/20 5/21/20 5/21/20 5/21/20
Accumulated Mean Cases 16,153 16,337 77,318 32,060 13,775
St. Dev. of Accumulated 21668 20,796 110,300 42,013 14,005
Growth Factor of Daily New Cases 19.08% 17.24% 17.92% 19.93% 12.09%
Mean Fatalities of Daily Accumulated 2098 228 6,441 1,095 1,020
St. Dev Fatalities of Daily Accumulated 2471 221 7,503 1,191 1,102
Growth Factor of Daily New Fatalities 16.1% 12.84% 19.95% 12.49% 11.43%
Average Mortality Rate 5.67% 0.77% 4.18% 2.23% 4.3%



	 Cognitive Computation

1 3

the reported outbreak (January 22nd, 2019). The row shows 
day number 0 for January 22nd and day 69 for March 31st.

The time series models require additional prepara-
tion. It is essential to ensure the stationarity of all the 
time series variables before fitting the model. For this 
purpose, we first included a new column to transform the 
confirmed accumulated cases into daily cases by removing 
the number of infected people from the immediate prior 
date. Next, we performed logarithmic transformation on 
the daily number of cases and the daily number of fatali-
ties. To transform the numeric values to a common scale, 
we used the z-score normalization method. And finally, we 
applied a smoothing technique.

Specifically, for the LSTM model, we must transform 
the time series data into a supervised learning problem. 
For this, we included the time lag variables for each of the 
covariates and dependent variables.

Next, to avoid overfitting problems and determine the 
most important input parameters, we performed feature 
selection using the Spearman Rank Correlation coeffi-
cient. This statistical method is used because it is robust 
when dealing with non-normally distributed data [31]. 
This method is a filer selection method, so we perform the 
selection before applying any machine learning algorithm.

Finally, to test each model’s performance, we separated 
the last 20% observations as a testing set and used 80% of 

(A) (B)

Fig. 2   Total number of confirmed cases (A) and fatalities (B) since the confirmation of the first case

(A) (B)

Fig. 3   Accumulated number of confirmed cases (A) and logarithmic transformation of confirmed cases (B) 
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the data to train the model. With this, we can use the hold-
out data to test our predictions.

Results

This study evaluated the COVID-19-infected population 
growth in Mexico by comparing it with three curve fitting 
models: Linear, Polynomial, and Sigmoid Curve models, 
and then considered the generalized logistic growth model 
to determine the inflection point in Mexico. For this study’s 
second and third objectives, we used the Spearman Rank 
Correlation to select the most critical features and used these 
features in two time series models: VAR and LSTM. Finally, 
we compared the prediction results from these two models. 
The process followed in this second step is shown in Fig. 4.

Population Growth Models

We constructed the linear model with the last 20 days of 
data to understand if the growth behaved exponentially. The 
linear regression model for Mexico’s confirmed cases is 
shown in Fig. 5a and the accumulated number of fatalities 
in Fig. 5b. In the graph, we can observe that linear regression 
can accurately fit the logarithm data despite being a simple 

model. We can see that these last 20 days closely saw an 
exponential growth except for the latter observations.

The equation’s coefficients, Bayesian information criterion  
(BIC), and RMSE for both target variables are in Table 3. 
The RMSE is high for the confirmed cases in linear regres-
sion. It seems that the case numbers from Mexico are not 
behaving exponentially anymore. In contrast, Mexico 
Covid19 fatalities have a low RMSE, which indicates that 
the growth of deaths in the last 20 days fits this model well.

The second model created to fit the data and predict corona-
virus confirmed cases for the following weeks was a polynomial 
regression. Polynomial regression is a form of linear regression, 
where the dependent variable has an nth degree parameter. We 
performed a tuning process for this regression and obtained the 
best results with a fourth-degree parameter performed on 80% 
of the available data. The results obtained are shown in Table 3. 
The graphs in Fig. 6 show that the model fitted the data well 
only in the initial stage of infection.

The third model used to fit the data and predict the confirmed 
cases of coronavirus for the following weeks is the GLM. The 
logistic function resembles a pandemic’s behavior, so the models 
created with this function are expected to follow this behavior. 
We implemented the curve fit function to get the best possible 
coefficients that adjust better to the training set’s data behavior. 
The results obtained for Mexico are shown in Table 3.

Fig. 4   Constructed model 
diagram  

Feature
Selection

JH
COVID-19

cases

Weather

Mobility

Multivariate Time-
series model Evaluate results

Fig. 5   Linear regression model 
for logarithm confirmed cases 
(A) and fatalities (B) of Mexico 
of the last 20 days

(A) (B)
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We can conclude from the results that the Sigmoid Curve, 
compared to the other two curve-fitting models, shows the 
best behavior of the infected population growth in Mexico 
for both the accumulated daily cases and daily fatalities.

Finally, this last model is used to make predictions for the 
next 100 days with the complete dataset’s input. We can see 
these predictions in Fig. 7. In the next section, the point of 
inflection and limiting parameters are obtained.

Point of Inflection and Limiting Value

This section predicts the point of inflection and limiting 
value by using the generalized logistic function. We deter-
mined the shape and some general features of the infection 
growth, and we can see that even with this simple equa-
tion and using only one variable, we can approach the curve 
behavior. Table 4 summarizes the results of both the accu-
mulated cases and fatalities; these results consider that the 
lockdown’s compliance remains the same.

Feature Selection

We performed a correlation analysis to determine the most 
significant input parameters, which will be used to build 
the multivariate time series models. To understand which 
correlation method to use for this, we first need to know if 
the data is normally distributed. To test normality, we used 
the Shapiro–Wilk test. The null hypothesis is that the data 
is normally distributed. The resulting statistic for the con-
firmed cases dataset was 0.76, with a p value smaller than 
0.01. The fatalities dataset obtained a statistic of 0.82, with 

a p value smaller than 0.01. Based on these, we can con-
clude that there is enough statistical evidence to reject the 
null hypothesis. The plots in Fig. 8 show the data’s density 
behavior as a quantile-quantile plot for confirmed cases.

The following data were transformed into a supervised prob-
lem to obtain the t-n observations for the time series to under-
stand which time lags and variables hold the highest linear coef-
ficient correlation with the output variable. We used a Spearman 
coefficient matrix, as this is more robust when dealing with non-
normality. Next, we calculated the absolute mean of each variable 
for each time step. The results are shown in Table 5.

We identified that the top five features with the highest 
correlation with respect to the daily cases are the amount 
of cases at t − 14 (0.92) , the transit stations mobility rate 
t − 28 (-0.79), parks mobility rate at t − 26 (-0.76), grocery 
and pharmacy mobility rate at t − 26 (-0.75), and maximum 
temperature ( ◦ C) at t − 28 (-0.70). In contrast, for the daily 
fatalities the top five features with the highest correlation 
with respect to the daily fatalities are the daily cases at t − 7 
(0.84), the residential mobility at t − 28 (0.78), parks mobil-
ity rate at t − 1 (0.75), transit stations at t − 28 (-0-.71), and 
grocery and pharmacy mobility rate at t − 25 (-0.70).

The defined threshold used for the confirmed cases and 
fatalities was 0.30 and 0.25, respectively. All attributes that 
had an absolute mean value smaller than 0.30 were elimi-
nated (UV index, pressure, wind speed, workplaces mobil-
ity rate, and residential mobility rate) from the confirmed 
cases data frame. Concerning fatalities, all attributes with 
an absolute mean Spearman correlation coefficient value 
less than 0.25 were eliminated (minimum temperature, UV 
Index, humidity, pressure, and wind speed).

Table 3   Growth models RMSE and BIC results with its corresponding coefficients

Models Confirmed Cases Fatalities

Coef. RMSE BIC Coef. RMSE BIC

Linear Regression c1=0.05 b=6.52 2299.24 80.62 c1=0.06 b=5.06 135.82 42.06
Polynomial Regression c1=-16.67 c2=1.69 c3=-0.06 

c4=0.01 b=34.14
3781.91 294.26 c1=-0.96 c2=-0.15 c3=0.03 

c4=-0.01 b= 7.43
179.98 147.84

Sigmoid curve fitting L=99,592 x
0
=79.04 k=0.09 535.57 850.38 L=11,036 x

0
=60.05 k=0.09 102.72 480.33

Fig. 6   Polynomial regression 
model for Mexico confirmed 
cases (A) and fatalities (B) 

(A) (B)
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Multivariate Time Series Models

In this phase, we compare the scores of two multivariate 
time series models (LSTM and VAR) to identify which one 
is the best at predicting the new daily cases and fatalities 
caused by COVID-19 in Mexico.

As autoregressive models perform better when the time 
set is stationary, we performed an Augmented Dickey-Fuller 
(ADF) test to prove stationarity. The null hypothesis of this 
test is that the data set has a unit root and is nonstationary. 
The resulting statistic was -1.43 for confirmed cases and 
0.52 for fatalities. As the resulting p value (0.58, 0.99) of 
confirmed cases data and fatalities, respectively, were higher 
than the defined significance level of 0.05, we do not have 
sufficient statistical evidence to reject the null hypothesis 
with a 95% confidence level.

Therefore, we transformed the data into a logarithm 
scale, and a new output variable was created by using the 
differencing method. After the transformation, we shrunk 
the time series to 56 preview days. We again performed the 
ADF test on the transformed data. The resulting statistic 
was -3.06, with a p value of 0.03 for the confirmed cases 
dataset. Regarding the fatalities dataset, the resulting statis-
tic was -4.12 with a p-value of 8.81e−4 . We have sufficient 
statistical evidence to reject the null hypothesis. The model 
can improve its forecast capability by applying a smoothing 
technique. For this analysis, we used the single exponential 
smoothing with a smoothing constant of 0.2. We decided on 
the value that maximizes the MSE after experimenting with 
different constant values and evaluating the model with new 
information never seen by the model. Finally, after smooth-
ing the data, we normalized it with the z-score function.

Following this preparation, we fitted the VAR and LSTM 
models. After a series of experiments, the VAR model 

showed the best results with a lag order of seven for both 
data frames. To select the lag order, we fitted the model with 
different values with the BIC metric as the evaluator. Due to 
the number of coefficients in the resulting VAR model, they 
are not included in this paper but are available on request.

For the neural network model, we used a two-layer LTSM 
with 200 neurons in the first layer, 100 in the second layer, 
and a time lag of 28 days. The results are shown in Table 7. 
For this analysis we used t

0
 as of May 21st. The hyperparam-

eters are shown in Table 6.
The results of the models are shown in Table 7. The 

computed RMSE and AIC help us to compare the resulting 
models to select the one with better performance. The values 
indicate that the best model for predicting daily cases and 
daily fatalities’ is the LSTM model with an RSME smaller 
in 47.16% for the confirmed cases and 33.27% for the fatali-
ties dataset.

Discussions

In the present study, we trained an LSTM network with data 
from January 22 to March 22, 2020, as reported by the Mexi-
can government and provided to John Hopkins University of 
Medicine. Firstly, we have shown how the daily cases and 

Fig. 7   Sigmoid model for con-
firmed cases (A) and fatalities 
(B) of Mexico Sigmoid model 
for confirmed cases (A) and 
fatalities (B) of Mexico

(A) (B)

Table 4   Inflection point and limiting values of confirmed cases and 
deaths

Accumulated Cases Accumulated Fatalities

Inflection Point 49,796 (May 18th) 5,518 (May 19th)
Limiting value 99,592 (September 29th) 11,036 (August 27th) Fig. 8   Non-normal distribution quantile–quantile scatter plot of con-

firmed cases
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fatalities predictions are greatly affected by the quarantine 
hence the decisions made by the government to decrease 
the spread are crucial. We have also proven the importance 
of integrating weather variables to respiratory viruses’ pre-
diction models, especially the maximum daily temperature. 
Finally, we have demonstrated that the predictions obtained 
from a recurrent neural network can yield better perfor-
mance than a traditional time series model. The RMSE 
result of our initial LSTM model was 47.16% smaller than 
our VAR model for confirmed cases and 33.27% smaller 
for fatalities. Months after the creation of our initial model, 
we have validated the model with updated data. We have 
provided data from October 14 to November 3, 2020, and 
the resulting RMSE of the LSTM obtained was 1410.57 for 
confirmed cases and 264.42 for deaths.

There are several challenges and limitations considered 
in the modeling of the COVID-19 cases. In summary, this 
study’s limitations include the data collection bias, the 
number of reported cases that are in function of the number 

of tests that are applied, and the government’s willingness 
to report the numbers. A potential censoring in the data 
can affect the predictions. Therefore, the model’s training 
depends on the number of daily cases registered based on 
the number of available tests that undoubtedly exist. Thus, 
there are zero known cases in the data when there are zero 
tests, but this does not necessarily reflect the reality; in other 
cases, there are observations with a spike in daily confirmed 
cases, indicating that there were many tests available. One 
last identified limitation is the lack of sufficient data, which 
may deter the predictions. We consider these limitations as 
present in the reported cases of Mexico. However, we firmly 
believe that forecasting the number of daily cases and deaths 
is essential and required to support the government’s health 
care institutions and the decision-making process.

In this investigation, we have compared a logarithmic 
curve fitting model with a linear and polynomial fit and 
confirmed that the sigmoid function is the best approxi-
mation of the disease’s behavior for five Latin American 
countries. These results are in consent to the study from 
Schuttler et al. [12], which showed this behavior for differ-
ent European countries and from the analysis performed by 
Andreas et al. [13], which among other discoveries estimated 
the inflection points for Italy with a 0.99 result in the coef-
ficient of determination.

Additionally, in this study, we have confirmed the impor-
tance of including weather factors to predict daily cases. 
These factors have also been observed by Liu  [8] who 
explored their influence in predicting COVID transmissions 
in China. Compared to Chakraborty and Ghosh [9], who 
proved that ARIMA models showed better results in Canada 
and UK, we have shown how neural networks can achieve 
better results than traditional time series forecasting to pre-
dict cases in Mexico. Moreover, this study, just like the work 
of Tomar and Gupta [10], and Chimmula and Zhang [11], 
stress the importance of social isolation. Considering that 
the social distancing measures were conserved, our model 
predicted that the maximum value of new cases in Mexico 
would be reached in September 2020.

We can use several approaches to extend this study. For 
instance, the application of generative learning models, 
such as Hidden Markov Models, could serve useful for our 
prediction since it has proven to be efficient when having 
few data points [9, 32]. Given that accumulating studies 

Table 5   Time step new daily cases and fatalities feature selection 
coefficients

Variables ID New cases 
Absolute Mean

Fatalities 
Absolute 
Mean

New log cases var1 0.84 0.53
Max tempC var2 0.30 0.26
Min tempC var3 0.31 0.24
UV Index var4 0.23 0.19
Humidity var5 0.30 0.21
PrecipMM var6 0.33 0.26
Pressure var7 0.24 0.19
Wind speed Kmph var8 0.15 0.15
Retail and Recreation var9 0.32 0.34
Grocery and Pharmacy var10 0.38 0.32
Parks var11 0.35 0.35
Transit stations var12 0.40 0.35
Workplaces var13 0.21 0.35
Residential var14 0.21 0.33

Table 6   Hyperparameters of LSTM

Hidden Layers 2

Number of neurons in hidden layer 1 200
Activation of hidden layer 1 tanh
Number of neurons in hidden layer 2 100
Activation of hidden layer 2 tanh
Batch size 100
Epochs 100
Loss function MSE
Optimizer Adam

Table 7   Time series models metrics summary

Model RMSE BIC

LSTM daily cases 275.35 71.00
LSTM daily fatalities 31.91 45.14
VAR daily cases 630.3469 94.14
VAR daily fatalities 208.4456 78.65
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have recognized respiratory virus as generally seasonable 
[33–35], we could improve our model by supplying it with 
the weather, mobility, and infection data for one full year. 
Finally, we can update the model created in this study with 
the latest information to assist healthcare experts and poli-
cymakers. This model can predict the number of cases and 
fatalities for other countries since it has already proven use-
ful in the multiple countries analyzed in this paper.

Conclusion

The results of the curve fitting model estimated the inflec-
tion point on May 15, 2020. With this, we predicted that 
the maximum limit value of the outbreak in Mexico would 
be reached around the end of September, with the predic-
tion limitation that the lockdown remained in place. In this 
study, we also identified several relational features to predict 
COVID-19 daily cases. We detected that the features with 
the highest correlation to the daily cases and fatalities were 
the following: the number of cases, the transportation station 
mobility, park mobility, the grocery pharmacy mobility, the 
residential mobility, and the maximum daily temperature ( ◦

C). Finally, we demonstrated that it is better to use an LSTM 
network for this prediction instead of the traditional statis-
tical model of VAR, as we obtained better results with an 
RSME smaller in 47.16% for the new cases and 33.27% for 
fatalities.

With this study, we contribute to the literature by apply-
ing deep learning techniques to identify the pandemic 
impacts in Mexico and compare them to more traditional and 
powerful forecasting methods, VAR, and statistical curve-
fitting methods. We hope that this study contributes to the 
world’s response to the SARS-CoV-2 epidemic, applying 
machine learning for complementing the state-of-the-art 
mathematical models and providing some references for 
future research.
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