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Abstract
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable, and early clinical 
assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to 
study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on a dataset 
made public by Yan et al. in [1] of 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to 
February 18, 2020. Demographic and clinical characteristics and patient outcomes were investigated using machine learning 
tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting 
the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high-sensitivity 
C-reactive protein, and age (LNLCA)—acquired at hospital admission—were identified as key predictors of death by multi-
tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 
and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 
patients were divided into three subgroups: low-, moderate-, and high-risk groups using LNLCA cutoff values of 10.4 and 
12.65 with the death probability less than 5%, 5–50%, and above 50%, respectively. The prognostic model, nomogram, and 
LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve 
the management of patient stratification.
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Introduction

The novel coronavirus disease (COVID-19) spread rapidly 
throughout the world from Wuhan (Hubei, China) since 
December 2019 [2–6]. Since the outbreak, the number  
of reported cases has surpassed 12 million with more  
than 550 thousand deaths worldwide as of 12 July 2020 
[7]. The COVID-19 disease is caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), which  
is a member of the coronavirus family. On 11 March 2020,  
COVID-19 was declared as a pandemic by the World 
Health Organization (WHO) [8]. Due to the pandemic,  
hospital capacity is being exceeded in many places and face  
issues in terms of limited medical staff, personal protective  
equipment, life-support equipment, and others [9, 10].  
Symptoms of COVID-19 are non-specific, and infected 
individuals may develop fever (83–99%), cough (59–82%),  
loss of appetite (40–84%), fatigue (44–70%), shortness of  
breath (31–40%), coughing up sputum (28–33%), or muscle  
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aches (11–35%) [11]. The disease can further progress into  
a severe pneumonia, acute respiratory distress syndrome 
(ARDS), myocardial injury, sepsis, septic shock, and even 
death [12]. Though most COVID-19 patients have a mild  
illness, there are some patients who show rapid deterioration  
(particularly within 7–14 days) from the onset of symptoms 
into severe COVID-19 with or without ARDS [13, 14].  
Current epidemiological data suggest that the mortality  
rate of patients with severe COVID-19 is higher than that 
of patients with non-severe COVID-19 [15, 16]. It has been 
reported that 26.1–32.0% of patient infected with COVID-19  
are prone to progressing critical illness [17]. Recent studies 
have confirmed a high fatality rate of 61.5% for patients in 
critical cases, which increase with age and other medical  
comorbidities [17].

A large cohort study from 2449 patients has reported 
that during this pandemic, healthcare system can be 
overwhelmed by hospitalization (20–31%) and intensive 
care unit (ICU) admission rates (4.9–11.5%) [18]. This can 
be avoided by prioritizing hospital treatment for patients at 
high risk of deterioration and death, and treating low-risk 
patients in ambulatory environments, or by home-based 
self-quarantine. An effective tool is required to predict the 
disease trajectory to allocate resources efficiently and also 
improve the patient’s condition. Understanding the great 
potential of this approach, it is important to identify key 
patient variables that can help to predict the course of the 
disease at diagnosis. In other words, early identification of 
patients at high risk for progression to severe COVID-19 
will help in efficient utilization of healthcare resources via 
patient prioritization to reduce the mortality rate.

Several researches indicate that biomarkers can help to 
classify COVID-19 patients with elevated risk of serious 
disease and mortality by providing crucial information 
regarding the patients’ health status. Al Youha et al. [19] 
proposed a prognostic model called the Kuwait Progression 
Indicator (KPI) score for predicting progression of severity 
in COVID-19. The KPI model was based on quantifiable 
laboratory readings unlike other self-reported symptoms 
and other subjective parameter-based scoring systems.  
The KPI score categorizes patients to low risk if the score 
goes below − 7 and high risk if the score goes above 16; 
however, the progression risk in the intermediate group (for  
patients scores within − 6 to 15) deemed by the authors  
as uncertain. This intermediate category however exists 
with many prognostic systems. Weng et al. [20] reported  
an early prediction score called ANDC to predict mortality  
risk for COVID-19 patients using 301 adult patients’ data. 
Least absolute shrinkage and selection operator (LASSO) 
regression has identified age, neutrophil-to-lymphocyte 
ratio (NLR), D-dimer, and C-reactive protein (CRP) 
recorded during admission as mortality predictors for 
COVID-19 patients [20]. They have developed a nomogram  

demonstrating good performance and also derived an  
integrated score, ANDC, with its corresponding death 
probability. They have also developed cutoff ANDC values  
to classify COVID-19 patients into three groups: low-, 
moderate-, and high-risk groups. The death probabilities 
were 5%, 5–50%, and more than 50% in the low-, moderate-, 
and high-risk group, respectively. Using a cohort of 444  
patients, Xie et al. [21] proposed a prognostic model using 
lactate dehydrogenase, lymphocyte count, age, and SpO2 
as key predictors of COVID-19-related death. The model 
showed good discrimination for internal and external  
validation with C-statistics of 0.89 and 0.98, respectively. 
Even though the model shows promising performance for 
internal calibration, however, external validation showed 
over- and under-prediction for low-risk and high-risk 
patients, respectively.

Yan et al. [1] reported a machine learning approach to  
select three biomarkers (lactic dehydrogenase (LDH), 
lymphocyte, and high-sensitivity C-reactive protein 
(hs-CRP)) and used them to predict individual patient’s  
mortality in on average 10 days ahead with more than 90%  
accuracy. In particular, high levels of LDH alone have been  
found to play a crucial role in identifying the vast majority  
of cases, which require immediate medical attention. 
However, there is no scoring system reported in this work, 
which can help the clinicians to identify the patients under 
risk quantitatively. Moreover, the claim of 10 days earlier  
prediction is an average matrix while some patients were 
admitted 32 days earlier than their actual outcome and some  
patient died in the same day of admission, and therefore, this  
average matrix will not reflect the performance of the model  
in individual level.

Another clinical study on 82 COVID-19 patients showed 
that respiratory, cardiac, hemorrhage, hepatic, and renal 
injury had caused the death of 100%, 89%, 80.5%, 78.0%, 
and 31.7% patients, respectively. Most of the patients had 
increased CRP (100%) and D-dimer (97.1%) [22]. The 
value of D-dimer as a prognostic factor was also shown to 
significantly increase odds of death if the amount is greater 
than 1 μg mL−1 upon admission [23, 24].

Although several predictive prognostic models are proposed 
for the early detection of individuals at high risk of COVID-19 
mortality, a major gap remains in the design of state-of-the-art 
interpretable machine learning-based algorithms and high-
performance quantitative scoring system to classify the most 
selective predictive biomarkers of patient death. Identifying and 
prioritizing those at severe risks is important for both resource 
planning and treatment therapy. Moreover, the high-risk patients 
should be possible to continuously monitored using a reliable 
scoring tool during their hospital stay-time. Likewise, reducing 
patient admission with very low risk of complications that can 
be handled safely by self-quarantine will help to minimize the 
load on healthcare facilities.
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The aim of the study is to provide a simple, easy-to-use 
and reliable scoring system for the prognosis of risk severity 
of individuals suffering from COVID-19 to stratify them into 
appropriate risk group and provide them necessary health 
support accordingly. Therefore, using the state-of-the-art 
machine learning algorithm, an early warning system for 
mortality risk-prediction using a nomogram-based scoring 
system was developed. We have identified the discriminatory  
biomarkers that contributed the most in the classification 
of death and survival of COVID-19 patients among 76  
biomarkers available in the dataset. The top ranked features 
and the best performing classification model was used to 
develop a multivariable logistic regression-based nomogram 
and validated for the prognosis of death and survival. It was 
also investigated that how useful this model in monitoring 
the death risk of the patients longitudinally.

Methodology

Human Subjects and Study Design

Blood samples collected between 10 January and 18  
February 2020 from 375 patients in Wuhan, China, were 
retrospectively analyzed to identify reliable and relevant 
markers of mortality risk. Medical records were collected 
using standard case report forms, which included information 
on epidemiological, demographic, clinical, laboratory, and 
mortality outcomes. Yan et al. [1] has published the dataset 
along with the article and the original study was approved  
by the Tongji Hospital Ethics Committee.

Patients’ exclusion criteria for the study were: age 
(< 18 years), pregnant, breastfeeding, and missing data 
(> 20%). Out of 375 patients, 187 (49.9%) had fever while 
cough, fatigue, dyspnea, chest distress, and muscular 
soreness were present in 52 (13.9%), 14 (3.7%), 8 (2.1%), 7 
(1.9%), and 2 (0.5%) patients, respectively.

Statistical Analysis

Stata/MP 13.0 software was used for conducting the 
statistical analysis. Gender variation was described using 
number and percentage. Continuous variables, age, and other 
biomarkers were reported with the number of missing data, 
median, mean, and quartiles (Q1, Q3) for each biomarker in 
death, and survival groups. Wilcoxon tests were conducted 
for all continuous variables while the chi-squared test was 
conducted for univariate analysis such as gender. Statistically 
significant difference was defined as a P value < 0.05. There 
were 76 biomarkers present in the original dataset; however, 
14 biomarkers using two-different algorithms were identified 
as promising and are summarized in Table 1. These 14 
biomarkers selected included lactate dehydrogenase 

(LDH), neutrophils (%), lymphocyte (%), high-sensitivity 
C-reactive protein (hs-CRP), serum sodium, eosinophil (%), 
serum chloride, monocyte (%), international normalized 
ratio (INR), activated partial thromboplastin time (APTT), 
high-sensitivity cardiac troponin I, brain natriuretic peptide 
precursor (NT-proBNP), albumin, and mean corpuscular 
hemoglobin concentration (MCHC).

Of the 375 patients, 174 (46.4%) died, while 201 (53.6%) 
patients recovered from COVID-19 and were discharged 
from hospital. Figure  1 summarizes the outcome of 
patients based on their initial conditions: general (197), 
severe (27), and critical (151). The minimal, maximal, and 
median follow-up times (from hospital admission to death 
or discharge) for all 375 patients are 0 days, 35 days, and 
12 days, respectively.

Table 1 summarizes the demographic characteristics, 
clinical characteristics, and clinical outcomes of the subjects 
in the death and survival groups. There were 142 (37.9%) 
patients, who were Wuhan residents, 2 (0.5%) had contact 
with confirmed or suspected patients, 24 (6.4%) were from 
familial cluster, 7 (1.9%) were health workers, 2 (0.5%) had 
contact with Huanan Seafood Market, and 198 (52.5%) had 
no contact history.

Two hundred twenty-four (59.7%) patients were male 
while 151 (40.3%) were female and the mean age of the 
patients was 58.83  years with a standard deviation of 
16.46 years. Even though 76 demographic, laboratory, and 
clinical characteristics were available in the dataset, 14 
biomarkers and two demographic variables were identified 
using feature ranking. Using two different feature ranking 
techniques, two different top-10 features were identified as 
most contributing features (Fig. 2). Some features are found 
common to both the techniques resulting in 15 different 
features contributing most for early prediction of death.

The detailed descriptions of 16 characteristics are listed 
in Table 1. It was found that gender, age, LDH, neutrophils 
(%), lymphocyte (%), hs-CRP, eosinophil (%), monocyte 
(%), INR, high-sensitivity cardiac troponin I, NT-proBNP, 
and albumin had statistically significant differences between 
the groups (P  <  0.05), whereas serum sodium, serum 
chloride, APTT, and MCHC variables were not significantly 
different (P > 0.05) among the two groups. Out of these 16 
characteristics, 12 characteristics were observed statistically 
significant. Therefore, it was important to check the most 
useful variables for the early prediction of death.

Feature Ranking

Even though multiple blood sample data of the patients were 
available, only the data from the first sample were used as 
inputs for model training and validation to identify the key 
predictors of the disease severity. The model also helps 
in distinguishing patients that require immediate medical 
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Table 1   Statistical analysis of the characteristic of the subjects’ data

Item Survived Death Total Method Statistic P value

1 Gender Chi-square test X2 = 21.70 < 0.00001
• Male (%)
• Female (%)

98 (49%)
103 (51%)

126 (72%)
48 (28%)

224 (60%)
151 (40%)

2 Age Rank-sum test Z = − 11 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

201 (0)
50.2 ± 15
51
37, 62
18, 88

174 (0)
68.8 ± 11.8
69
62.2, 77
19, 95

375 (0)
58.8 ± 16.5
62
46, 70
18, 95

3 Lactate dehydrogenase Rank-sum test Z = − 13.18 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

193 (8)
271 ± 102
250
203, 312
119, 799

163 (11)
642 ± 341
567
428, 762
188,1867

356 (19)
441 ± 305
336
239, 564
119, 1867

4 Neutrophils (%) Rank-sum test Z = − 12.88 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
65.7 ± 13.8
66.2
56.5, 75.4
1.7, 95.1

162 (12)
87 ± 9.86
89.5
83.2, 93.7
18.2, 98.7

356 (19)
75.4 ± 16.1
77.5
64.3, 89.2
1.7, 98.7

5 Lymphocyte (%) Rank-sum test Z = 11.97 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
24.8 ± 11.4
23.8
16.6, 33.5
4.1, 60

162 (12)
7.6 ± 6.22
5.8
3.3, 10.1
0, 44.3

356 (19)
17 ± 12.7
14.4
6.1, 25.2
0, 60

6 High-sensitivity C-reactive protein Rank-sum test Z = − 11.93 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
36 ± 44
19
4, 50
0, 237

159 (15)
127 ± 75.5
114
62, 179
4, 320

353 (22)
77 ± 75.4
53
12, 118
0, 320

7 Serum sodium Rank-sum test Z = − 1.57 0.12
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

193 (8)
138.9 ± 3.38
139.2
136.6, 141
125, 146.4

161 (13)
139.9 ± 8.37
138.9
135.8, 143
115.4, 179

354 (21)
139.3 ± 6.18
139
136.3, 142
115.4, 179

8 Eosinophil (%) Rank-sum test Z = 6.63 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
0.7 ± 0.941
0.3
0, 1.1
0, 6.40

162 (12)
0.11 ± 0.38
0.00
0.0, 0.0
0, 3.70

356 (19)
0.44 ± 0.79
0.00
0.00,0.53
0.00, 6.40

9 Serum chloride Rank-sum test Z = − 0.65 0.52
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

193 (8)
100.8 ± 3.8
101.3
98.8, 103.3
85.6, 109.1

161 (13)
101.5 ± 8.56
100.6
97.1, 105.5
71.5, 140

354 (21)
101.1 ± 6.42
101.1
97.9, 103.9
71.5, 140

10 Monocyte (%) Rank-sum test Z = 8.42 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
8.4 ± 3.15
8.2
6.6, 10.1
0.7, 15.8

152 (12)
5.1 ± 4.31
4
2.4, 6.3
0.3, 35.2

356 (19)
6.9 ± 4.08
6.8
3.8, 9.2
0.3, 35.2
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assistance. Research using clinically captured data often 
suffers from missing data challenge leading to either bias 
introduction or negative impact on analytical outcomes. 
Simple approach to handle this challenge is deleting the 

respective rows of data from further analysis. It is stated in 
[25] that this simple approach of deleting rows with missing 
data can sometime lead to loss of valuable information that 
would have been beneficial in the analysis and also can lead 

Table 1   (continued)

Item Survived Death Total Method Statistic P value

11 International standard ratio Rank-sum test Z = − 9.4 < 0.0001

• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

189 (12)
1.055 ± 0.086
1.040
1, 1.1
0.84, 1.33

163 (11)
1.37(1.01)
1.22
1.1, 1.37
0.88, 13.48

352 (23)
1.2 ± 0.709
1.1
1, 1.2
0.8, 13.5

12 Activation of partial thromboplastin time Rank-sum test Z = − 1.2 0.23
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

165 (36)
40.1 ± 5.7
39.9
35.9, 43.5
22, 56.9

133 (41)
41.9 ± 11.4
39.4
35, 45.4
25.3,137

298 (77)
41 ± 8.7
40
36, 44
22, 137

13 Hypersensitive cardiac troponin I Rank-sum test Z = − 5.82 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

141 (60)
12 ± 53.3
3
2, 7
2, 617

146 (28)
1391 ± 5748
41
15, 271
2, 50,000

287 (88)
714 ± 414
11
3, 50
2, 50,000

14 Brain natriuretic peptide precursor (NT-
proBNP)

Rank-sum test Z = − 3.87 < 0.0001

• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

128 (73)
1039 ± 6620
65
23, 178
5, 70,000

139 (35)
2806 ± 5906
827
362, 2402
24, 45,850

267 (108)
1959 ± 6308
271
68, 935
5,70,000

15 Albumin Rank-sum test Z = 10.64 < 0.0001
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

193 (8)
37.1 ± 4.53
37.4
34.2, 40.2
22.6, 48.6

163 (11)
30.3 ± 4.22
30.1
27.6, 33
18.5, 40.9

356 (19)
34 ± 5.57
34.2
29.9, 38.3
18.5, 48.6

16 Mean corpuscular hemoglobin concentration Rank-sum test Z = − 2.27 0.023
• N (missing)
• Mean ± SD
• Median
• Q1, Q3
• Min, max

194 (7)
343 ± 13.9
344
335, 351
306,416

162 (12)
346 ± 18.7
346
337,354
299,488

356 (19)
345 ± 16.3
345
336, 352
299, 488

17 Outcome (%) 201(54%) 174(46%) 375

Fig. 1   Patients’ outcome tree 
with the initial condition of the 
patients in admission

375 patients with outcome 

of survival and death

Survived- 185 Died-12

General-197 Severe-27 Critical-151

Survived- 13 Died-14 Survived- 3 Died-148
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to biased estimates. If the dataset is large, deleting the rows 
will have less impact on the missing variables; however, in 
this study, there are only 375 patients’ data available, and 
therefore, discarding rows of missing data will significantly 
affect the model performance.

There are many popular data imputation techniques 
to deal with the missing data. Multiple imputation using 
chained equations (MICE) data imputation technique is the 
most popular technique for clinical data imputation [26]. 
MICE technique uses multiple regression models to predict 

Fig. 2   Comparison of the top-ranked 10 features identified using Multi-Tree XGBoost algorithm from data imputed using MICE (top) and (− 1) 
(bottom)
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the missing data depending on the other available variables 
in the dataset. The technique also takes into account the 
datatype of the missing variables while imputing. Binary 
variables are predicted using logistic regression while 
continuous variables were predicted using predictive mean 
matching [25]. The imputed data is then normalized using 
“Z score” [27, 28]. Yan et al. [1] have released the database 
of 76 biomarkers from 375 infected patients of China 
and developed a prognostic model for the mortality risk 
of COVID-19 patients. In their study, missing data were 
padded by “− 1” as also commonly used by the researchers 
and normalized by Z score. In this study, the two different 
data imputation techniques are compared: imputation by − 1 
and imputation using MICE technique. In both the cases, 
normalization was carried out using Z score technique.

Each of the 76 parameters of the dataset, after data 
imputation, was assessed to take decisions and identify 
the top-14 biomarkers in addition to age and gender, to 
obtain the top-ranked biomarkers as mortality predictors. 
Two different sets (top 10 features) were identified using 
Multi-Tree Extreme Gradient Boost (XGBoost) technique 
[29], according to their importance from the best imputation 
approach discussed above. The importance of each 
individual feature in XGBoost is from its accumulated use in 
each decision step in trees. The approach is extremely useful 
when dealing with clinical parameters [1, 30]. Initially, 
default settings of XGBoost was used, i.e., maximum 
depth  =  4, learning rate  =  0.2, tree estimators  =  150, 
regularization parameter α  =  1, and “subsample” and 
“colsample bytree” both set to 0.9 to avoid overfitting for 
cases with many features and limited sample size [1, 31].

Development and Validation of the Logistic 
Regression Model in Classifying the Outcome

Logistic regression is a model used commonly in medical 
statistics and is a statistical learning technique categorized 
in supervised’ machine learning (ML) methods dedicated 
to classification tasks [32]. It is really useful when we wish 
to estimate the probability of a bipartite outcome such as 
survival or death of a patient [33]. The logistic function is a 
sigmoid function and shrinks real value continuous inputs into 
a probability. They also make the independent values more 
resistant to deviations from normality and thus more consistent 
coefficients [32]. Therefore, this study uses a supervised logistic 
regression classifier [34] as the predictor model.

Receiver operating characteristic (ROC) curves for the test 
data were used to calculate area under the curve (AUC) for the 
predictor variables separately and also in combination. The 
AUC values helped in order to evaluate the performance of 
different top ranked features in classifying death and survival 
cases. After getting the top ranked features, the logistic 
regression classifier, discussed in the previous paragraph, was 

evaluated for different combinations of features as input to the 
model. The different combination models were validated using 
fivefold cross-validation (80% data were used for training and 
validation while remaining 20% data were used for testing and 
this is repeated 5 times). The performance of different models 
were evaluated using several performances metrics including 
sensitivity, specificity, positive likelihood ratio (PLR) and 
negative likelihood ratio (NLR) using testing dataset. Per-
class values were computed over the overall confusion matrix 
that accumulates all test (unseen) fold results of the fivefold 
cross-validation.

In the above Eqs. , true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) were used to denote 
the number of died patients identified as died, the number of 
survivors identified as survivors, the number of survivors 
incorrectly identified as died patients, and the number of died 
patients incorrectly identified as survivors, respectively.

Development and Validation of Logistic 
Regression‑Based Nomogram in the Outcome 
Prediction

A diagnosis nomogram was constructed using Stata/MP 
software version 13.0 and Nomolog (developed by Alexander 
Zlotnik) [35], based on multivariate logistic regression 
analysis. Logistic (logit) regression estimates the parameter 
in the form of a binary regression. Logistic regression works 
with probability, odds and regression. In the binary logistic 
model, there is an outcome/indicator variable which has two 
possible values. The outcome variable is a dependent variable 
which is typically labeled as “0” and “1” where “0” represent 
survival and “1” represents death in this case. The odds are 
the ratio of the probability (P) of an event happening to the 
probability of not happening, as shown in Eq. 5. Although 
the probability can vary between 0 and 1, the odds can vary 
between 0 and ∞. In logistic regression, the logarithm of odds 

(1)Sensitivityclassi =
TPclassi

TPclassi
+ FNclassi

(2)Specificityclass_i =
TNclass_i

TNclass_i + FPclass_i

(3)PLRclass_i =
Sensitivityclassi

1 − Specificityclass_i

(4)NLRclass_i =
1 − Sensitivityclassi

Specificityclass_i

whereclassi = suvival and death.
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is a linear combination of one or more independent variables 
(“predictors”) which can be a binary variable (e.g., gender) and 
continuous variable (e.g., age). The log-odds can be termed as 
linear prediction (LP), as shown in Eq. 6, and can be related 
to the probability of a particular outcome. Equations  are used 
to create relationship between death probability and the key 
predictors using logistic regression.

The top-ranked features (independent variables) showing 
best AUC was used for creating the logistic regression-based 
nomogram. The entire dataset was divided into training (70%) 
and validation (30%) sets. Calibration curves for internal (with 
development set) and external (with validation set) validation 
were plotted to compare predicted and actual death probability 
of patients with COVID-19. Decision curve analysis (DCA) 
was carried out to identify the threshold values in which 
nomograms were clinically useful, using Stata software.

Development and Validation of Early Warning Score

The parameters were drawn as a numerated horizontal axis scale 
and the values for the patient are put on the numerated scale. 
A vertical line was drawn down from the different parameter 
numerated arranged scales downward to a score axis. All five 
scores on the score axis were added to make a total score, and 
this was linked to a death probability. It can be noted that accord-
ing to the nomogram, higher score corresponds to a higher death 
probability. The model was designed using the initial blood sam-
ple of the patients. However, it can be applied to the biomarkers 
collected in later during the hospital stay period of the patients to 
predict death probability longitudinally using the LNLCA score.

Results

This section will discuss (a) the performance comparison 
of the two imputation techniques, (b) validation of the nom-
ogram in predicting death using the best data imputation 
technique and the five top ranked features, and finally (c) 
evaluates the prognostic model.

(5)odds =
P

1 − P

(6)
LP = ln(odds) = ln

(

P

1 − P

)

= b0 + b1x1 + b2x2 +⋯ + bnxn

(7)
P

1 − P
= eb0+b1x1+b2x2+⋯+bnxn = eLP

(8)P =
eLP

1 + eLP
=

1

1 + e−LP

Performance Comparison of Two Imputaiton 
Techniques

To identify the best data imputation technique and to 
determine the most contributing independent variables  
associated with death, data imputed with two different 
techniques were investigated with top-1, top-2, and up to 
top-10 features in each case of imputed data. It is clear from  
the Fig. 3 that top-ranked 5 features produced highest AUC 
of 0.97 for data imputed using MICE algorithm while top-
ranked 3 features produced highest AUC of 0.95 for the 
data imputed using − 1 (Fig. 3). Table 2 shows the overall 
accuracies and weighted average performance for other 
matrices for different models using top 1 to 10 features 
for fivefold cross-validation using the logistic regression 
classifier along with the confusion matrices for each case.

Top-ranked 5 features using MICE data imputation 
showed better performance than the top-ranked 4 features for 
the data imputed by (− 1). Therefore, in the rest of the study, 
5 top-ranked MICE imputed independent variables—lactate 
dehydrogenase, neutrophils (%), lymphocyte (%), high- 
sensitivity C-reactive protein, and age (in short LNLCA)—
were used for nomogram creation and scoring technique 
development and validation.

Evaluation of Nomogram in Predicting Death

A multivariate logistic regression-based nomogram for 
predicting early COVID-19 mortality was built using top-
ranked five biomarkers that were found important both 
statistically and using ML-based classifier (as shown in 
Tables 1 and 2 and Fig. 3). The relationship between linear 
prediction of death and these biomarkers was evaluated using 
multivariable logistic regression with bootstrapping (1000 
repetition) which is reported in Table 3. Regression coefficient, 
z value, standard error and its statistical significance along 
with 95% confidence interval are shown in Table 3. z Value 
is the ratio of regression coefficient and its standard error. 
Typically z value indicates the strong and weak contributors 
in logistic regression. The higher z values (either positive/
negative) represent a strong contributor while values close to 
0 represent a weak contributor. Therefore, out of 5 variables, 
neutrophil (%) is not a very strong predictor while age 
and lactate dehydrogenase are strong contributors. A null 
hypothesis of particular regression coefficient can determine 
the P value to relate the significance of a particular X variable 
in relationship to the Y variable. The X variables for which P 
is less than 0.05 have significant relationship to Y variables. 
This also reflects that the neutrophils (%) are weakly related 
to Y variable. However, the logistic regression classifier shows 
that 5 variables outperform than 4 variables. Therefore, no 
variable was discarded out of these 5 variables in developing 
the nomogram.
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According to Fig. 4, the calibration plot graphed closely 
toward the diagonal line both for internal and external validation 
which were indicative of the reliable model. It is evident from 
Fig. 5 that the net benefit of every single predictor model is 
positive until threshold of 0.85. This indicates that all of them 
contributed to the prediction of outcomes. Interestingly, the full 
model demonstrated the best performance which also confirmed 
the need to combine five predictors in the model.

As shown in Fig. 6, the nomogram is comprised of 8 rows 
while rows 1–5 are representing independent variables. For 
each variable, an assigned score was obtained by drawing a 
downward vertical line from the value on the variable axis to 
the “points” axis using COVID-19 patient data. The points of 
the five variables correspond to score (row 6), and the scores 
were added up to the total score, as shown in row 8. Then, a 
line could be drawn from the “Total Score” axis to the “Prob” 
axis (row 7) to determine the death probability of COVID-19 
patients. However, it is useful to derive the mathematical equa-
tions explaining the total score, linear prediction, and death 
probability based on which the LNLCA score is calculated, 
using the similar equations derived earlier in Eqs. 5–8:

(9)

Linear prediction = − 3.662636 + 0.0735038 × age (years)

+ 0.0110451 × hsCRP
(mg

L

)

− 0.1624422 × lymphocyte(%)

− 0.0327053 × neutrophils(%)

+ 0.0070514 × lactate dehydrogenase(
u

L
)

The corresponding probability of death for a given LNLCA 
score was determined from the model and is listed in Table 4. 
In particular, LNLCA score cutoff values of 10.4 and 12.65 
correspond to 5% and 50% of death probability (based on [20]); 
thus, these values can be used to stratify COVID-19 patients 
into three groups: low-, moderate-, and high-risk groups. The 
death probability were less than 5%, between 5 and 50%, and 
more than 50% for low-risk group (LNLCA < 10.4), moderate-
risk group (10.4 ≤ LNLCA ≤ 12.65), and high-risk group 
(LNLCA > 12.65), respectively.

Performance Evaluation of the Model

Figure  7 shows an example nomogram-based scoring 
system for a COVID-19 patient with the variable values 
at admission. Individual score for each predictor was 
calculated and added to produce total score, and death 
probability was calculated to 80%. This can be done as early 
as 9 days before the death of the patient.

Furthermore, we have categorized the patients from training 
and testing subgroups into three subgroups (low, moderate, and 
high risk) by associating actual outcome with the predicted 
outcome using the LNLCA score. For training set (Table 5), the 
proportions of death were 0% (0/83) for low-risk group, 22.6% 
(12/53) for moderate-risk group, and 88.1% (111/126) for high-
risk group while for test set (Table 6), the proportions of death 

(10)Death probability = 1∕(1 + exp (−linear prediction))

Fig. 3   Comparison of the receive operating characteristic (ROC) plots for top-ranked 1 up to 10 features using the data imputation using MICE 
(left) and (− 1) (right) while feature selection and classification techniques were same
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were 0% (0/41) for low-risk group, 22.7% (5/22) for moderate-
risk group, and 94% (3/50) for high-risk group. It was found 
that the true death rates were significantly different (P < 0.001) 
among the three subgroups. Therefore, this nomogram-based 
scoring technique can be used to early predict patients’ outcome 
to categorize them into low-, moderate-, and high-risk groups 
as shown in Table 4 and prioritize the moderate- and high-risk 
group patients.

There were 52 patients in the test set who had an outcome 
of death after different duration of hospital stay. Some patients 
were hospitalized in very late stages while some other patients 
were admitted in the early stages. The minimum, maximum, 

mean (± standard deviation), and median of hospital admission 
to death for the test data set were 3.68, 760.92, 249.2 ± 227.55, 
and 172.79 h, respectively. Most patients out of the 375 patients 
of the cohort had multiple blood samples taken throughout 
their hospital stay. LNLCA model-based prediction score was 
calculated on the admission and also calculated for the next 
available samples and identified when the model is predicting 
the patient in high-risk group in the earliest possible time after 
admission. Figure 8 shows the difference in hours between 
hospital admissions to the event of death and also shows when 
the model can predict the potential outcome with 100% accuracy. 
It was evident from Fig. 8 that the model can predict the outcome 

Table 2   Comparison of the average performance matrix and confusion matrix from five-fold cross-validation for top1 to 10 features using data 
imputation using (-1) (A) and mice (B)

Weighted average (95% confidence interval) Confusion matrix

Sensitivity Specificity PLR NLR Death Survived

TP FN FP TN

A (imputation using − 1)
  Top 1 feature 87 ± 3.92 87.4 ± 3.01 7.4 ± 4.1 0.15 ± 0.1 142 32 14 187
  Top 2 features 88.04 ± 3.13 88 ± 3.5 8.1 ± 5.1 0.14 ± 0.08 148 26 17 184
  Top 3 features 90 ± 3.8 88.9 ± 3.78 9.3 ± 6.9 0.12 ± 0.09 155 19 19 182
  Top 4 features 90.5 ± 3.92 90.7 ± 3.72 11.8 ± 10.1 0.10 ± 0.09 157 17 18 183
  Top 5 features 90.1 ± 3.6 90.03 ± 3.5 10.5 ± 7.9 0.11 ± 0.086 155 19 18 183
  Top 6 features 90.08 ± 2.7 90 ± 2.4 9.63 ± 5.1 0.11 ± 0.06 154 20 19 182
  Top 7 features 89.8 ± 2.3 90.16 ± 3.4 10.5 ± 7.5 0.12 ± 0.05 156 18 21 180
  Top 8 features 89.3 ± 3.6 89.1 ± 3 8.96 ± 5.5 0.12 ± 0.08 155 19 21 180
  Top 9 features 89.6 ± 3.2 88.9 ± 3.5 9.06 ± 6.2 0.11 ± 0.07 153 21 20 181
  Top 10 features 89.01 ± 3.3 89.01 ± 4 9.46 ± 7.3 0.13 ± 0.083 154 20 21 180

B (imputation using MICE)
  Top 1 feature 88.2 ± 7.4 87.6 ± 3.5 7.91 ± 5.6 0.13 ± 0.17 143 31 13 188
  Top 2 features 87.7 ± 4.4 87.01 ± 3.5 7.37 ± 4.6 0.14 ± 0.11 145 29 17 184
  Top 3 features 87.1 ± 3.5 87 ± 4.1 7.53 ± 5.2 0.15 ± 0.09 148 26 22 179
  Top 4 features 89.2 ± 2.8 89 ± 3.2 8.93 ± 5.6 0.12 ± 0.07 155 19 22 179
  Top 5 features 92 ± 2.6 92 ± 3 13.52 ± 10.6 0.09 ± 0.06 160 14 16 185
  Top 6 features 92.3 ± 2.45 92 ± 4.1 15.86 ± 16.5 0.085 ± 0.06 162 12 17 184
  Top 7 features 90.2 ± 5 90.6 ± 3.5 11.37 ± 9.3 0.11 ± 0.12 158 16 22 179
  Top 8 features 89.9 ± 4.8 90.2 ± 3.8 11.02 ± 9.3 0.11 ± 0.11 158 16 23 178
  Top 9 features 89.2 ± 2.8 89.03 ± 3.2 8.97 ± 5.6 0.12 ± 0.07 155 19 22 179
  Top 10 features 88 ± 3.4 89.6 ± 3.7 9.82 ± 7.5 0.14 ± 0.08 156 18 23 178

Table 3   The logistic regression 
analysis to construct the 
nomogram for death prediction

Outcome Coef Std. err z P >|z| [95% conf. interval]

Lactate dehydrogenase 0.0070514 0.0017099 4.12 0.000 0.0037001 0.0104027
Neutrophils − 0.0327053 0.0568836 − 0.57 0.565 − 0.1441951 0.0787845
Lymphocyte − 0.1624422 0.0806231 − 2.01 0.044 − 0.3204607 − 0.0044238
High-sensitivity CRP 0.0110451 0.0043462 2.54 0.011 0.0025267 0.0195635
Age 0.0735038 0.0185211 3.97 0.000 0.0372032 0.1098045
_cons − 3.662636 5.65169 − 0.65 0.517 − 14.73975 7.414473
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of 52 patients within several hours after admission for most 
of the patients. The minimum, maximum, mean (± standard 
deviation), and median of model’s high-risk prediction to death 
for the test data set were 3.68, 756.11, 239.85 ± 228.56, and 
156.36 h, respectively. The model can even predict 31.5 days 
in advance for a patient about the outcome with a probability 
of 97%. This early prediction suggests that, where a patient’s 
condition deteriorates, the clinical route is able to give an early 
warning to clinicians several days in advance.

Discussion

Yan et  al. [1] have ranked three biomarkers (lactic 
dehydrogenase (LDH), lymphocyte and high-sensitivity 
C-reactive protein (hs-CRP)) and used them to predict 
individual patients’ mortality using machine learning 
model. However, there is no scoring system reported in this 
work, which can help the clinicians to identify the patients 
under risk quantitatively. Current study investigated the 

Fig. 4   Calibration plot comparing predicted and actual death probability of patients with COVID-19. a Internal validation. b External validation

Fig. 5   Decision curves analysis 
comparing different models to 
predict the death probability of 
patients with COVID-19. The 
net benefit balances the mortal-
ity risk and potential harm from 
unnecessary over-intervention 
for patients with COVID-19
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relationship between the disease severity and the different 
clinical biomarkers and developed a scoring system to 

stratify the severity of the patients so that clinicians can 
identify the patients under risk easily.

Ten predictors were identified by Multi-Tree XGBoost 
algorithm as death probability predictors based on the data 
acquired at hospital admission time. Two different prediction 
models were compared while missing data were imputed using 
− 1 and using MICE algorithm. Ten different classification 
models were trained, validated, and tested for top 1 to 10 features 
using two different techniques. It was observed from the AUC 
and performance matrices that the MICE-based technique 
outperforms other approach with an AUC = 0.97 achieved for 5 
top-ranked features. Then, a logistic regression-based nomogram 
was developed using these five variables. An integrated score 
(LNLCA) with corresponding likelihood of death was obtained 
for the early stratification of COVID-19 patients based on the 
severity prediction. This can help to effectively the use the 
healthcare facilities without overloading their capability.

Age was identified as a key predictor of mortality in previ-
ous studies on coronavirus family such as SARS [36], Mid-
dle East respiratory syndrome (MERS) [37], and COVID-19 
[38]. This study has also concluded similar findings, and this 

Fig. 6   Multivariate logistic regression-based nomogram to predict the probability of death. Nomogram for prediction of death was created using 
the following five predictors: lactate dehydrogenase, neutrophils (%), lymphocytes (%), high-sensitivity C-reactive protein, and age

Table 4   LNLCA score from nomogram and corresponding death 
probability of COVID-19 patients

Patient group LNLCA score Death probability

7.45 0.001
Low 9.2 0.01

10.4 0.05
10.95 0.1
11.6 0.2

Moderate 11.99 0.3
12.4 0.4
12.65 0.5
12.95 0.6
13.3 0.7
13.7 0.8

High 14.3 0.9
14.8 0.95
16.2 0.99
17.85 0.999
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is because with the older age the immunosenescence and/
or multiple medical conditions tend to make patients more 
prone to critical COVID-19 illness [20].

Yan et al. [17] showed that in patients with severe pul-
monary interstitial disease, there is a significant increase of 

LDH and can be associated with indications for lung injury 
or idiopathic pulmonary fibrosis [39]. Consistent results 
from the previous research were also found in this study, in 
which critically ill patients with COVID-19 had elevated lev-
els of LDH, suggesting an increase in activity and severity of 

Example 
PatientID-241

Age – 70

Neutrophils(%) – 89.2

Lymphocyte (%) – 6.7

Lactate Dehydrogenase  - 495

hsCRP – 26.3

0.2 0.25 2.65 3.95 6.65

Total score = 0.2 + 0.25 + 2.65 + 3.95 + 6.65 = 13.7 

Death Probability = 80%
Low-risk Moderate-risk High-risk

Fig. 7   An example nomogram-based score to predict the probability of death of a COVID-19 patient from test set (9 days before the actual out-
come)

Table 5   Association between different risk groups and actual out-
come in the training cohort using Fisher exact probability test

P value among three group is less than 0.001
P value of Low-risk group vs Moderate-risk group is less than 0.001
P value of Low-risk group vs High-risk group is less than 0.001
P value of Moderate-risk group vs High-risk group is less than 0.001

Risk category Outcome Overall

Alive Death

Low-risk 83 (100.0%) 0 (0%) 83 (100.0%)
Moderate-risk 41 (77.36%) 12 (22.64%) 53 (100.0%)
High-risk 15 (11.9%) 111 (88.1%) 126 (100.0%)
Overall 139 (53%) 123 (47%) 262 (100.0%)

Table 6   Association between different risk groups and actual out-
come in the testing cohort using Fisher exact probability test

P value among three group is less than 0.001
P value of Low-risk group vs Moderate-risk group is 0.0037
P value of Low-risk group vs High-risk group is less than 0.001
P value of Moderate-risk group vs High-risk group is less than 0.001

Risk category Outcome Overall

Alive Death

Low-risk 41 (100%) 0 (0%) 41 (100.0%)
Moderate-risk 17 (77.27%) 5 (22.73%) 22 (100.0%)
High-risk 3 (6%) 47 (94%) 50 (100.0%)
Overall 61 (54%) 52 (46%) 113 (100.0%)
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lung injury. LDH is an intracellular enzyme that leaks from 
damaged cells due to infection and viral replication leading 
to elevated levels in circulation.

Recently, Liu et  al. [40] proposed that increased 
neutrophil-to-lymphocyte ratio (NLR) can aid in the early 
prediction of the severity of COVID-19 illness. Both 
neutrophils and lymphocytes are critical components of 
the immune system and play very important role in host 
defense and clearing infections. Lymphopenia, medical 
condition due to lower number of lymphocytes in the blood, 
is a typical feature in COVID-19 patients and may be a key 
factor in disease severity and mortality [41]. In this study, we 
have used neutrophil and lymphocyte percentage and similar 
to the previous studies have found that lower percentage of 
these two quantities were associated with severe COVID-
19 patients. According to previous research, patients with 
community-acquired pneumonia have significant immune 
system activation and/or immune dysfunction leading to 
changes in these quantities [41]. In addition, on the event of 
immunosuppression and apoptosis of lymphocytes caused 
by specific anti-inflammatory cytokines, bone marrow 
circulates neutrophils [42], resulting in an increased NLR. 
However, in contrast to other models, it was observed in this 
study, both the parameters were small for high-risk patients.

Lu et  al. [43] stated that CRP tested upon admission 
may assist in predicting confirmed or suspected short-term 
mortality associated with COVID-19. CRP is an acute phase 
protein formed by hepatocytes caused by leukocyte-derived 

cytokines induced by infection, inflammation, or tissue 
damage [44–46]. Similar findings were found in this study 
where increased CRP rates were measured at admission for 
the high mortality risk COVID-19 patients. This indicated 
that these patients developed a serious lung inflammation or 
possibly a secondary bacterial infection, and clinical antibiotic 
treatment might be appropriate for those patients [1].

Non-survivors in our study had low lymphocyte and 
neutrophil percentages, higher age, hs-CRP, and LDH 
than those of survivors. In addition to the dysregulation 
of the coagulation system and immune system, it can be 
seen that COVID-19 severity was significantly linked to the 
inflammatory response to the infection. This could lead to 
other worse medical consequences like ARDS, septic shock, 
and coagulopathy. Therefore, this kind of prognostic model 
will aid in the development of a rational and personalized 
therapeutic plan for the patients with critical illness.

Weng et  al. [20] recently suggested that age, NLR, 
D-dimer, and CRP were individual key predictors correlated 
with death probability. These key predictors were used to 
create a nomogram for death prediction due to COVID-
19. In our research, the five key predictors recorded at 
admission were chosen by the XGBoost feature selection 
to create a nomogram-based prognostic model that exhibits 
excellent calibration and discrimination in predicting death 
probability of COVID-19 patients. It was also validated by 
an unseen validation cohort. Moreover, it was verified with 
multiple blood sample data collected from the patients 

Fig. 8   Estimation of the predic-
tion of the patients’ outcome for 
52 test patients with death out-
come. The model was trained 
on the data present at admis-
sion, and multiple samples from 
a patient were used to predict 
the patient to be in high-risk 
group in the earliest time after 
admission. Note: “0” denotes 
the death outcome event for 
each patient, and vertical lines 
represent the time of admission 
with respect to death. Solid 
red line starts from the earliest 
prediction time point of death 
prediction, and the dotted line 
represents the delay between 
admission and death prediction 
by the model using the LNLCA 
model
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during their hospital stay and the model holds valid for 
those cases as well. The AUC values for development and 
validation cohort showed a strong distinction of 0.961 
and 0.991, respectively, using the proposed nomogram, 
which is, to the best of our knowledge, outperforms any 
other nomogram-based models for COVID-19 mortality 
prediction. In addition, this nomogram-derived LNLCA 
score offered a simple, easy-to-understand, and interpretable 
early detection tool for stratifying the high-risk COVID-
19 patients at admission and thereby assist their clinical 
management. COVID-19 patients were categorized into 
three risk groups with varying risk of death using LNLCA 
score measured and calculated at admission. Low-risk 
group cases could be isolated and treated in an isolation 
center while the moderate-risk patients could be treated 
isolation ward in a specialized hospital. On the other hand, 
patients in high-risk group could be under close monitoring 
and should be moved to critical medical services or ICU for 
urgent treatment if required.

This study has scope for further improvement, which 
will be carried out in the future work. Firstly, the study 
motivates the possibility of research on COVID-19 
clinical data helping in early mortality prediction but 
the proposed machine learning method is purely data-
driven and may vary if starting from different datasets. 
The model can be further improved with the help of a 
larger dataset. Secondly, the modelling principle adopted 
here is to have a minimal number of features for accurate 
predictions to avoid overfitting, which can be revised 
with several other models to identify any other sets of 
best features on a multi-center and multi-country data to 
produce a generalized model.

Conclusion

In summary, based on multiple risk factors (lactate 
dehydrogenase, neutrophils (%), lymphocytes (%), high-
sensitivity C-reactive protein, and age), our developed 
nomogram can predict the prognosis of patients with COVID-
19 with good discrimination and calibration. The model can 
predict the patient’s outcome far ahead of the day of primary 
clinical outcome with very high accuracy. Therefore, the 
application of LNLCA would help clinicians make an efficient 
and optimized patient stratification management plan without 
overloading the healthcare resources and also reduce the 
death with improved and planned response. A Web-based 
application is created using the model which can be used 
by the clinicians to take benefit of the model (https://​www.​
opena​sapp.​net/​portal#​!/​client/​app/​23092​20f-​105e-​4e7d-​9fe0-​
51cbe​f5bb1​8c). The authors also plan to further improve the 
performance of the model with the help of larger dataset with 
multicenter and multicountry data.
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