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Abstract
We analyse the memory capacity of a delay-based reservoir computer with a Hopf normal form as nonlinearity and
numerically compute the linear as well as the higher order recall capabilities. A possible physical realization could be a
laser with external cavity, for which the information is fed via electrical injection. A task-independent quantification of
the computational capability of the reservoir system is done via a complete orthonormal set of basis functions. Our results
suggest that even for constant readout dimension the total memory capacity is dependent on the ratio between the information
input period, also called the clock cycle, and the time delay in the system. Optimal performance is found for a time delay
about 1.6 times the clock cycle.

Keywords Lasers · Reservoir computing · Nonlinear dynamics

Introduction

Reservoir computing is a machine learning paradigm [1]
inspired by the human brain [2], which utilizes the natural
computational capabilities of dynamical systems. As a
subset of recurrent neural networks it was developed to
predict time-dependent tasks with the advantage of a very
fast training procedure. Generally the training of recurrent
neural networks is connected with high computational cost
resulting e.g. from connections that are correlated in time.
Therefore, problems like the vanishing gradient in time arise
[3]. Reservoir computing avoids this problem by training
just a linear output layer, leaving the rest of the system (the

This article belongs to the Topical Collection: Trends in Reservoir
Computing
Guest Editors: Claudio Gallicchio, Alessio Micheli, Simone
Scardapane, Miguel C. Soriano

� Felix Köster
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reservoir) as it is. Thus, the inherent computing capabilities
can be exploited. One can divide a reservoir into three
distinct subsystems, the input layer, which corresponds to
the projection of the input information into the system,
the dynamical system itself that processes the information,
and the output layer, which is a linear combination of the
system’s states trained to predict an often time-dependent
task.

Many different realizations have been presented in the
last years, ranging from a bucket of water [4] over field
programmable gate arrays (FPGAs) [5] to dissociated neural
cell cultures [6], being used for satellite communications
[7], real-time audio processing [8, 9], bit-error correction
for optical data transmission [10], amplitude of chaotic laser
pulse prediction [11] and cross-predicting the dynamics of
an injected laser [12]. Especially opto-electronic [13, 14]
and optical setups [15–19] were frequently studied because
their high speed and low energy consumption make them
preferable for hardware realizations.

The interest in reservoir computing was refreshed
when Appeltant et al. showed a realization with a single
dynamical node under influence of feedback [20], which
introduced a time-multiplexed reservoir rather than a
spatially extended system. A schematic sketch is shown in
Fig. 1. In general the delay architecture slows down the
information processing speed but reduces complexity of
the hardware. Many neuron based, electromechanical, opto-
electronic and photonic realizations [21–26] showed the
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Fig. 1 Schematic sketch of time-multiplexed reservoir computing
scheme. The input is preprocessed by multiplication with a mask that
induces the time-multiplexing and is then electrically injected. The
laser in our case is governed by a Hopf normal form. The output
dimension of the system is in this example 4

capabilities from time series predictions [27, 28] over an
equalization task on nonlinearly distorted signals [29] up to
fast word recognition [30]. More general analysis showed
the general and task-independent computational capabilities
of semiconductor lasers [31]. A broad overview is given in
[32, 33].

In this paper we perform a numerical analysis of the
recall capabilities and the computing performance of a
simple nonlinear oscillator, modelled by a Hopf normal
form, with delayed feedback. We calculate the total memory
capacity as well as the linear and nonlinear contributions
using the method derived by Dambre et al. in [34].

The paper is structured as follows. First, we shortly
explain the concept of time-multiplexed reservoir comput-
ing and give a short overview of the method used for
calculating the memory capacity. After that we present our
results and discuss the impact of the delay time on the
performance and the different nonlinear recall contributions.

Methods

Traditionally, reservoir computing was realized by ran-
domly connecting nodes with simple dynamics (for example
the tanh-function [1]) to a network, which was then used
to process information. The linear estimator of the readouts
is then trained to approximate a target, e.g. predict a time-
dependent task. The network thus transforms the input into
a high dimensional space in which the linear combination
can be used to separate different inputs, i.e. to classify the
given data.

In the traditional reservoir computing setup a reaction
from the system sn = (s1n, s2n, . . . , sMn) ∈ R

M is recorded
together with the corresponding input un and the target on.
In this case n is the index for the nth input-output training
datapoint, ranging from 1 to N , and M is the dimension
of the measured system states. The goal for the reservoir
computing paradigm is to approximate the target on as close
as possible with linear combinations of the states sn for all
input-output pairs n, meaning that

∑M
m=1 wmsmn = ôn ≈

on for all n, where w = (w1, w2, . . . , wM) ∈ R
M are the

weights to be trained. We want to find the best solution
for

s · w ≈ o, (1)

where s ∈ R
N ×R

M is the state matrix defined by all system
state reactions sn to their corresponding inputs un, w are the
weights to train and o ∈ R

N is the vector of targets to be
approximated. This is equivalent to a least square problem
which is analytically solved by [35]

w = (sT s)−1sT o. (2)

The capability of the system to approximate the target
task can be quantified by the normalized root mean square
difference between the approximated answers ôn and the
targets on

NRMSE =

√
√
√
√
√

N∑

n=1
(on − ôn)2

N · var(o)
, (3)

where NRMSE is the normalized root mean square error of
the target task with var(o) being the variance of the target
values o = (o1, o2, . . . , oN) and N the number of sample
points. An NRMSE of 1 indicates that the system is not
capable of approximating the task better than approximating
the mean value, a value NRMSE = 0 indicates that it is able
to compute the task perfectly. For a successful operation
N � M needs to be fulfilled, where M is the number
of output weights wm and N is the number of training
data points. This corresponds to a training data set of
size N being significantly bigger than the possible output
dimension M to prevent overfitting.

Appeltant et al. introduced in [20] a time-multiplexed
scheme for applying the reservoir computing paradigm on
a dynamical system with delayed feedback. In this case,
the measured states for one input-output pair reaction sn =
(s1n, s2n, . . . , sMn) are recorded at different times tm =
tn + mθ , with m = 1, 2, . . . ,M , where tn is the time
at which the nth input un is fed into the system. θ is
describing the distance between two recorded states of the
system and is called the virtual node separation time. The
time between two inputs tn+1 − tn is called the clock
cycle T and describes the period length in which one input
un is applied to the system. To get different reactions
between two virtual nodes a time-multiplexed masking
process is applied. The information fed into the system is
preprocessed by multiplying a T -periodic mask g on the
inputs (see sketch Fig. 1), which is a piecewise constant
function consisting of M intervals, each of length θ . This
corresponds to the input weights in the spatially extended
system with the difference that now the input weights are
distributed over time.

Dambre et al. showed in [34] that the computational
capability of a system can be quantified completely via a
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complete orthonormal set of basis functions on a sequence
of inputs un = (. . . , un−2, un−1, un) at time n. In this case
the index indicates the input �n time steps ago. The goal
is to investigate how the system transforms the inputs un.
For this the chosen basis functions z(un), forming a Hilbert
space, are constructed and used to describe every possible
transformation on the inputs un. The system’s capability to
approximate these basis functions is evaluated. Consider the
following examples: The function z(un) = un−5 is chosen
as a task on. This is a transformation of the input sequence
5 steps back. The question this task asks is, how well the
system can remember the input 5 steps ago. Another case
would be on = z(un) = un−5un−2, asking how well it
can perform the nonlinear transformation of multiplying the
input 5 steps into the past with the input 2 steps into the past.
A useful quantity to measure the capability of the system is
the capacity defined as

C = 1 − NRMSE2. (4)

A value of 1 corresponds to the system being perfectly
capable of approximating the transformation task and 0
corresponds to no capability at all. A simpler method, giving
equal results like Eq. (4) developed by Dambre et al. in [34]
to calculate C is given by

C = oT s(sT s)−1sT o

‖o‖2 N2
, (5)

where T indicates the transpose of a matrix and −1 the
inverse. We use Eq. (5) to calculate the memory capacity.

In this paper we use finite products of normalized
Legendre polynomials Pd�n as a full basis of the constructed
Hilbert space for each input step combination. d is the order
of the used Legendre polynomial and �n the �nth step
into the past passed as value to the Legendre polynomial.
Multiplying a set of those Legendre polynomials gives the
target task y{d�n}, which yields (see example below for
clarification)

y{d�n} = ��nPd�n(u−�n). (6)

This is directly taken from [34]. It is important that the
inputs to the system are uniformly distributed random
numbers un, which are independent and identically drawn
in [−1, 1] to match the used normalized Legendre
polynomials. To calculate the memory capacity MCd for a
degree d, a summation over all possible past input sets is
done

MCd =
∑

{�n}
Cd{�n}, (7)

where {�n} is the set of past input steps, Cd{�n} is
the capacity of the system to approximate a specific
transformation task z{�n}(un) and d is the degree of all
Legendre polynomials combined in the task z{�n}(un). In

the example from above with z{−5,−2}(un) = un−5un−2, it
is d = 2 and {�n} = {−5, −2}. For d = 1 we get the
well known linear memory capacity. To compute the total
memory capacity, a summation over all degrees d is done.

MC =
D∑

d=1

MCd (8)

Dambre et al. showed in [34] that the MC is limited by the
readout dimension M , given here by the number of virtual
nodes NV .

The simulation was written in C++ with standard
libraries used except for linear algebra calculations, which
were calculated via the library “Armadillo”. A Runge-
Kutta 4th-order method was applied to integrate numerically
the delay-differential equation given by Eq. (10) with an
integration step �t = 0.01 in time units of the system. First,
the system was simulated without any inputs to let transients
decay. Afterwards a buffer time was applied with 100000
inputs, that were excluded from the training process. Then,
the training and testing process itself was done with 250000
inputs to have sufficient statistics. The tasks are constructed
via Eq. (6) and the corresponding capacities Cd{�n} were
calculated via Eq. (5). All possible combinations of the
Legendre polynomials up to degree D = 10 and �n = 1000
input steps into the past were considered. Cd{�n} below 0.001
were excluded because of finite statistics. To calculate the
inverse, the Moore–Penrose pseudoinverse from the C++
linear algebra library “Armadillo” was used.

We characterize the performance of our nonlinear
oscillator by evaluating the total memory capacity MC,
the contributions MCd as well as the NRMSE of the
NARMA10 task. The latter is a benchmark test and
combines memory and nonlinear transformations. It is given
by an iterative formula

An+1 = 0.3An + 0.05An

(
9∑

i=0

An−i

)

+ 1.5un−9un + 0.1.

(9)

Here, An is an iteratively given number and un is an
independent and identically drawn uniformly distributed
random number in [0, 0.5]. The reservoir is driven by the
random numbers un and has to be able to predict the value
of An+1, o = A. The reservoir we use for our analysis
is a Stuart-Landau oscillator, also called Hopf normal
form [36], with delayed feedback. This is a generalized
model applicable for all systems operated close to a Hopf
bifurcation, i.e. close to the onset of intensity oscillations.
One example would be a laser operated closely above
threshold [37]. A derivation from the Class B rate equations
is shown in the Appendix. The equation of motion is given
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by

Ż = (λ + ηgI + iω + γ |Z|2)Z + κeiφZ(t − τ), (10)

and was taken from [18]. Here, Z is a complex dynamical
variable (in the case of a laser |Z|2 resembles the intensity),
λ is a dimensionless pump rate, η the input strength of the
information fed into the system via electrical injection, g is
the masking function, I is the input, ω is the frequency with
which the dynamical variable Z rotates in the complex plane
without feedback (in case of a laser, this is the frequency of
the emitted laser light), γ the nonlinearity in the system, κ is
the feedback strength, φ the feedback phase and τ the delay
time. The corresponding parameters used in the simulations
are found in Table 1 if not stated otherwise.

Results

To get a first impression about how the system can recall
inputs from the input sequence un = (...un−2, un−1, un), we
show the linear recall capacities C1{�n} in Fig. 2. Here, each
set of all inputs {�n} consists of only one input step �n,
because d = 1 for which z{�n}(un) consists of the Legendre
polynomial P1(un−�n) = un−�n. The capacities C1{�n} are
plotted over the step �n to be recalled for 3 different delay
times τ (blue, orange and green in Fig. 2) while the input
period time T is kept fixed to 80 and the readout dimensions
NV to 50. These timescale parameters were chosen to fit
the characteristic timescale of the system, such that the time
between two virtual nodes θ is long enough for the system
to react, but short enough such that the speeding process is
still as high as possible. For input period times T = τ (the
blue solid line in Fig. 2) a high capacity is achieved for a few
recall steps after which the recallability drops steadily down
to 0 at about the 15th step (�n = 15) to recall. This changes
when the input period time reaches values of 3 times the
delay time τ = 3T (the orange solid line in Fig. 2). Here,
the linear recallability C1{�n} oscillates between high and
low values as a function of n, while its envelope steadily
decreases until it reaches 0 at around the 35th (�n = 35)

Table 1 Parameters used in the simulation if not stated otherwise

Parameter Description Value

λ Pump rate −0.02

η Input strength 0.01

ω Free running frequency 0.0

γ Nonlinearity −0.1

κ Feedback strength 0.1

θ Feedback phase 0.0

NV Number of virtual nodes 50

T Input period time 80

Fig. 2 C1{�n} as defined in Eq. (7) plotted over the �nth input step to
recall for 3 different delay times τ . The input period time T = 80

step to be recalled. Considering that τ = 3T is a resonance
between the input period time T and the delay time τ , one
can also take a look at the case for off-resonant setups,
which is shown by the green solid line in Fig. 2 with τ ≈
3.06T . This parameter choice shows a similar behaviour as
the T = 3τ one but with higher capacities for short recall
steps and a faster decay of the recallability at around the
29th (�n = 29) step.

To get a more complete picture, we evaluated the linear
capacity C1{�n} and quadratic capacities C2{�n} of the system
and depicted these as a heatmap over the delay time τ

and the input steps in Fig. 3 for a constant input period
time T . The x-axis indicates the �nth step to be recalled
while the delay time τ is varied from bottom to top on the
y-axis. In Fig. 3a the linear capacities C1{�n} are shown,
for which the red horizontal solid lines indicate the scan
from Fig. 2 One can see a continuous capacity C1{�n}
for τ < 2T which forks into rays of certain recallable
steps �n that linearly increase with the delay time τ .
This implies that specific steps �n can be remembered
while others inbetween are forgotten, a crucial limitation
to the performance of the system. Generally the number
of steps into the past that can be remembered increases
with τ (at constant T ), while on the other hand also the
gaps inbetween the recallable steps increase. Thus, the total
memory capacity stays constant. This will be discussed
later in Fig. 4. In Fig. 3b the pure quadratic capacity
C

2,p
{�n} is plotted within the same parameter space as in

Fig. 3a. Pure means that only Legendre polynomials of
degree 2, i.e. P2(un−�n) = 1

2 (3u2
n−�n−1) were considered,

rather than also considering combinations of two Legendre
polynomials of degree 1, i.e. P1(un−�n1)P1(un−�n2) =
un−�n1un−�n2 . In the graph one can see the same behaviour
as for the linear capacities C1{�n} (Fig. 3a), but with less
rays and thus less steps that can be remembered from the
past. This indicates that the dynamical system is not as
effective in recalling inputs and additionally transforming
them nonlinearly as it is in just recalling them linearly.
For the full quadratic nonlinear transformation capacity, all
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Fig. 3 a Linear capacity C1{�n} plotted colorcoded over the delay
time τ and the input steps �n to recall. Parameters as given in
Table 1. The red horizontal solid lines indicate the scan from Fig. 2.
b Quadratic pure capacity C

2,p
{�n}. c Combination of two Legen-

dre polynomials of degree 1 indicating the capability of nonlinear

transformations of the form u−�n1u−�n2 . Here �n1 of the first
polynomial is plotted while between two �n1-steps �n2 is
increased from 0 to 45 steps into the past. Yellow indicates good
while blue and black indicates bad recallability. The input period
time T = 80

combinations of two Legendre polynomials of degree 1 for
different input steps into the past have to be considered,
i.e.

P1(un−�n1)P1(un−�n2) = un−�n1un−�n2 .

This is shown in Fig. 3c. Again, the capacities C2{�n} are
depicted as a heatmap and the delay time τ is varied along
the y-axis. This time the x-axis shows the steps of the first
Legendre polynomial �n1, while inbetween two ticks of
the x-axis, the second Legendre polynomial’s step �n2 is
scanned from 0 up to 45 steps into the past. For the steps of

Fig. 4 Total memory capacity MC as defined by Eq. (8) (blue) and
memory capacities MC1,2,3,4 of degree 1 to 4 (orange, green, red,
violet) plotted over the delay time τ for the same parameters as in
Fig. 3. Resonances between the clock cycle T and the delay time τ are
depicted as vertical red and green dashed lines. One can see the loss
in memory capacity at the resonances, especially for degree 2. Higher
order transformations with d > 3 are more effective in the regime
where τ < 1.5 T

the second Legendre polynomial �n2 the capacity exhibits
the same behaviour as already discussed for Fig. 3a and b.
This does also apply to the first Legendre polynomial which
induces interference patterns in the capacity space of the
two combined Legendre polynomials. The red dashed lines
highlight the ray behaviour of the first Legendre polyno-
mial. We therefore learn that the performance of a reservoir
computer described by a Hopf normal form with delay
drastically depends on the task. There are certain nonlinear
transformation combinations u−�n1u−�n2 of the inputs
u−�n1 and u−�n2 which cannot be approximated due to the
missing memory at specific steps. To overcome these lim-
itations it would be recommended to use multiple systems
with different parameters to compensate for each other.

To fully characterize the computational capabilities of
our reservoir computer, a full analysis of the degree d

memory capacities MCd and the total memory capacity
MC as defined in Eq. (8) is done. The results are depicted
in Fig. 4a as a function of the delay time τ . All other
parameters are fixed as in Fig. 3. The orange solid line
in Fig. 4 refers to the linear, the green, red and violet
lines to the quadratic, cubic and quartic memory capacity
MC1,2,3,4, respectively. The blue solid line shows the total
memory capacity MC summed up over all degrees up to
10. Dambre et al. showed in [34] that the MC is limited by
the number of read-out dimensions and equals it when all
read-out dimensions are linearly independent. In our case
the read-out dimension is given by the number of virtual
nodes NV = 50. Nevertheless, the total memory capacity
MC starts at around 15 for a very short time delay with
respect to the input period time T . This low value arises
from the fact that a short delay induces a high correlation
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between the responses of the dynamical system which
induces highly linearly dependent virtual nodes. This is an
important general result that has to be kept in mind for all
delay-based reservoir computing systems: With τ < 1.5 T

the capability of the reservoir computer is partially waisted.
Increasing the delay time τ also increases the total memory
capacity MC reaching the upper bound of 50 at around 1.5
times the input period time T .

For τ > 1.5 T an interesting behaviour emerges.
Depicted by the vertical red dashed lines are multiples of
the input period time T at which the total memory capac-
ity MC drops again significantly to around 40. A drop in
the linear memory capacity was discussed in the paper by
Stelzer et al. [38] and explained by the fact that resonances
between the delay time τ and the input period time T con-
cludes in a sparse connection between the virtual nodes.
Our results now show that this effects the total memory
capacity MC, by mainly reducing the quadratic memory
capacity MC2. At the resonances the quadratic nonlinear
transformation capability of the system is reduced. To con-
clude, delay-based reservoir computing systems should be
kept off the resonances between T and τ to maximize the
computational capability. A surprising result is that for the
chosen Hopf nonlinearity the linear memory capacity MC1

is only slightly influenced by the resonances. A result from
Dambre et al. in [34] and analysed by Inubushi et al. in
[39] showed that a trade-off between the linear recalla-
bility and the nonlinear transformation capability exists.
This is clearly only the case if the theoretical limit of the
total memory capacity MC is reached and kept constant,
thus every change in the linear memory capacity MC1 has to
induce a change in the nonlinear memory capacities MCd ,
d > 1. In the case of resonances, a decrease in the total
memory capacity MC happens and thus this loss can be
distributed in any possible way over the different memory

capacities MCd . In our case, we see that the influence on
the quadratic memory capacity MC2 is highest.

The system is capable of a small amount of cubic
transformations, depicted by the solid red line in Fig. 4a,
which also decreases at the resonances in a similar way
as the quadratic contribution does. Higher order memory
capacities MCd , with d > 3, have only small contributions
for short delay times τ , dropping to 0 for increased time
delay τ . A possible explanation is the fact that short delays
induce an interaction of the last input directly with itself for
k = T

τ
times, depending on the ratio between τ and T . As a

result, short delay times τ enable highly nonlinear tasks in
expense of a lower total memory capacity MC.

For more insights into the computing capabilities of our
nonlinear oscillator we now also discuss the NARMA10
time series prediction task, shown in Fig. 4b. Comparing the
memory capacities MCd with the NARMA10 computation
error NRMSE in Fig. 4b, a small increase in the NARMA10
NRMSE can be seen at the resonances with nτ = mT ,
where n ∈ [0, 1, 2...] and m ∈ [0, 1, 2...]. For a systematic
characterization a scan of the input period time T and the
delay time τ was done and the total memory capacity MC

(Fig. 5c), the memory capacities of degrees 1–4 MC1,2,3,4

(Fig. 5a, b, d, e) and the NARMA10 NRMSE (Fig. 5f)
were plotted colorcoded over the two timescales. This
is an extension of the results of Röhm et al. in [19],
where only the linear memory capacity and the NARMA10
computation error were analysed. For short time delays
τ and period input times T the memory capacities of
degree 1–3 MC1,2,3 and the total memory capacity MC

are significantly below the theoretical limit of 50 as already
seen in the results from Fig. 4, while the NARMA10
NRMSE also has high errors of around 0.8. This comes
from the fact that short input period times T also mean
short virtual node distances θ , which induces a high linear

Fig. 5 a Linear memory
capacity MC1 plotted
colorcoded over the delay time τ

and the input period time T . b
Degree 2, MC2. c Total memory
capacity, MC. d Degree 3, MC3.
e Degree 4, MC4. f NARMA10
prediction error NRMSE
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correlation between the read-out dimensions. Degree 4 on
the other hand only has values as long as T > τ , a
result coming from the fact that the input un has to interact
with itself to get a transformation of degree 4. A possible
explanation comes from the fact that the dynamical system
itself is not capable of transformations higher than degree
3, since the highest order in Eq. (10) is 3. If the delay
time τ and the input period time T are long enough the
total memory capacity MC reaches 50 with exceptions of
resonances between τ and T . These resonances are also seen
in the NARMA10 NRMSE for which higher errors occur.
Looking at the memory capacity of degree 1 and 2 MC1,2

and comparing it with the NARMA10 NRMSE one can
see a tendency in which the NARMA10 NRMSE is lowest
where both have the highest capacities, raising from the
fact that the NARMA10 task is highly dependent on linear
memory and quadratic nonlinear transformations. This can
also be seen in the area below the τ = T -resonance.
To conclude, one can use the parameter dependencies of
the memory capacities MCd to make predictions of the
reservoir capability to approximate certain tasks.

Conclusions

We analysed the memory capacities and nonlinear transfor-
mation capabilities of a reservoir computer consisting of an
oscillatory system with delayed feedback operated close to
a Hopf bifurcation, i.e. a paradigmatic model also applicable
for lasers close to threshold. We systematically varied the
timescales and found regions of high and low reservoir
computing performing abilities. Resonances between the
information input period time T and the delay time τ should
be avoided to fully utilize the natural computational capa-
bility of the nonlinear oscillator. A ratio of τ = 1.6T was
found to be the optimal for the computed memory capac-
ities, resulting in a good NARMA10 task approximation.
Furthermore, it was shown, that the recallability for high
delay times τ � T is restricted to specific past inputs,
which rules out certain tasks. By computing the memory
capacities of a Hopf normal form, one can make general
assumptions about the reservoir computing capabilities of
any system operated close to a Hopf bifurcation. This sig-
nificantly helps in understanding and predicting the task
dependence of reservoir computers.
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Appendix

Derivation of the Stuart-Landau Equation with delay from
the Class B laser rate equations

Ė = (1 + iα)EN (11)

Ṅ = 1

T
(P + ηgI − N − (1 + 2N)|E|2), (12)

where E is the non-dimensionalized complex eletrical field
and N the non-dimensionalized carrier inversion, P the
pump relativ to the threshold for Pthresh = 0 and α the
Henry factor. The reservoir computing signal is fed into
the system via electrical injection ηgI . If fast carriers are
considered, an adiabatic elimination of the charge carriers
yields

0 = 1

T
(P + ηgI − N − (1 + 2N)|E|2) (13)

N = P + ηgI − |E|2
1 + 2|E|2 , (14)

which after substituting into Eq. (11) gives

Ė = (1 + iα)E
P̃ − |E|2
1 + 2|E|2 , (15)

where we introduced the quantity P̃ = P + ηgI for
convenience purposes. This equation yields the full Class A
rate equation for the non-dimensionalized complex electric
field. Simulations with the full Class A rate equation close
to the threshold show similar results to the reduced case.

Because we consider laser that are operated close to the
threshold level, a taylor expansion of the denominator for
|E|2 ≈ 0 is done,

Ė = (1 + iα)E(P̃ − |E|2 − 2P̃ |E|2), (16)
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where we set |E|4 ≈ 0 as a neglectable term. As we consider
a laser operated close to the threshold, it follows that the
pump P̃ and the intensity |E|2 are of Order O(ε), where ε is
a small factor. This holds true only if the input signal ηgI is
a small electrical injection. After applying this the equation
is given by

Ė = (1 + iα)E(P̃ − |E|2) (17)

We can substitute P̃ = P + ηgI back into the equation,
change the rotating frame of the laser by setting E =
Ze−i(ω−αP̃ )t and introduce a complex factor γ = −(1+iα)

that scales the nonlinearity

Ż = Z(P + ηgI + iω + γ |Z|2), (18)

By addding feedback κeφZ(t − τ) to the system one arrives
at Eq. (10).

Ż = Z(P + ηgI + iω + γ |Z|2) + κeφZ(t − τ), (19)
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