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Abstract
Artificial intelligence (AI) is finding more uses in the human society resulting in a need to scrutinise the relationship
between humans and AI. Technology itself has advanced from the mere encoding of human knowledge into a machine to
designing machines that “know how” to autonomously acquire the knowledge they need, learn from it and act independently
in the environment. Fortunately, this need is not new; it has scientific grounds that could be traced back to the inception
of computers. This paper uses a multi-disciplinary lens to explore how the natural cognitive intelligence in a human could
interface with the artificial cognitive intelligence of a machine. The scientific journey over the last 50 years will be examined
to understand the Human-AI relationship, and to present the nature of, and the role of trust in, this relationship. Risks and
opportunities sitting at the human-AI interface will be studied to reveal some of the fundamental technical challenges for a
trustworthy human-AI relationship. The critical assessment of the literature leads to the conclusion that any social integration
of AI into the human social system would necessitate a form of a relationship on one level or another in society, meaning
that humans will “always” actively participate in certain decision-making loops—either in-the-loop or on-the-loop—that
will influence the operations of AI, regardless of how sophisticated it is.

Keywords Adaptive aiding · Adaptive automation · Artificial intelligence · Augmented cognition · Automation logic ·
Cognitive cyber symbiosis · Function allocation · Human-AI teaming · Human-autonomy teaming · Trust

Background

Since the inception of the human race, technologies have
been an integral part of human society. The Oldowan stone
tools [5] assisted humans 2.6 million years ago in farming,
hunting and construction. Simple tools created opportunities
for humans, providing them with more resources to support
their families and enabling them to improve their quality
of life. For millions of years, these technologies physically
augmented the human. Only a thousand years ago, when
the Chinese invented Suanpan [6] (one of the first forms of
a calculator known in history), did humankind start to see
the birth of cognitive augmentation: tools that help humans
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to think faster and do complex counting and arithmetic
operations that cannot be done by the human brain alone.
This form of augmentation enabled humans to be more
efficient in trade.

Digital calculators then added greater functionalities
that ranged from complex calculations to the ability of
storing and memorising information. As humanity started
to develop the first electronic digital computers through
Babbage’s work in 1821 [7], new extensions to human
cognition began to appear. Present day technology enables
a computer to augment humans’ planning abilities, as in the
case of a GPS planner in a car, and can memorise items
to extend human memory, as in the case of memorising
appointments using a calendar. Sensor technologies with
natural biological sensors enable humans to see, hear
and feel things they could not see, hear or feel before.
Robotic actuators allow humans to extend their body [8,
9] when they lose an arm or a leg, or when they need
extra strength, by using an exoskeleton to carry more
weight than they could normally support. The technological
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landscape has evolved steadily from simple automation to
advanced automation that can respond better than a human
in a specific situation. For example, a collision avoidance
system in a car can sense danger faster than a human and
can execute a resolution strategy in a time critical, life-
or-death situation. Despite this long history of physical
and basic-level cognitive augmentation, never before have
humans been able to augment their intelligence. Tools,
including computers, have always been under significant
human control. The human is the master and the tool has
always been the slave that has no mind of its own to
challenge its human master.

Artificial intelligence (AI) promised for many years to
revolutionise this form of augmentation. Since its inception,
AI has promised to solve problems on behalf of the human
independently; it can understand humans and communicate
with them, and it can even challenge humans in their unique
characteristic: natural intelligence. The Turing test [10] has
been the primary test for AI, challenging AI developers
to design an AI to be indistinguishable from humans [11].
However, for decades, the promise of AI was bigger than
its reality, creating valleys of AI death [11], where far more
complex properties of humans are still in their infancy in the
AI world.

Over the last decade, the fate of AI has started to turn,
together with its enabling technologies, such as sensors,
communication, the Internet, computer speed and storage.
Micro-services [12], which break down large tasks into
many small programs that can be distributed everywhere
and anywhere and be summoned on demand when the
need arises, offered industry an opportunity to replace a
single giant AI program with many independent services
performing specialised functions [13]. This concept of
micro-services is used today by many companies, including
Microsoft, and has been the basis for some of the most
recent media stunts, such as those associated with the robot
Sophia becoming the first robot to be granted citizenship
by a country [14]. Micro-services will not only conceal
the reality of AI affairs today but will also allow sudden
unanticipated tipping points to appear in the technological
landscape of AI. As we approach these tipping points, we
need to pose the question: what is AI exactly, and what roles
should humans play in safeguarding society against AI?

What Is Artificial Intelligence?

There are many definitions of AI [15, 16], thanks to the
complexity of expressing the concept of intelligence in
finite words and the blend of beauty and ambiguity in
human language. These attempts spent little time arguing
what “artificial” refers to in AI and much time arguing
what “intelligence” is. Properly, computational intelligence

is a more adequate terminology to avoid the philosophy
of what artificial is and what it is not, and to focus more
technologically on the fact that the AI I discuss in this
article is of a computational nature. Nevertheless, I start by
offering my own definitions for AI for two reasons. First, to
communicate to the reader what AI means to me, which will
facilitate an understanding of the remainder of this paper.
Second, to offer a structure for this paper that naturally
unfolds the relationship between AI and humans as well as
that between AI and other concepts and research areas, such
as autonomy, smart autonomous systems, trusted autonomy
and robotics.

I begin with my functional definition of AI:

Definition 21 Artificial intelligence is concerned with the
design of computer algorithms, methods and methodologies
that enable machines to: understand the world and assess
themselves and their context to identify hazards, threats
and opportunities affecting their goals; generate, choose
and execute appropriate courses of actions to achieve their
goals; learn to improve their performance and adapt to
changes in their surroundings; and educate and transfer their
knowledge to others (humans and machines).

I like to simplify the above definition technologically to
the following:

Definition 22 Artificial intelligence aims to design algo-
rithms to provide computers with cognitive skills and com-
petencies for sense-making and decision-making.

These two definitions are anchored in the underlying
philosophy of this paper. The first lists the characteristics of
different AI algorithms to be able to:

– interpret data, represent and understand context and
situations

– assess opportunities and risks in contexts and situations
– design, plan and generate courses of actions, select and

execute one or more of them, and reason about and
explain the choices they make,

– learn and adapt
– share knowledge by transferring it to other AIs or,

through explanation, to a human.

The second definition posits AI as the automation
of cognition (machine cognition) to develop skills and
competencies to perform tasks. It highlights the two major
streams of applications we see in today’s world of AI:
data analytics, which focuses on analysing, interpreting and
transforming data into knowledge, and autonomy, which
focuses on producing actions that assist the AI in achieving
its own design objectives.
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In data analytics—a core step for sense-making–-the results
of the analysis inform humans or another AI to identify an
appropriate course of action. The classic cycle of data min-
ing and knowledge discovery in databases commence with
an objective for the analysis and a set of data that then
goes through a series of steps including cleaning, feature
selection, application of a machine learning technique, and
identification of an appropriate model for point/class pre-
diction, or some sort of summarisation and understanding
of the data through association rules, clustering and/or sum-
marisation techniques. The output of data analytics enables
the decision maker (human or AI) to understand the envi-
ronment, make prediction and anticipate consequences of
options.

Since data analytics does not produce decisions per se,
the risk of that AI needs to be managed by those who will
use the output of data analytics to generate the actions.
For example, a panel display in a vehicle shows the result
of the analysis performed by the AI to transform raw
signals received by the car into information to be used by
the driver, for example, external temperature information
and navigation. The human could choose to ignore this
information or use it as appropriate.

Decision-making produces actions based on the data and
understanding provided to the agent (a human or an AI). If
the decision-making agent acts directly on the environment,
part of the risk of that decision is transferred to the inputs
to that agent. A loan assessment tool makes decisions by
itself and acts on the information it receives. If the tool
guarantees to make the right decision, this would likely be
conditional on receiving the correct information with an
appropriate level of accuracy. This tool could still make
the wrong decision if the human feeds it with incorrect
information. Nevertheless, the tool might simply make a
recommendation to a human who has the authority to
accept or reject this recommendation; hence, the risk of the
decision could still be managed.

Autonomy requires an AI with both sense-making
and decision-making abilities, as well as the ability and
authority to execute the decision. This form of AI senses
information from its environment, assesses context, makes
decisions, executes the decisions and is authorised to
execute these decisions. An autonomous loan agent would
collect information about the borrower, analyse the risk
profile of the borrower and their financial abilities, decide
the size of loan the borrower may obtain, initiate the loan
in the system and authorise the loan. When an autonomous
loan agent works together with a human financial adviser,
the human-AI relationship needs to be considered at the
design stage of the AI development and during human
training. Since the relationship has been a long-studied
research topic, it is pertinent to discuss the literature for the
reader to appreciate that the design of this relationship could

happen on a fine level of granularity, which manages the risk
for the society. While challenges exist, as I discuss later in
this article, an important piece of enabling science revolves
around the concept of function allocation.

Function Allocation to Humans and
Machines

At the design stage of a new technology, the potential
missions and contexts for which the technology will be
used are analysed to identify the different functions required
for these missions. If the mission is to drive a car from
one place to another, we could have a function to observe
the environment, a function to evaluate the observations to
understand the current location of the car, a function to
detect hazards, a function that plans the next location of
the car, a function to decide on appropriate acceleration
and de-acceleration rates to control the velocity of the car,
and a function to steer the wheel. These seem sufficient for
our purpose to avoid unnecessarily complete enumeration
of this cumbersome task. When a car has some level
of automation, which functions should we delegate to
automation, when and how? These questions have been the
subject of a long history of research focusing on function
allocation: the process by which functions are allocated to
humans and machines. It is a form of division of labour.
Function allocation raises three key questions:

– Methodology: How should functions between humans
and machines be allocated?

– Responsibility: Who is doing the allocation?
– Authority: Who can authorise an allocation?

Function AllocationMethodologies

Two distinct categories of methods exist for function
allocation: static and adaptive allocation. Rouse and
Rouse [17] defined three classes of static allocation:

– comparison allocation, where the better performer is
chosen; that is, if the human is better than the machine
in one function, the human is chosen, otherwise the
machine

– leftover allocation, where every function that could be
automated is allocated to automation and only those
functions for which no automation is possible are
allocated to humans

– economic allocation, which uses a cost-benefit analysis
approach, where if automating a function is not cost-
effective, even if it could be automated, it is assigned to
a human.
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Static allocation presents a multitude of problems. First,
it assumes that the suitability of a human or a machine
for a function does not change over the course of the
mission. This is clearly not the case, because the state of the
environment, AI and humans are all factors that influence
the suitability of a human or a machine for a particular
function in a particular context. In a situation with severe
consequences, a function that is performed by a machine
might need to be performed by a human, and vice versa—
a function that a human does well under normal workload
conditions might need to be switched to a machine if the
human is overloaded.

Second, none of the three classes of static allocation
described above considers the human element. Each sees
humans as machines, and the allocation is based purely
on factors such as performance and cost. This could
lead to assigning humans uninteresting functions, causing
human boredom and demotivation. A third problem is the
underlying assumption that it is the designer who decides
what to allocate to humans and machines. The human
operator does not have a say and is assumed to “listen” to
whatever the designer has decided when using this form of
“technologically centred design”.

The problems described above gave birth to a new
category of function allocation called adaptive allocation,
developed to serve a “human-centred design”. Different
names of this category emerged, including adaptive aiding,
adaptive automation, and adaptive allocation, but the origin
can be traced back to the early 1960s [18, 19]. The
concept was popularised with a United States Air Force
project in the 1970s on cockpit automation [20]. Adaptive
allocation changes function allocation during a mission.
Rouse [21] discussed three strategies (called automation
allocation logic [AAL]) to control when a change in
function allocation needs to be triggered:

– critical event logic, where automation hands over a
function to a human if there is a critical event or vice
versa

– measurement-based logic, where the handover could
occur in any direction at any point in time based on
a continuous measurement of a state such as human
workload level

– modelling-based logic, where human performance is
captured in a model that predicts future human
workload and makes decisions about when a different
function allocation is needed.

The earlier versions of adaptive allocation focused on simple
models of human performance that were built through
observational research. This was true for adaptive aid-
ing [19] and adaptive automation [18]. Research areas such
as human-machine interaction [22], man-machine symbio-
sis [23], human-machine teaming [5] and human-autonomy

teaming [24] have largely relied on simple models to either
analyse or model the relationship. Meanwhile, a second evo-
lutionary path has been growing steadily since the 1970s,
which has led to the newer concepts of augmented cogni-
tion [25] and cognitive-cyber symbiosis (CoCyS; [26]).

However, dynamic function allocation could distract
humans, disturb their situational awareness and, conse-
quently, negatively affect safety and performance in the
tasks assigned to them. Moreover, if the allocation is
based on subjective data and/or objective data that inter-
fere with the task with which a human is involved, the
allocation errors could increase, resulting in higher errors
in the human-AI relationship. Therefore, the use of aug-
mented cognition and CoCyS attempts to overcome these
limitations.

Augmented cognition [27, 27] is encephalography
(EEG)-based adaptive allocation. EEG represents the
signals occurring because of brain activities that are
triggered by brain functions. In 1875, Richard Caton
demonstrated that fluctuations in brain activities follow
mental activities. This finding meant that brain signals could
possibly indicate the impact of the mental processing a
human is experiencing while performing certain functions.
However, Caton’s work (as cited in [28]) was demonstrated
on animals. It was not until 1929 that Hans Berger [29]
published the first study to record EEG data from humans.
In 1934, Adrian and Matthews [30] demonstrated that not
only are brain waves triggered by mental activities but also
by external stimuli, which could influence the way they are
triggered. This idea was possibly the first scientific evidence
for neurofeedback, a recent field in clinical psychology [28],
which retrains the human brain to produce signals to correct
physiological causes of some psychological illnesses, such
as attention deficit disorder.

In 1970, the United States Department of Defense (DoD)
recognised the potential of this maturing line of research
and embarked on two projects on biocybernetics [31] and
brain computer interfaces [32]. The ability to record and
interpret human EEG opened a variety of opportunities,
including the potential for deriving workload, attention
and situational awareness objective indicators from EEG to
guide AAL, even in real time in an operating environment.
Another United States DoD activity in the early 2000s led to
the new concept of augmented cognition. As EEG sensors
developed and became more reliable, the science evolved
to a reasonable technological maturity level, and function
allocation research using EEG became well established.
In this line of research, function allocation logic has
possibly been the simplest form of AI. It was pre-designed,
lacked flexibility because it did not change its behaviour
once deployed and, simply put, lacked the smartness and
autonomy to match the complexity of the AI it was
attempting to manage in the first instance.
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This led to the Australian born CoCyS [26] concept,
which revolutionised the adaptation process from a machine
adapting to a human to smart adaptive agents (called “e-
cookies”) that act as autonomous relationship managers
between humans and machines. In essence, we could
imagine that it is possible to standardise all AI systems
by adding to the AI a front-end that communicates with
the human, assess the human trustworthiness, and most
importantly, is able to present to the human information
at sufficient pace and form suitable for the human to
understand and act on, while simultaneously able to
translate back and forth these information with its internal
components. CoCyS offer an alternative that is more design
friendly, cost effective, and could be designed and added
to any existing system. Similar to human relationship
managers, e-cookies are AI relationship managers with their
sole responsibility being to manage the relationship between
humans and other AIs or autonomous systems. For example,
e-cookies do not play chess, but they interface between
the human who is playing chess and the AI recommender
system who is supporting this human to play chess. E-
cookies sit in between to ensure that the human and the AI
recommender system work in harmony and in a trust-worthy
manner.

Each e-cookie analyses different data sources (e.g. EEG,
muscle movements, heart rate, skin temperature, eye track-
ing, voice, images) measured from the human under
observation, objectively inferring human states (e.g. work-
load, attention, emotion). It equally analyses different
data sources from the automation itself to understand
autonomously the state of the task and predict its future
states. An e-cookie then learns from this information to
identify when and how to adapt the function allocation strat-
egy. An e-cookie also acts as a smart regulator and/or smart
safety net to ensure the trustworthiness of the relationship.

CoCyS opened the way to a new and more sophisticated
form of AAL, one that is trust based, allowing an e-cookie
to reallocate the functions between humans and machines
based on trust indicators. If a machine is hacked or spoofed,
some functions are retracted from the machine and allocated
to the human. If there is a suspicious change in human
identity, some functions that were performed by the human
are reallocated to the machine. Adaptive allocation created
a control agent between humans and machines. To avoid
confusion between the automation we have discussed so far
and the automation of the agent responsible for adaptive
allocation, I refer to the latter as the allocation agent. An
example of an AI-based allocation agent I have discussed
above is e-cookie. This naturally raises the question of
who is doing the allocation agent job, and who has the
authority to make a decision to execute the allocation
agent’s recommended course of action. These two questions
will be addressed next.

Function Allocation Responsibility

Humans can control the allocation agent; thus, they can
assess a situation and adopt a strategy of when they wish
to push a function to the AI and when they wish to
retract a function from the AI. Equally, the control of the
allocation agent can be automated. For example, when the
system notices a critical event, it can reallocate a function
from a human to a machine or vice versa based on a set
of predefined rules. E-cookie is an example of advanced
automation of the allocation agent. However, what type of
intervention triggers are needed for the human or AI to
intervene, when and how? This line of thinking, however,
depends on the level of automation and the role the human
plays in the system.

Levels of automation (LOA) refers to the maturity level
of automation. Sheridan [33, 34] defined 10 levels using
a “who-centred” approach, while Endsley and Kaber [35]
defined another 10 levels from an information-sharing
and situation awareness perspective. The latter were then
refined, with Endsley [36, 37] increasing the levels to 12.
The two approaches are presented in Table 1.

LOA have evolved in a culture of decision-making in
safety critical systems where the physical body of the AI in
the form of a robot is not part of the operator’s responsibility
and, therefore, is irrelevant to the relationship between
humans and machines. Nonetheless, in the field of human-
robot interaction, the relationship between the human and
the robot can take different forms.

Scholtz [38] defined five roles for humans in human-
robot interaction: supervisor, operator, teammate, bystander
and mechanic. In a supervisory role, the human oversees
what the machine does and advises accordingly. A
supervisor does not become involved with low-level
tasks for which the machine is responsible. Instead, the
supervisor takes meta-actions and makes plans and high-
level decisions. An operator, however, monitors low-level
action-level tasks. A teleoperation scenario is an example
of a human operator responsible for performing low-level
tasks. A teammate is a role in which the human works
collaboratively with the machine to perform the mission.
They can both issue advice to each other and delegate
tasks to one another. As a mechanic, the human modifies
any abnormal behaviour the machine displays or fixes a
mechanical problem with the machine. A bystander acts
as a facilitator between the robot and the environment,
for example, a bystander might remove an obstacle from
the robot’s path if the robot is not designed for managing
obstacles or if the robot is so expensive and fragile that such
damage would be costly.

In summary, a supervisor guides the robots, an operator
controls low-level actions, a teammate collaborates with the
robot to perform the mission, a mechanic fixes the robot
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Table 1 Levels of automation from Endsley [36, 37] and Sheridan [33, 34]

Endsley’s Levels Sheridan’s Levels

L1: Manual control: human performs all aspects of tasks. L1: Human performs whole job up to the point of turning it over to
the computer to implement.

L2: Information cueing: computer aids by highlighting key
information on screen or decluttering irrelevant information.

L2: Computer helps by determining the options.

L3: Situation awareness support: system gathers key information
and integrates for levels 2 & 3 of situation awareness.

L3: Computer helps to determine options and suggests one, which
human need not follow.

L4: Action support/teleoperation: computer aids by executing each
action as instructed.

L4: Computer selects action and human may or may not perform it.

L5: Batch processing: computer completely performs singular or
sets of tasks commanded by human.

L5: Computer selects action and implements it if human approves.

L6: Shared control: computer and human generate decision
options; human decides and performs with support.

L6: Computer selects action and informs human in plenty of time
to stop it.

L7: Decision support: computer generates recommended options,
human decides (or inputs own choice) and system performs.

L7: Computer performs whole job and necessarily tells human what
it did.

L8: Blended decision-making (management by consent): computer
generates recommended options and selects best; human must
consent (or override) and system performs.

L8: Computer performs whole job and tells human what it did only
if human explicitly asks.

L9: Rigid system: computer generates recommended options from
which human may select (cannot override) and system performs.

L9: Computer performs whole job and decides what the human
should be told.

L10: Automated decision-making: computer generates recom-
mended options along with human; system selects best and system
performs.

L10: Computer performs the whole job if it decides it should be
done and, if so, tells human, if it decides that the human should be
told.

L11: Supervisory control (management by exception): computer
generates recommended options, selects best and system performs;
human can intervene if desired.

L12: Full automation: computer performs all aspects of task with
no human intervention possible.

or its mistakes, and a bystander modulates the relationship
between the robot and the environment. Other forms of
human-machine relationships can be seen in the LOA table
above, such as shared control, supervisory control, mixed
initiatives or blended decision-making.

These different forms of human-AI relationships have a
significant impact on function allocation. A static function
allocation works in simple tasks where the exact division
of labour between the AI and the human is clear. In
more complex tasks, where the environment is naturally
uncertain, it becomes more difficult to follow a static
function allocation. The authority for function allocation
becomes more important than ever and should be considered
in the design of the AI. Who should authorise a reallocation?
Should the function allocation agent itself be allowed to
change? These questions will be addressed next.

Function Allocation Authority

The allocation agent could be a human or an AI. It might
be delegated to authorise a change in function allocation or
another human or an AI might authorise the change. In the
latter case, the allocation agent makes a recommendation,
while the authoriser accepts or rejects this recommendation.

Regardless of the nature of the allocation agent, the question
remains: what are the conditions for a machine to authorise
a change in function allocation? Inagaki [39] offered
examples for situations that could justify the machine
authorising such a decision and noted:

“The automation may be given the right to take an
automatic action for maintaining system safety, even when
an explicit directive may not have been given by an operator
at that moment, providing the operators have a clear
understanding about the circumstances and corresponding
actions which will be taken by the automation.” [39, p. 17]

While safety is indeed an important factor, it seems
more appropriate to generalise Inagaki’s perspective using
a risk lens. I distil from the literature three factors that
should influence this decision: time criticality, skills to
judge and severity of consequences. In a situation where
the time needed to act is insufficient for a human to make
the decision, either the machine needs to decide or the
consequences of inaction need to be evaluated.

A function is time critical when the difference between
the time by which the decision needs to be made to
be an effective decision and the time required to make
that decision becomes smaller and approaches zero. An
allocation agent in an aircraft flying using the autopilot
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system might foresee a weather cell five minutes ahead.
The allocation agent assesses that the complexity of this
situation is not suitable for the autopilot to fly the aircraft
and hands over control to a human. The 5-min window
allows the human to overcome the effect of a surprise,
comprehend the situation and prepare for action. If the time
window were five seconds instead, this would not provide
sufficient time for the human to perform the function.
Therefore, time criticality depends not only on the decision
to be made but also on the capabilities of the agent that will
make the decision, the context and the exact situation the
agent is facing.

The second influencing factor, skills to judge, relates
to when the human or machine is not sufficiently skilled
to authorise; that is, the human or machine lacks the
skill to judge whether a change in function allocation
should take place or not. The third factor concerns whether
the severity of consequences is high or not. Figure 1
summarises all possible combinations of these factors and
the recommended authority for the decision.

The red areas highlight the need and importance of
the pre-design analysis to ensure that either the human
or the machine has the necessary skills to judge the
appropriateness of a change in function allocation.

The table could be further adopted to suit the specific
context for adaptation to occur. For example, while a human
could authorise the action when the time is uncritical and
even when the machine is skilled, a skilled machine could
equally authorise the action if the human is overloaded.

Relationships of Equals: Why Is Teaming
Hard for AI Agents?

The discussion so far has highlighted the function allocation
problem and described the relationship between humans
and machines purely in terms of function allocation. As
the LOA for machines approach Level 12, the relationship
between humans and machines changes in nature. Function
allocation focuses the effort on well-engineered concepts,
leaving out elements where machines could have a different
intent from humans and could even “supervise” the human.

Take, for example, a robot teacher supervising a child while
learning multiplication, or a robot coach supervising a group
of swimmers. In these cases, current LOA are insufficient,
and therefore limited in their abilities to describe these
future AI systems; hence, it would be restrictive to limit the
discussion of challenges in the human-AI relationship using
only LOA.

Scholtz’s roles [38], discussed above in the “Function
Allocation Responsibility” section, could be useful here;
they can be summarised functionally as to guide, to
control, to collaborate, to fix and to modulate. With
smart (advanced AI-based) autonomous systems, we should
assume that these functions are available for both humans
and automation. In one situation, the human might supervise
a robot performing low-level control, while in another, the
human might perform the low-level control task while the
robot supervises the human. A first-aid robot could perform
a mechanical role to treat humans if they are injured.

When the AI takes an equal role to a human, the level of
control could take a multitude of forms, as shown in Table 2.

Clearly, before AI takes more control in the world, it
should reach a level of maturity that makes it, at least,
able to collaborate with humans. Human-AI collaboration
is a non-trivial problem. Klien et al. [43] listed 10 different
challenges that the technology faces before AI can reach
the level of maturity required to collaborate with humans
as equals. I list these challenges here for completeness
(Table 3):

Scrutinising the 10 challenges above, one can easily
observe the gap between AI technology as it stands today
and the requirement for AI to be able to collaborate
as equal to humans. For example, the second challenge
calls for AI to be able to model humans’ intentions and
humans to be able to model AI’s intentions. A significant
amount of research is still under way to infer human
intention in simple human-robot interaction tasks with
unsolved problems, never mind complex interaction tasks.
The research community is still developing solutions for AI
to be, interpretable [2–4], transparent and explainable [1]
to allow humans to understand the intention of an AI and
develop mutual predictability and shared understanding. It
is tempting for some to claim that taking the human out

Fig. 1 Skills to judge
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Table 2 Roles of humans and ai in different control tasks

Human-led AI-led

Guidance Human guides, AI performs: a surgeon
guiding an AI during a medical proce-
dure [40].

AI guides, human performs: AI guiding a
pilot to control the workload of air traffic
controllers [41].

Control Human controls, AI senses and actuates:
human teleoperating a vehicle in min-
ing [42].

AI controls, human senses and actuates: a
smart intelligent artificial limb.

Collaboration Human and AI work together, possibly as
equals: collaborative planning [43].

Fixing/mechanic Human fixes, AI performs: a human
engineer adjusting the actuators of a
humanoid robot to avoid falling while
walking.

AI fixes, human performs: an AI mod-
ulating the level of insulin in human
blood [44].

Modulation/by-standing Human modulates the environment, AI
does: human removing obstacles from the
path of a robot that could damage the
robot.

AI modulates the environment, human
performs: an AI clearing land mines for
humans to advance [45].

of the loop will make collaboration easier because different
AIs could exchange intentions more efficiently in their own
computer language than by attempting to learn intentions
or communicate them with a human. Even in this situation,
challenges 1, 7, 8, 9 and 10 impose significant burdens
on the current most-advanced AI systems. For example,
negotiation alone is a computationally expensive, mostly
intractable problem [46].

The discussion above demonstrates that the development
of an AI that could truly collaborate, as an equal teammate,
with humans is technologically distant from today. Even
if an AI exists that is so sophisticated that it can claim to
be more intelligent than a human, such an AI will struggle
significantly to work as a team member with other AIs
because of the computational complexity required to scale
the AI for team negotiation and self-synchronisation of
actions. Most of the challenges above could have solutions
once the context has been appropriately limited. The

technological reality discussed above for AIs working in
open-ended contexts does not preclude us having in the near
future very advanced AI systems that could truly outperform
humans in specific real-world tasks. These advanced AI
systems will require effective methodologies for their social
integration in the human system and a level of trust to allow
them autonomy in their specific operating context. These AI
systems form the context for discussion in the next section.

Human-AI Trust

Trust is the glue of social systems because it assists
humans to manage and reduce complexity in the world [47].
Some of the factors that allow a trustor to trust a trustee
include the ability to carry out a given task, benevolence
towards the trustor, and integrity such as fairness and
honesty [48]. Giffin [49] noted listeners’ perceptions of

Table 3 Ten challenges of human-automation collaboration, as listed in Klien et al. [43]

Challenge 1: To be a team player, an intelligent agent must fulfil the requirements of a Basic Compact [a commitment of goal
alignment] to engage in common-grounding activities.

Challenge 2: To be an effective team player, intelligent agents must be able to adequately model the other participants’ intentions and
actions vis-à-vis the joint activity’s state and evolution - for example, are they having trouble? Are they on a standard path proceeding
smoothly? What impasses have arisen? How have others adapted to disruptions to the plan?

Challenge 3: Human-agent team members must be mutually predictable.

Challenge 4: Agents must be directable.

Challenge 5: Agents must be able to make pertinent aspects of their status and intentions obvious to their teammates.

Challenge 6: Agents must be able to observe and interpret pertinent signals of status and intentions.

Challenge 7: Agents must be able to engage in goal negotiation.

Challenge 8: Support technologies for planning and autonomy must enable a collaborative approach.

Challenge 9: Agents must be able to participate in managing attention.

Challenge 10: All team members must help control the costs of coordinated activity.
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a speaker’s expertness, reliability, intentions, activeness,
personal attractiveness and the majority opinion of the
listener’s associates as elements of trust. Thus, trust blends
a complex array of interaction factors including attitude,
beliefs, control, emotion, risk and power.

Behavioural psychologists see trust from a social
dilemma lens. Deutsch [50, 51], for example, viewed trust
as a path of ambiguity that could lead to one of two possible
outcomes: one is perceived to have negative valency that is
greater than the positive valency perceived to be associated
with the second. The trustee controls the outcome and
decides which event will occur. If the trustor chooses this
path, the trustor is said to trust the trustee; otherwise,
the trustor distrusts the trustee. The literature on trust is
immense, with definitions from many perspectives. Two
common definitions are selected. Mayer et al. defined trust
as “willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other
will perform a particular action important to the trustor,
irrespective of the ability of monitor or control that other
party.” [48, p. 712] Lee and See “the attitude that an
agent will help achieve an individual’s goals in a situation
characterised by uncertainty and vulnerability.” [52, p. 51]

The common thread in these two definitions, and many
other definitions in the literature, is that trust exposes
a person to vulnerability [26]. Borrowing definitions of
vulnerabilities from the risk assessment literature could help
us better understand human-AI trust. A vulnerability could
be broken down as follows [53]:

V ulnerability = f (Capability, Opportunity, Intent)

(1)

The above relationship explains the three dimensions
affecting a vulnerability. The first is the capability of the

trustee. The more capable a trustee is, the more serious a
vulnerability could become because it could cause more
damage if the trustee defects. The second is the opportunity
that the trustor gives to the trustee. When the trustor trusts
the trustee, the trustor gives the trustee an opportunity to
defect. The third is the intent of the trustee. A capable trustee
that is given an opportunity (is trusted) will not defect if the
intent is good.

The above explanation fits perfectly with AI. The
capability of an AI represents its skills and competency
levels, and thus, the level of automation of that AI. The
opportunity is the level of autonomy, the degrees of freedom
with which the AI is permitted to execute its actions and
the authority delegated to it. The intent in simple AI agents
is the design intent, whereas the intent in AI agents that
learn and adapt could change as they interact with the
environment. Thus, human-AI trust could be mapped across
the two dimensions of level of automation and level of
autonomy, assuming the AI’s intent is aligned with the
human’s intent.

Figure 2 summarises the human-AI relationship using a
vulnerability lens. If the intent of the AI is not aligned with
that of the human, the AI is likely to make decisions that
disappoint the human and cause the human to suspect the
intent of the AI, thus leading to a situation of humanmistrust
regardless of the AI’s level of automation (capability) and
level of autonomy (opportunity). If the intent of the AI is
aligned with the human, automation and autonomy start to
moderate the relationship. When the level of automation
is lower than the level of autonomy, the AI is given
opportunities that exceed its abilities, leading to the human
over-relying on the AI, culminating in disappointment,
distrust and an untrustworthy AI. When the level of
automation is greater than the level of autonomy, the AI
is more capable than the opportunities it is given. In this
underutilisation case, the trustworthy AI performs the tasks
successfully despite being underused but the high cost of

Fig. 2 The human-AI
relationship using a
vulnerability lens
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producing this AI is not justified with its use. When the
level of automation matches the level of autonomy, the AI
is trustworthy, and the overall system is balanced.

The risk in the human-AI relationship could be traced to
who is doing what in each of the four components (sense-
making, decision-making, execution ability and execution
authority), resulting in a number of situations as shown in
Table 4.

Table 4 assumes that a full block is assigned to either
the AI or the human. For example, the overall sense-making
functional-block is a human’s responsibility alone or the
AI’s alone. The human-AI relationship is normally designed
on a finer level of granularity. Since the interaction of a
human with an AI would invoke multiple functions, Lee
and See [52] referred to this fine level of granularity as
function specificity, where the human interacts with specific
functions. One function may be trustworthy, while another
may not. This situation may cause the human to distrust
the overall system. This naturally takes us back to function
allocation and the need for a smart allocation logic, such as
e-cookie, to manage the relationship and ensure trustworthy
human-AI interaction.

A central point in the discussion above is to be able to
assess the level of autonomy. The literature relies on indirect
indicators to assess the level of autonomy. In particular,
performance has been a central focus in designing these
indicators.

Neglect tolerance [54] represents the reduction in an
autonomous system performance when it is being neglected
by its human supervisor. A fully autonomous system will
continue to function at the same level, while a semi-
autonomous system will suffer from severe drops in
performance. In effect, neglect tolerance measures how
skilled a system is.

Interaction efficiency [54] complements the above metric.
A fully autonomous system could successfully undertake a
task without human intervention. However, the performance
of that system may improve once a human interacts with
it. If effect, interaction efficiency measures the level of
competency a skilled system has.

Neglect Benevolence [55] represents the time an
autonomous system needs to stabilise between two succes-
sive instructions. This time could be seen equivalent to the
concept of task switching, and represents the time needed

Table 4 The risk in the human-AI relationship

Human control Sense-making Decision-making Execution ability Execution authority Nature of risk

Absolute H H H H Limited human cognition and bounded rationality
could lead to high errors, information overload,
and inability to manage complex tasks.

High AI H H H Undesirably biased analytics could drive the
human to unfair decisions, while human bias and
limited cognition could add more complexity to
the mix.

High H AI H H Undesirably biased recommendations could make
the human accountable for unethical or legally
uncompliant decisions, although the human could
be overwhelmed by the available data, and their
own bias and limited cognition could add more
complexity to the mix.

Medium AI AI H H In the absence of transparency and explainabil-
ity of the AI, the human does not have enough
information to form a judgement regarding the
chosen decision. Information and situation com-
plexity could overload the human. The human
could become accountable for inappropriate deci-
sions.

Low AI AI AI H In the absence of transparency and explainability
of the AI, the human has no understanding of
the rationale of the decision. Information and
situation complexity could overload the human.
The human’s accountability is blinded.

Low AI AI H AI The AI controls human actions and could lead the
human to wrong actions.

None AI AI AI AI The human is out of the loop, legal responsibilities
and accountabilities of the decision are both
unclear.
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for task switching such that the system is able to perform
each task at its best.

The primary problems in the indicators above include
being post-development; that is, they are proposed by the
human-robot interaction literature where the system has
already been designed and built. Therefore, they cannot
guide the design of the system efficiently. Our discussion
in this paper suggests another set of indicators that could
guide the design of the system, functional analysis. By
decomposing the mission into functions, weighting each
function based on its level of criticality and complexity of
the skills required to perform them, level of autonomy could
be measured as the percentage of the weighted sum of those
functions implemented and those available for a mission.

The post-development indicators could then be used as
modifiers for testing each function. For example, neglect
tolerance and interaction efficiency could then be measured
on the level of individual functions. Similarly, neglect
benevolence could be evaluated between each two functions
that could be required in a mission to operate serially. From
this discussion, we could formalise the metrics as follows:

AutonomyLevel = 100 ∗ sumM
i Wi

sumN
j Wj

AutonomyLevel = 100 ∗ sumM
i Wi ∗ NTi ∗ IEi

sumN
j Wj ∗ NTj ∗ IEj

AutonomyLevel = 50 ∗ sumM
i Wi ∗ NTi ∗ IEi

sumN
j Wj ∗ NTj ∗ IEj

+50 ∗
∑MM

ik Wi ∗ Wk ∗ NBik
∑NN

jl Wj ∗ Wl ∗ NBjl

where N is the total number of functions required to
complete a mission effectively and efficiently, M is the
number of functions that have been implemented, Wi is
the weight of function i reflecting its criticality and skill
complexity, NTi is neglect tolerance for function i, IEi is
the interaction efficiency for function i, and NBik is neglect
benevolence for function i when followed up by function k.

All metrics above generate values between 0 and 100%;
thus, they are bounded. Their range could be mapped
to categories such as low, medium and high autonomy
level based on the specifics of the mission and design
requirements.

Many Questions, Few Answers

The paper has drawn on a large transdisciplinary body
of literature to demonstrate that there has been a wealth

of research conducted in which scientists, technologists
and engineers have thought about the relationship between
humans and AI. While methodologies exist, new funda-
mental and challenging questions continue to emerge. The
complexity of AI is increasing; thus, what used to work
just in a structured safety critical environment, such as air
traffic control, needs now to be used in unstructured envi-
ronments, in the hands of the public, and in situations where
it is not necessarily possible to think through responses in
advance. This calls for new test and evaluation methods [56]
and leaves us with more questions than the current state of
science can readily answer. I will focus on a few.

Should humans have control over AI? AI operates in a
social context. Whatever roles it will play as a technology, it
will be serving a role in society. Some aspects of this role are
better performed by AI in which human intervention could
be undesirable, while other aspects need human approval.
For example, a self-driving car should self-manage itself
when an obstacle suddenly appears. In this situation, any
delegation to a human could be fatal, since the human does
not have the cognitive capacity to respond in time. The
destination of the self-driving car is a human choice, which
the human needs to approve. The answer, therefore, is not
a straightforward yes or no; it is a matter of when and
how. Function allocation gives us the scientific foundations
to search for an answer. As more AI becomes integrated
into society, we need to simultaneously dig deep to explore
the functions and design the required functional allocation
logic.

What are the risks associated with becoming over-reliant
on AI? Under-reliance represents inefficiency, while over-
reliance represents risk. This question raises the importance
of understanding the true trustworthiness of an AI and its
capability, and of conducting a continuous assessment of
its behaviour to calibrate levels of trustworthiness. Using
a risk lens, the answer would also lie in the frequency of
being over-reliant, the magnitude of consequences and the
trustworthiness of the AI. Over-reliance will lead to negative
consequences. The more negative consequences we see,
the more likely we will distrust an AI and remove it from
service. Can we design triggers for intervention? Should
humans intervene in the functioning of the AI? If yes, when
should they? A good starting point towards answering these
questions is the literature on function allocation. Different
forms of human-AI relationships call for different answers
to these questions. If the AI is skilled in a task where
it is supervising a human, it would be inefficient for the
human to intervene in the AI’s task. In a supervisory control
task where the human supervises the AI, clearly the human
is authorised and exists to intervene with the AI when
needed.

Recalling that e-Cookies are AI agents that act as
relationship managers between humans and autonomous
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systems. E-cookies aim to encode triggers for intervention
in the allocation agent. E-cookies need to be designed
as a smart watchdog to ensure that the AI is performing
correctly. However, this is not a simple expectation. There
are fundamental challenges in the design of E-cookies that
need rigorous science to address them, for example, how to
assess the safety of an AI that continues to learn and evolve
with new behaviours that did not exist at the design stage.

Conclusion

In this article, I have discussed the human-AI relationship
using scientific and technological lenses. The literature
of function allocation has shown that the human-AI
relationship is not only about humans using AI or
humans interacting with one thing called the AI, but also
about different forms of micro-relationships that involve
functional interactions. In a semi-autonomous car, the
human interacts with the displays inside the car, the wheel
when it needs to, the navigation system and so on. Similarly,
in fully autonomous cars, the human will interact with the
car using voice, receiving audio and visual information,
and possibly haptic feedback. Each of these interactions
performs different functions and engages in services offered
to the human. The human trust in the car will be influenced
by these different interactions.

I have argued that the Human-AI relationship should
not be studied from a mere use perspective alone, which
could lead to sever negative consequences. I discussed the
allocation agent representing an AI that is dynamically
reallocating functions between the human and the AI. The
allocation agent itself is an AI and could simply cause
the human to distrust or mistrust the AI in the car if
the allocation agent is not skilled enough to reallocate
functions effectively and efficiently. It is important to design
the allocation agent, and clearly articulate the level of
delegation to that agent and its authority to act in different
contexts. The AI in the future could turn out to be AIs within
an AI, making it difficult to trace the root causes of distrust
or mistrust between the human and the machine.

I conclude that any social integration of AI into the human
social system would necessitate a form of relationship on one
level or another between the human and the AI in society,
meaning that humans will always actively participate
in some decision-making loops that will influence the
operations of AI. Even the most autonomous and clever AI
will exist within a social system in which it needs to interact
with humans and other AI systems. An AI must become
socially integrated.
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