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Abstract Continuous-time recurrent neural networks are
widely used as models of neural dynamics and also have
applications in machine learning. But their dynamics are
not yet well understood, especially when they are driven
by external stimuli. In this article, we study the response
of stable and unstable networks to different harmonically
oscillating stimuli by varying a parameter p, the ratio
between the timescale of the network and the stimulus, and
use the dimensionality of the network’s attractor as an esti-
mate of the complexity of this response. Additionally, we
propose a novel technique for exploring the stationary points
and locally linear dynamics of these networks in order to
understand the origin of input-dependent dynamical transi-
tions. Attractors in both stable and unstable networks show
a peak in dimensionality for intermediate values of p, with
the latter consistently showing a higher dimensionality than
the former, which exhibit a resonance-like phenomenon.
We explain changes in the dimensionality of a network’s
dynamics in terms of changes in the underlying structure
of its vector field by analysing stationary points. Further-
more, we uncover the coexistence of underlying attractors
with various geometric forms in unstable networks. As p
is increased, our visualisation technique shows the net-
work passing through a series of phase transitions with
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its trajectory taking on a sequence of qualitatively distinct
figure-of-eight, cylinder, and spiral shapes. These findings
bring us one step closer to a comprehensive theory of this
important class of neural networks by revealing the subtle
structure of their dynamics under different conditions.
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Introduction

Continuous-time recurrent neural networks are prevalent in
multiple areas of neural and cognitive computation. They
have been successfully used as models of cortical dynam-
ics and function [1, 2] and have also found application in
machine learning [3—8]. In biological modelling, it is impor-
tant to know how networks respond to external forces, as
neural circuits are constantly receiving stimuli from the
environment and other brain regions [9, 10]. In a machine
learning context, it is important to know how external inputs
affect the behaviour and expressive power of the model. Fur-
thermore, it has long been proven that these networks can
approximate any dynamical system to arbitrary precision
[11, 12], but further empirical study is needed to under-
stand the practicalities of such approximations and how
network dynamics are shaped by incoming stimuli [13]. A
characteristic phenomenon exhibited by such networks is a
qualitative change in their dynamics—depending on the pre-
cise values of some of the parameters—commonly referred
to as a bifurcation. This phenomenon has been studied ana-
Iytically for the case of networks with less than ten neurons
[14, 15] but to take an analytical approach to larger networks
comprising hundreds of neurons would be very challenging.
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Hence, numerical approaches are the main tool for investi-
gating how these bifurcations appear and what their effect
is on network dynamics.

The goal of the present article is to investigate, both
visually and numerically, the properties of externally driven
recurrent neural networks. We build on previous work by
Sussillo and Barak [16] and focus in particular on two key
aspects of network dynamics: temporal evolution of station-
ary points and attractor dimensionality. We extend estab-
lished visualisation techniques to illustrate and understand
the relation between these underlying dynamical properties
and actual instantiations of the network’s trajectory through
its state-space. Finally, we uncover the coexistence of under-
lying attractors with various geometric forms but the same
dimensionality in unstable networks.

This paper is organised as follows. In “Methods”, we
present a novel approach to stationary point dynamics and
introduce a technique to measure attractor dimensionality
adapted from Tajima et al. [17]. In “Results”, we show the
results of our analysis on various networks, and focus on
the differences between stable and unstable regimes. Specif-
ically, we consider timescales of the network’s dynamics
that are relevant to that of the input signal. What we mean
by this is that the timescale at which we examine the
complexity of the network’s response is comparable to the
timescale at which the harmonic input oscillates. In terms
of the network’s information processing capabilities, this
timescale is the most relevant one. In other words, networks
that show rich, complex dynamics at this timescale can
theoretically perform the most interesting nonlinear trans-
formations of the input [5], from a computational point of
view. Finally, “Discussion” evaluates the methods used and
discusses the significance of attractor dimensionality for
reservoir computing applications and biological modelling.

Methods
Network Simulations

Neuron Model The neuron model used in these experi-

ments was the continuous-time firing-rate model [18, 19]:
N

—xi + ) WS+ w/["S(t) (1a)
j=1

ri = tanh(x;), (1b)

dx,'
T— =

dt

where x; is the membrane potential of neuron i, 7 is a time
constant that determines the timescale of the neuron’s activ-
ity, Wi?es is the connection weight from neuron j to neuron

i and wiI " is the connection weight from the external input
S to neuron i. We considered networks driven by an exter-
nal oscillator S(#) = sin(at), and studied the response of
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the network for varying frequencies «. All neurons received
input from the external oscillator with a weight wiI n
(0, 1). The recurrent connections WR® were given by a
random Erdos-Renyi graph with connection probability p =

0.1, no self-connections and weights Wiﬁ-{es ~ (0, g).

~

with g6 = g/+/pN acting as a global scaling factor. We
refer to g as the gain, an important parameter that strongly
affects the dynamic behaviour of the system. It has long
been established [19] that autonomous networks with g < 1
exhibit attracting dynamics towards a globally stable sta-
tionary point, whereas networks with g > 1 can exhibit
complex periodic or even chaotic behaviour. On the other
hand, the activity of input driven networks is heavily depen-
dent on the input signal. In some cases, this input has even
been shown to suppress chaotic activity for values of g
greater than 1 [13], indicating the impact of the input signal
on the network’s activity. For convenience, we refer to net-
works with g < 1 as stable networks and those with g > 1
as unstable. Finally, the variable r; in Eq. 1b is the observed
activation, or firing rate, of neuron i and lies in the interval
[—1, 1]

Notice that with this sinusoidal input, the only quantity
determining the network’s response and complexity is the
relative timescale of the neurons and the stimulus. There-
fore, for ease of analysis and without loss of generality we
can reparametrise 7 = !¢ in Eq. la as

N
dx; Res In A
PR =—x; + Z Wi rj + w; " sin (,ot) , 2
Jj=1
where the only parameter of interest is now the ratio
between the neurons’ timescale t and the period of the

driving force! TF, 1.€.

p= 27{&. 3)

Numerical Simulations In order to change the value of p
between different simulations, we fixed the frequency of the
sinusoidal input at %, such that tp = 21—’6, and instead var-
ied t. This way, the resolution of the sinusoidal input was
the same for all simulations. We note here that increasing
T is mathematically equivalent to increasing the frequency
of the oscillation, as shown from Egs. 2 and 3. Simulations
were performed using the Euler integration method with
step size 0.01 and were run for 3500 timesteps. The net-
works were initialised randomly and received a short, strong
pulse of amplitude 5 through w!” after 200 timesteps, for
50 timesteps. The purpose of this pulse was to guide the
network to a bounded region of its state-space with a small

IWe note that S(¢) is not exactly a force, as it is applied to the first-
order time derivative of x, and not to the second. However, informally
the name bears a similar meaning and is a useful analogy.
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hyper-volume. The oscillatory input was then applied. After
discarding the first 1500 points of the simulations as tran-
sients, the network activity for the remaining simulation was
analysed. A different set of input and network connectiv-
ity weights, w!” and WR®, respectively, were generated for
each simulation. Finally, for finding the candidate points of
Eq. 5, the MATLAB function £solve was used with the
trust-region-dogleg algorithm [20].

Analysis and Visualisation Techniques

Stationary Point Analysis Loosely speaking, a station-
ary (or fixed) point in a dynamical system’s state-space is
one where it will remain if initialised there and not sub-
ject to external input or noise. More formally, it is a point
where all components of the system’s gradient are zero.
Stationary points can be classified as sources, sinks, limit
cycles or saddles for low-dimensional systems, and can
get more complicated as the dimensionality of the state-
space increases. Stationary points are key to predicting
the long-term behaviour of the system and its response to
perturbations. Here we extend the work of Sussillo and
Barak on stationary point analysis in recurrent neural net-
works [16], and refer the interested reader to [21, 22] for a
review of stationary point analysis techniques in nonlinear
dynamical systems.

For finding the stationary points of the driven reservoir,
the system of equations describing the evolution of the net-
work can be rewritten in matrix form for a constant stimulus,
as

1
F(x,s) 2 x= —(—x—}—WResr—}—wI”s). )
T

Formulated this way, we see that finding the stationary point
¢ of the system for a given input current s is equivalent
to solving the fixed-point vector equation F(x,s) = 0. In
other words,

¢ (s) = arg, min|F(x,s)|2. (®)]

The most common problem in finding stationary points is
the practical feasibility of this optimisation—in the stan-
dard reservoir computing scenario the number of neurons
in the network ranges from several hundred to several thou-
sand, making full optimisation intractable. We overcome
this problem by leveraging the smoothness of the network’s
dynamics to find stationary points for constant non-zero
values of s, and formulating our approach as a set of sequen-
tial optimisation problems. Starting from the trivial solution
¢(0) = 0, the value of s is gradually incremented in small
steps A, calculating ¢(s) at each step. Importantly, this
allows us to use the result of the previous step ¢(s) as
the starting point for the next optimisation for ¢ (s + A),
facilitating convergence of the optimisation and making the
whole method tractable and effective. To ensure consistency

in our experiments, an optimisation was only considered
successful if all elements of the gradient vector had an abso-
lute value below 10713, In our simulations, we found that
incrementing s in steps of A = 0.01 offers a good balance
between convergence probability and speed. Once ¢ (s) is
successfully computed for all relevant values of s (in our
case, a grid in the [—1, 1] interval), the temporal trajectory
of the stationary point can be easily described by ¢ (S(z)).

Locally Linear Dynamics In order to characterise the local
dynamics of the network near the stationary points, we can
approximate Eq. la by a 1st-order Taylor expansion. We can
then analyse the Jacobian of the linearised system, which
following Eq. 4 is defined as

J=WRS @B _1, (6)

where ® denotes an element wise multiplication between
the two matrices, B is an n X n matrix with identical rows
Bjj = (1 — tanh(x j)z) and / is the identity matrix.

The Jacobian was calculated at each stationary point,
and then diagonalised. This allowed us to extract the eigen-
vectors corresponding to the eigenvalues of the linearised
system. In order to determine the nature of the station-
ary point, we focused on the two largest eigenvalues of
the linearised system and used results from dynamical sys-
tems theory to determine the nature of the fixed point. For
the cases in which the second largest eigenvalue was a
complex number, we also considered the third largest eigen-
value, which is its complex conjugate, and extended results
for two-dimensional systems to three dimensions by con-
sidering linear dynamics along a plane and a vector, as
opposed to only two vectors [22]. It is known that if the
two largest eigenvalues are real and negative, the stationary
point behaves as a sink along the plane spanned by the two
eigenvectors; if these eigenvalues are both positive, it acts
as a source; and if they are mixed as a saddle point.

The challenge for visualisation comes if the eigenvectors
have a non-zero imaginary part, as is often the case. Dynam-
ically, this indicates the presence of rotational dynamics
near the stationary points. To visualise this effect, the diag-
onal form of the Jacobian at each stationary point can be
transformed into its real Jordan canonical form, where pairs
of complex conjugate eigenvectors are transformed into a
pair of real vectors that define a basis for the hyperplane that
the rotation lies on. This pair of real eigenvectors directly
determines the orientation of the rotation plane of the locally
linear dynamics.

Dimensionality of Attractor Dynamics While the station-
ary points and their local dynamics provide a great deal of
information about the response of the network to constant
input, all experiments presented in “Results” were run with
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time-varying stimuli. An interesting global property of net-
work dynamics is the fraction of all possible states that the
network actually visits, as this affects the richness of its
dynamical repertoire and consequently its expressiveness. It
is possible, and in fact common, for the network to have
a finite attractor dimensionality D, such that the dynamics
of the network effectively lie on a manifold of dimension
D, which is much smaller than the number of neurons 7.
A higher attractor dimensionality indicates more complex
dynamics, which in turn allow the reservoir to engage in
more sophisticated computation. In this article, we explore
and compare two techniques for estimating attractor dimen-
sionality, one based on linear methods and one based on
more general, non-parametric estimators.

The linear estimator Dpca is based on the principal
component analysis (PCA) of the network’s trajectory. The
attractor dimensionality is then simply defined as the min-
imum number of principal components (PC) required to
explain 95% of the variance in the network’s trajectory. The
measure was averaged over multiple runs of the network for
the results presented in this study.

The calculation of the nonlinear, non-parametric estima-
tor Dxnn is slightly more involved. First, we select two time
series of the activation of same neuron in different runs of
the simulation and calculate the delay-embedding vector of
one of them [23]. Then standard k-nearest neighbour regres-
sion [24] is used to estimate the next value of one time
series based on the embedding vector of the other, using
four nearest neighbours and a delayed-embedding step of
74 = 4. Analogously to Dpca, Dinn is defined as the min-
imum dimensionality of the embedding vector such that the
regressed values capture more than 95% of the variance of
the trajectory. This estimation was also averaged over mul-
tiple neurons and multiple runs of the same network. For
details on this method we refer to the original article by

PC3

PC3

PC1

(a) 200 neurons, g = 0.9

Fig. 1 (blue) Trajectories of the stationary points visited as the input
varies sinusoidally, projected onto their three PCs. The origin repre-
sents the stationary point for the case where the input is zero, and
the two extrema of the curves represent the case where the inputs
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Tajima et al. [17]. We finally note that ideally one would
like to explain 100% of the variance in order to identify the
dimensionality of the attractor, but here we allow for some
flexibility and consider 95% as a reasonable compromise,
which is in agreement with Tajima et al. [17].

Results
Stable Networks

Stationary Point Trajectory First, we applied the sta-
tionary point analysis technique described in ‘“Analysis
and Visualisation Techniques” to two networks of different
sizes, both slightly under the edge of chaos with g = 0.9.
We performed PCA on the stationary point trajectories and
plotted a projection of these trajectories on their three first
PCs in Fig. 1. For all stationary points and both networks,
the eigenvalues with the largest absolute value—which
influence the dynamics near the point most strongly—were
complex conjugate pairs with negative real parts. This indi-
cates that the local dynamics exhibit an attracting rotational
effect towards the stationary points—i.e. if injected a con-
stant input, the network “spirals down” to the stationary
point along the green circles in Fig. 1.

The first point of interest in Fig. 1 is the regularity with
which the stationary point shifts as the input changes, result-
ing in a smooth trajectory in the reduced PC-space. This
validates the rationale behind the sequential optimisation
approach which allowed the optimisation to be completed
much faster than by using a random initial point. The second
point of interest is that the planes formed by the two most
dominant eigenvectors also change smoothly along the sta-
tionary point trajectory. This can be linked to the fact that
even in the presence of a varying input of the form wl.l "S(t),

PC1 _5
20 PC2

(b) 800 neurons, g =0.9

are —1 and 1, respectively. (green) Attracting plane spanned by the
pair of complex conjugate eigenvectors corresponding to the pair of
eigenvalues with the highest absolute value at each stationary point
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the network remains in the stable dynamical regime and
undergoes a smooth deformation of its locally linear dynam-
ics near the stationary points. We note that this method is
applicable to larger networks and we observe that the sta-
tionary point and its local dynamics also change smoothly
with varying input (results not shown).

For each value of the input s, we can interpret the
behaviour of the network as following a vector field F (x, s)
which, if given enough time, will bring the network to ¢ (s).
However, in our simulations the input was changing with
time. This means that the network did not completely fol-
low the trajectory of the fixed point, but operated under
the action of a different vector field at every timestep. The
parameter p, being the ratio between the timescales of the
neurons and the input, regulates how fast the stationary
points move back and forth along their trajectory and how
fast the network moves in its state-space.

To visualise this interplay between a changing vector
field and the network’s state, we plotted the activity of the
same network driven by signals of different p values, pro-
jected and overlaid in the space of the set of stationary points
(Fig. 2). For each trajectory, we calculated the radius R
of the smallest enclosing sphere in the reduced space and
its maximum instantaneous distance dy from the station-
ary point (Fig. 3). These results match our intuitions—for
lower values of p, the stationary point moves slowly along
its trajectory and at a speed through the state-space which
is comparable to the speed at which the network activity
evolves. Due to the fact that all stationary points remain
sinks, the state of the network is being constantly pulled
by the moving stationary point and remains close to it,
yielding a small dg. As p increases, the stationary point
moves faster and can no longer be followed by the net-
work state, such that the trajectories of the network become
wider and progressively less similar to that of the station-
ary point, as reflected by the rapidly increasing d. Finally,
as p gets much larger, the vector field changes much faster
than the network can accommodate and trajectories start
condensing around the origin in the reduced PC-space.
Eventually R vanishes into a subspace orthogonal to the
reduced PC-space and dy asymptotically approaches the
maximum distance of the set of stationary points to the ori-
gin. This happens because the network activity is no longer
able to follow the moving stationary point closely, due to the
fact that the stationary point and network state move with
very different velocities.

This behaviour is loosely reminiscent of the resonance
behaviour observed in conventional driven harmonic oscil-
lators. If the oscillation of the driving force is slow com-
pared to the intrinsic timescale of the oscillator, the system
follows the trajectory imposed by the force. With higher
frequencies of the driving force the amplitude of the result-
ing oscillation increases, as resonance effects start playing a

PC2
o
T
|

—4 |- .
\ \ \ \ \
-10 -5 0 5 10
PC1
fixed point p=10 p=50 ——p=200
— p=2 p =30 p =100 ——p =400

Fig. 2 Set of stationary points (centre black curve) and trajectories
of an N = 200 stable network for different p values. All trajectories
have been projected onto the two largest principal components of the
set of points visited by the stationary point. Projected network trajec-
tories for lower p values lie closer to the projected stationary points,
indicating that the fixed points move at a speed that is comparable to
that of the network’s evolution and can hence pull the network activ-
ity close to them. As p increases to about 30, the projected network
activity initially opens up and then, for p > 50, falls into an oscilla-
tion mode that is orthogonal to the oscillation mode of the stationary
points in reduced PC-space, while condensing around the origin. This
illustrates that as T becomes much larger than tg, the network activ-
ity progressively moves into a subspace that is orthogonal to the two
principal components of the stationary point trajectory, indicating a
disentanglement of the two trajectories
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Fig. 3 Stable network with N = 200 neurons and g = 0.9. (blue)
Radius of the smallest enclosing sphere in the reduced PC-space. (red)
Maximum instantaneous distance in the reduced PC-space between the
network state and the stationary point trajectory
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Fig. 4 Underlying attractor dimensionality of stable networks with
N =200 neurons and g = 0.9 for different p values, with the two pro-
posed estimators. Error bars denote the standard error of the estimated
dimensionality from different neurons and runs of the same network

role. Finally, for even faster frequencies, the force changes
too fast for the system to assimilate, and the amplitude of
the oscillation shrinks around the origin.

Attractor Dimensionality Next, we studied the effect of
the driving frequency on the dimensionality of the attrac-
tor, as measured by both Dpca and Dynn. The discussion
focuses on the estimates obtained with Dynn, which are
expected to be more reliable. The main reason for this is
that the nonlinear estimator is not affected by the different
scales of the independent dimensions of the attractor while
the linear estimator is very sensitive to them. Estimates for
Dpcp are also presented for comparison and to illustrate
the limitations of applying linear assumptions for measuring

the dimensionality of nonlinear attractors. Figure 4 shows
the estimated dimensionality of a stable g = 0.9 network
with N = 200 neurons, driven by external oscillators of
varying p. The first insight we obtain is that the driving
frequency can radically change the dimensionality of the
network’s activity, ranging from as low as 1 to as high as 4.
For low values of p, the attractor dimensionality was about
2, and remained approximately constant until p =~ 400.
As we increased p, the dimensionality started increasing,
showing a strong and clear peak around p =~ 3000, and
for very high p fell back to 1. The trends in dimension-
ality for very high values of p are discussed in detail in
“Very High Values of p”. We also note the low variance
of DynN across trials of a given frequency, in particular for
very low and very high p. Furthermore, we explored how
these results scale for networks of different sizes (Fig. 5).
Larger networks show very similar behaviour, with a peak
in complexity for intermediate values of p. Finally we note
that a clear discontinuity in networks with N = 800 and
N = 2000 was observed during the increase in dimension-
ality, that could potentially indicate a sharp phase change.
A similar discontinuity was not observed for networks with
N = 200 or N = 1400. Additional simulations were car-
ried out to examine this transition near the peak (results
not shown), using different variance thresholds and differ-
ent k-NN regression schemes. This investigation showed
that while the trend of dimensionality change shown in
Fig. 5 is robust for various variance thresholds and regres-
sion schemes (with some noise in the estimated value), the
appearance of discontinuities is sensitive to the variance
threshold.

Unstable Networks

The results presented in the “Stable Networks” correspond
to stable networks, which exhibit stable dynamics in the
presence of constant input, due to the presence of sink
attractors. As has been shown in the previous section,

N =200 N = 800 N = 1400 N = 2000
T T T T
4.0 4 E 4 F 4 .
Z
5 4
Qo0 : -+ 5 -+ 4 -
0.0 | | | | | | | | | | |
10° 103 100 100 103 10° 103 100 10° 103 10°
P p P P

Fig. 5 Estimated underlying dimensionality Dynn for stable (g =
0.9) networks of different size and different p values. A different net-
work with random connectivity was created for each data point. Error
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bars denote the standard error of the estimated dimensionality from
different neurons and different runs of the networks
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these networks can still produce interesting behaviour if
driven by a time-varying external signal. On the other hand,
autonomous networks with a higher gain, g > 1, are
regarded as unstable in the sense that their activity remains
complex without converging to a stable state, due to the
presence of multiple saddles in their vector fields [16].
For the case of externally driven networks with g > 1,

Fig. 6 Stationary point
visualisations for different
values of g in networks of 200
neurons. Stationary points were
discovered with 50 random
initialisations of the
optimisation procedure (similar
to Sussillo and Barak [16]) for
each value of the input signal s
and only points satisfying the
stationarity condition were kept.
After performing an eigen-

I

previous work [13] has shown that a strong oscillatory input
can entrench the network dynamics and induce periodic,
nonchaotic network activity. The focus of this study is to
visualise the dynamical skelefon, i.e. the position and nature
of stationary points, with the aim of understanding how the
instantaneous value of the input changes the vector field that
determines the dynamics of the network.

decomposition on the linearised
dynamics, each stationary point
was classified as a sink (blue
dots) or a saddle (red crosses),
depending on the sign of the real
components of the eigenvalues

/ 1 </
‘.
2
0
"
1
-1
0
0 1 0 |
- -1 pc1
PC 1 PC2
(b)g=12
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Fig. 7 Underlying attractor
dimensionality estimated by
Dpca (blue) and Dynn (red).
Estimates are presented a across
the full range of p values and b
for p values close to the
transitions presented in Fig. 8.
The dotted lines in b correspond
to p values of 45, 135, 140 and
150. Simulations were carried
out using an unstable network of
800 neurons and g = 1.5

15.0

10.0

Drca

5.0

0.0

10*

103
P

(a)

100 100 107

In this section, we present results from our investiga-
tion of how the trajectory and nature of stationary points is
affected by a varying input signal for networks with N =
200 and g > 1 (Fig. 6). We further explore the impact of
p on the activity of networks with N = 800 neurons and
g = 1.5. We show how the estimated attractor dimension-
ality changes for different p values in Fig. 7 and illustrate
their effect on the geometric form of the attractors by

Fig. 8 Plots of the activity for a
network of 800 neurons and

g = 1.5 driven by various p
values, projected on their three
principal components. The
increase in attractor
dimensionality that results from
increasing p from 45 to 135 is
associated with a transition from
dynamics resembling a a
figure-of-eight to b oscillations
along the surface of a cylinder in
the reduced space. Figures b, c,
d show the various geometric
forms of the system’s attractors
with Dgny = 3

10°

visualising the projections of the network’s activity for four
p values in Fig. 8. We use these Figs. 6, 7 and 8 to ground
our discussion and interpret dynamical transitions in the
network.

Stationary Point Trajectory In order to examine how
the instantaneous value of the input s affects the nature
and position of the stationary point in reduced PC-space,

PC1

PC3

PC1

(C) p = 140, Dynn = 3
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PC2

(d) p =150, Dinn = 3
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for networks with different values of g, the Sussillo and
Barak [16] variant of the optimisation scheme described in
“Methods” was applied. Specifically, for each instanta-
neous value of s in [—1, 1], 50 random initialisations were
performed for the optimisation in order to find as many sta-
tionary points as possible, of which only those satisfying
the stationarity condition were kept. The eigenvalues of the
linearised system at each point were examined to classify
the point as a stable node or a saddle. Plots in Fig. 6 show
how the position and nature of the stationary points change
with s for networks of N = 200 and different g values.
These plots convey the interesting point that both the net-
work gain g and the instantaneous value of the input s can
be considered to be bifurcation parameters, in the sense that
the position and nature of the stationary points depend on
their precise values. For the case of g < 1, this has long
been established, but Fig. 6 shows that the value of s also
plays an important role along with g, since the networks can
remain stable even for g > 1, if the value of s is also high.
More specifically, Fig. 6a for g = 1 shows that all station-
ary points remain stable nodes for all values of s, similar to
the case of networks with g < 1in Fig. 1. As g increases by
a small amount, the range of s values in the vicinity of the
origin generate multiple saddle points that prevent the net-
work from reaching a stable state if run with very small or
no input. This is in agreement with the well-known fact that
autonomous networks are unstable for g > 1. As the value
of g increases to 1.3, 1.5, 1.6 and finally 2, three trends were
observed: first, the number of saddle points increases and
they spread out in the projected PC-space, second, the range
of s values where saddle points appear increases towards
higher absolute values, thus increasing the fraction of the
range of s that is unstable, and third, the number of positive
eigenvalues in the saddle points increases both with g and
with a diminishing signal amplitude. The first point was also
proven from a theoretical perspective [25]; that is, the topo-
logical complexity of the state-space of firing-rate neural
networks increases at a similar rate as the dynamical com-
plexity of the network; this means that as g increases above
1, the number of stationary points also increases.

In light of this investigation and in agreement with pre-
vious work [26], the varying input signal can be considered
as an on-line bifurcation parameter that can regulate the
stability of the system. As the input changes from strong
and positive (and thus from an operating regime with sta-
ble points) to values close to zero, a series of bifurcations
occur that nudge the dynamical landscape into an unstable
operating regime. This rhythmic switching between stable
and unstable operating regimes results in a higher maxi-
mum attractor dimensionality for networks with g > 1 as
opposed to networks with g < 1, that always experience
stable nodes. We also note that the edge case g = 1, even

though considered as an unstable case, consistently behaved
similar to the stable cases (Fig. 6a).

Attractor Dimensionality and Geometry Figures 7 and
8a show that for low values of p < 60, the network activ-
ity lay on a two-dimensional periodic attractor, as expected,
since the network was driven by a slow sinusoidal signal
with the same dimensionality. This phenomenon can be
related to results from Rajan et al. [13], who showed that
external stimuli can suppress chaotic activity in an other-
wise chaotic network and impose a periodic behaviour on its
dynamics. As the value of p was increased, the dimension-
ality of the underlying attractor also increased, as measured
by the estimators. It is evident that the linear estimator
significantly overestimated the dimensionality of dynamics
compared to the nonlinear estimator and the two estimates
diverged significantly in the region of p values near the
peak. This effect can be attributed to a rapidly developing
and highly nonlinear attractor in this region. Although the
numerical values of the dimensionality differ significantly
between the two estimators, the general trend for the change
in dimensionality is very similar for both. Moreover, the
increase in dimensionality for unstable networks resulted in
a maximum dimensionality of 5 at p values that were an
order of magnitude lower than the ones for stable networks,
which reached a maximum dimension of 4. The higher max-
imum dimensionality reached in networks with g = 1.5
can be attributed to the spawning of saddle points in the
state-space for intermediate values of the input signal. The
periodic bifurcations resulting from the oscillatory signal
continuously deform the state space in a non-smooth man-
ner, as opposed to networks with g < 1 which experience a
smooth change in the position of the stable stationary point
in the state-space. As a result, the vector field experienced
by unstable networks varies more with time compared to
that experienced by stable networks.

Figure 8a, c, d captures the projections in reduced PC-
space of attractors with a dimensionality of 3, as measured
by the nonlinear estimator. It is interesting to note that the
increase in dimensionality from a value of 2 to 3 for p = 45
to p = 135 can be visually observed in Fig. 8a, b. In
this transition, the network activity extended from a 2-day-
period attractor to oscillations around a 3D manifold, whose
geometric form resembles that of a cylinder. Furthermore,
in the region of p values between 130 to 150, all attractors
were found to have an estimated dimensionality of about
3, but exhibited different geometric forms. Three distinct
forms were found in this region and are shown in Fig. 8b,
c and d. The major point of interest here is that, in addition
to an increase in dimensionality as o increased, transi-
tions between attractors of different geometric forms but the
same dimensionality were observed for small changes in p.
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These transitions are not necessarily expected but can be
explained in an intuitive manner by the insights gained in
this study. Specifically, small changes in p result in the vec-
tor field changing with a slightly different frequency, while
the speed with which the network evolves remains constant.
Due to the appearance and disappearance of stable and sad-
dle points as the vector field changes, the precise vector field
experienced by the network as it evolves is significantly dif-
ferent for slightly different input signal frequencies. This
results in the network orbiting around attractors that have
geometrically distinct forms, as shown by the plots in Fig. 8.

Finally, we note that what can actually be visualised are
not the complete high-dimensional attractors themselves,
but their projections in the reduced, three-dimensional, PC-
space. For this reason, care should be taken when forming
interpretations from such visualisations and especially for
p values that result in a dimensionality higher than 3. Nev-
ertheless, all attractors presented in Fig. 8 had a maximum
estimated dimensionality of three, as calculated with the
more reliable non-parametric estimator and shown in Fig. 7.
Moreover, even though the estimated dimensionality with
the linear estimator was more than ten for Fig. 8b, c, d, the
total variance explained by the first three principal compo-
nents using the PCA estimator was about 75-80% for these
plots and each subsequent dimension added a progressively
smaller percentage to the total variance explained. This
means that network oscillations along the plotted dimen-
sions capture the majority of the variance of the system
and any single additional dimension should not provide
any additional information about the geometric form of the
attractor. Hence, we conclude that enough information was
retained after dimensionality reduction with PCA, in the
visual sense, so as for our visual exploration to remain
relevant and informative of the effect of the driving sig-
nal frequency on the dimensionality and geometric form of
these attractors.

Very High Values of p

In “Introduction”, we briefly mentioned that the focus of
this study is the computational capability of networks at the
timescale of the input signal. Ideally, the network should
be able to perform both timely and useful output mappings
when stimulated by the input signal. Networks that are not
responsive to changes in the input as they occur (or shortly
after), cannot be considered as able to perform useful com-
putations on the input. In the experiments presented in this
study, we varied the value of t, and hence p, to examine how
networks respond to input signals that operate at timescales
different than those of the network. Networks that respond
with higher-dimensional dynamics are more responsive to
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changes in the input, and hence more useful for compu-
tation, than networks that respond with lower dimensional
dynamics and are hence not affected much by the changing
input.

The presented results show a consistent decrease in the
dimensionality of dynamics for very high values of p >
10*. This can be explained by the way in which the value
of p was varied between different simulations. As described
in “Network Simulations”, to change the value of p, the
frequency of the sinusoidal input was kept constant and
instead, the network’s timescale, T, was changed. Conse-
quently, for very high values of p, t is also very high, due
to the direct proportionality of the two quantities (Eq. 3).
In addition, 7 is inversely proportional to the rate which the
network state evolves (Eq. 1a), implying that for networks
with large 7, the network state evolves much slower com-
pared to networks with small t. This slower evolution of
the network’s trajectory results in a reduction of the cur-
vature of the trajectory, which means that the dynamics
appear approximately linear at the timescale of the input
signal (10-20 timesteps). Furthermore, the approximately
linear activity of the neurons, as a result of very large 7, can
explain the observed drop in dimensionality for p > 10*
in Figs. 4, 5 and 7a. The low estimated dimensionality for
these p values resulted from the fact that the linear activity
of neurons in the network could be predicted with a sin-
gle embedding dimension by the non-parametric estimator,
and more than 95% of the variance of the activity could be
explained by the first principal component, when using the
linear estimator. This explanation can inform us about the
computational power of these networks on the input signal;
in order for networks to be able to respond to the informa-
tion provided through the input, their timescale needs to be
carefully chosen.

Finally, additional simulations were carried out to check
the long-term behaviour of neurons in stable (g = 0.9) and
unstable (g = 1.5) networks for 103 < p < 10° (results
not shown). For these experiments, stimulations were car-
ried out for 3.5 x 10° timesteps, in order to allow the
networks’ activities to fully unfold. Two interesting obser-
vations were made: firstly, the activities of stable networks
approached the origin for p > 10° in the long run, sim-
ilar to the diminishing amplitude of oscillation observed
in conventional harmonically driven oscillators. Secondly,
the activity of networks with g = 1.5 was nonlinear at
very large timescales ~10°, and appeared to span the whole
range of activity without any signs of approaching a stable
origin, similar to its behaviour in the absence of an input sig-
nal. From these observations, we can conclude that at very
high p values, both stable and unstable networks behave in
a similar manner as when the input is absent.
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Discussion
Reservoir Computing Applications

Within the paradigm of reservoir computing, the recurrent
network serves as a high-dimensional spatio-temporal ker-
nel acting on an input time series [5]. Its function is to
perform a complex nonlinear convolution on the input signal
such that, by training linear readout units, the output can be
used to approximate the result of a desired computation on
the input. This has been shown to have applications, among
other areas, in robotic manipulation [27], localisation [4]
and navigation [28]. In this latter context, the reservoir acts
on an incoming stream of sensory information to either
detect events or determine motor actions to complete a task,
e.g. navigating between rooms. For such applications the
dynamical properties of the reservoir play a crucial role:
on the one hand, stability is desirable, in the sense that a
similar sensory input should result in similar reservoir activ-
ity to guarantee a reliable operation; on the other hand,
rich dynamics are also advantageous to ensure that the net-
work activity is expressive enough for the readouts to be
appropriately trained.

Our proposed methodology can provide insight into the
dynamics of the reservoir driven by the appropriate input,
such that the recurrent and external connections can be
tuned, and to avoid time-consuming trial and error during
training. Using the approach taken here, the reservoir can
be initialised with a good estimate of a suitable g and 7,
depending on the nature of the input signal and the desired
dynamical complexity. One can then either use PCA or
nonlinear embedding to visualise the dynamics and mea-
sure their dimensionality from the resulting activity of the
network. The effect of the two mentioned parameters on
the dynamics can be quickly explored to identify different
dynamical regimes and hence guide the parameter search
during training.

In a different context, there are settings in which the
reservoir is connected to more than one external source,
but only one of them is active at any given time. This is
the case, for example, in Sussillo’s 3-bit flip gate reservoir,
in which three sources can inject the same signal into the
reservoir through different sets of input weights [16]. In
this scenario, although the driving signals are identical for
all sources, the network’s stationary points lie in a differ-
ent subspace of the state-space as a result of the different
input weights. This shows that not only changing the exter-
nal force itself, but changing its weights to each neuron it
is injected to, can modify the dimensionality and structure
of the network’s trajectory. In these cases, one can obtain
more information about the interplay between the sources’

effect on the network, by considering both the stationary
points and the locally linear dynamics under the effect of
either each source in isolation, or a combination of multiple
sources being active at the same time.

Biological Significance

Beyond the possible applications of these methods for reser-
voir computing, the work presented here can also be linked
to features of neural dynamics to help advance both mod-
elling and interpretation of brain behaviour [29]. As an
example, a recent study by Shenoy and colleagues has
shown that the motor cortex is strongly activated long before
the onset of any muscle movement [30]. Furthermore, they
showed that this pre-movement activity lies in the nullspace
of the output connections projecting to the muscles. This
means that even though the motor cortex is engaged in com-
plex internal dynamics [31], it has no downstream effect
and hence does not initiate any motion. This behaviour
allows the motor cortex to integrate information coming
from upstream regions of the brain without causing any
undesirable, premature movement [10, 32].

The subspace where the network activity lies during
preparation without affecting downstream regions could be
considered an attractor of specific dimensionality deter-
mined by the input from upstream regions. Signals in a
brain network such as the motor cortex can be thought of
as having two important functions: to transfer information
from other brain areas and to affect the dimensionality of
the region’s dynamics so that this information is reliably
processed and results in a useful motor output. Impor-
tantly, if the input signal can force the network into a
low-dimensional subspace, then it means that this subspace
can become a nullspace by only training the linear output
weights to the muscles. This can result in the preparatory
activity being performed naturally, without the requirement
for a separate gating or threshold mechanism, but rather
through the presence of a reliable and reproducible attrac-
tor [9, 33]. By extending this idea, one could speculate
that other brain regions could use these dynamical proper-
ties to establish or interrupt communication, simply through
their dynamics. Evidence suggests that such interactions
also exist between other parts of the motor cortex [34,
35]; hence the line of enquiry using the methods presented
in this study could help uncover some of the unknown
mechanisms of cortical communication and information
processing.

Interestingly, the nonlinear attractor dimensionality esti-
mator has previously been used by Tajima et al. [17] to show
that the attractor complexity of brain dynamics is higher
in downstream (cognitive) areas, compared to the upstream
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(sensory) areas from which they receive direct input. Results
have also shown that the attractor complexity in downstream
areas of awake monkeys is significantly higher than that of
anaesthetised monkeys—which lead to the conclusion that
the conscious state and regions associated with higher cog-
nitive processing are characterised by an increased attractor
complexity. From our viewpoint in this article, we can
hypothesise that the increased dynamic complexity of these
cognitively relevant areas could be partially explained by
a change in the input signals coming from upstream sen-
sory areas. Furthermore, changes in global power spectrum
in the anaesthetised brain [36] could be responsible for
maintaining the necessary brain activity without induc-
ing any actions, by restricting dynamics to a particular
subspace.

Conclusion

We have presented a novel method for finding and visualis-
ing the stationary point trajectory and locally linear dynam-
ics of externally driven, continuous-time recurrent neural
networks operating in different dynamical regimes. Com-
bining this method with standard visualisation techniques
we could gain further insight into the dynamics of ran-
dom networks and examine a resonance-like phenomenon
in harmonically driven stable networks.

On a separate line of enquiry, we studied two dif-
ferent methods for estimating the underlying attractor
dimensionality—linear estimation via principal component
analysis and nonlinear estimation through non-parametric
regression and delay embedding [17]. These two meth-
ods consistently indicate that (1) unstable networks have
more complex and higher-dimensional attractors than sta-
ble ones as a result of the appearance of saddle points for
smaller values of the driving signal, (2) both stable and
unstable networks show a greater complexity at an inter-
mediate value of p, with a decreasing effect of the input
on the network activity for p larger than these intermediate
values, and (3) the results for attractor dimensionality are
robust for stable networks (g < 1) between 200 and 2000
neurons.

Finally, we used a simple visualisation technique to
identify transitions in the geometric form of attractors of
dimensionality three in unstable networks (g > 1), for small
changes of the driving frequency.
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