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Abstract In this paper, we revisit the work of John G

Taylor on neural ‘bubble’ dynamics in two-dimensional

neural field models. This builds on original work of Amari

in a one-dimensional setting and makes use of the fact that

mathematical treatments are much simpler when the firing

rate function is chosen to be a Heaviside. In this case, the

dynamics of an excited or active region, defining a ‘bub-

ble’, reduce to the dynamics of the boundary. The focus of

John’s work was on the properties of radially symmetric

‘bubbles’, including existence and radial stability, with

applications to the theory of topographic map formation in

self-organising neural networks. As well as reviewing

John’s work in this area, we also include some recent

results that treat more general classes of perturbations.

Keywords Neural field models � Self-organisation �
Bumps � Breathers

Reflections

PCB I first met John in 1985 when he interviewed me

for a PhD. position in string theory at King’s College

London. I had drifted away from academia at the time and

was thus grateful that he decided to offer me the position. I

was immediately struck by his sharpness, his larger-than-

life personality, and his enthusiasm for mathematics and

science. Although that enthusiasm would sometimes lead

John to follow rather controversial paths, it was inspiring

for a young graduate student. When I started my PhD, John

had a large group of students working on horrendous per-

turbation calculations in supergravity. I still remember the

long line of students disappearing down the corridor

waiting to discuss their latest results. However, all of these

students graduated during my first year so I was essentially

John’s only student, which meant that we worked closely

together. My thesis work formed part of a book on ‘Finite

Superstrings’ [49] co-authored with John and one of his

long-standing collaborators Alvarez Restuccia from Ven-

ezuela. After graduating, I joined the Long-range Research

Lab at the Hirst Research Center in London, which carried

out fundamental research for GEC-Marconi. I was asked to

develop a research programme in neural networks, which

coincidentally was a research area that John had embraced

in the 1970s and returned to in the late 1980s. John became

a research consultant for GEC-Marconi and this enabled us

to continue collaborating. Unfortunately, John and I lost

contact when I joined Loughborough University in 1993. In

fact, I only saw John one more time, which was as a guest

speaker at his ‘retirement’ colloquium. Of course, John

remained as active as ever following his retirement, in

particular, pursuing his lifetime fascination with the prob-

lem of consciousness.

SC I was a PhD student with John from 1991–1994 at

King’s College London together with a large cohort of other

students, including Dan Allen, Neil Taylor, Rasmus Peter-

sen, Paulo Adeodato, Bart Krekelberg, Oury Monchi, and

Simon Hastings. My work at that time was concerned with

investigating the computational ability of higher-order
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neurons (artificial single neuron models that could compute

polynomial functions of their input) and recurrent networks

of Hopfield type. This latter work involved statistical

mechanical calculations of storage capacity, as well as the

development of learning rules. John strongly encouraged me

to think about the relevance of this work to hippocampal

processing, which set me on the path to investigate the

dynamics of biological, as opposed to artificial, neural net-

works. Since then, I have never looked back! I have very

fond memories of my time at King’s, including the realisa-

tion within a few days of starting my PhD on neurocom-

puting that John was none other than the author of ‘Black

Holes: The End of the Universe?’ [47], a popular science

book that I had enjoyed reading as a teenager. I became

aware that I was joining his group at a time when his research

activity was moving primarily from topics in mathematical

physics to the mathematical theory of neural networks.

Although I never worked with John on neural field models

and ‘bubble’ dynamics, it is a pleasure to describe, with Paul,

some of his work on this topic as well as more recent progress

in this area. It is a rare treat to have met someone as vibrant as

John and with such broad-ranging scientific interests. I will

miss his mellifluous tones.

Introduction

In this paper, we revisit a problem that John considered in

1999 [48], namely the existence and stability of radially

symmetric spots in two-dimensional (2D) neural fields, also

known as ‘neural bubble dynamics’. Neural fields represent

the large-scale dynamics of spatially structured networks of

neurons in terms of nonlinear integrodifferential equations,

whose associated integral kernels represent the spatial dis-

tribution of neuronal synaptic connections. One type of

solution that emerges in the presence of nonlocal synaptic

inhibition (lateral inhibition) is a stationary spot solution,

also known as an activity bump. Such bumps are typically

coexistent with a stable low-activity state (bistability) so

that an initial stimulus is needed in order to transition from

the low-activity state to the bump. However, the bump

persists after removal of the stimulus, so that the bump

represents a persistent spatially localised activity state [12,

24, 33]. One of the reasons why persistent activity bumps

are of interest is that they are thought to arise in cortical

circuits performing certain spatial working memory tasks.

Working memory involves cortical ‘‘memory neurons’’ that

establish a representation of a stimulus that persists after the

stimulus is removed. A typical experiment is a delayed

response task, in which a primate is required to retain

information regarding the location of a sensory cue across a

delay period between the stimulus and behavioural

response. Physiological recordings in prefrontal cortex have

shown that spatially localised groups of neurons fire during

the recall task and then stop firing once the task has finished

[22]. The stimulus response of a cell is characterised by a

smooth tuning curve that is peaked at a preferred spatial cue

and varies from cell to cell. At the network level, the

memory of cue location is stored as an activity bump.

Persistent activity bumps occur in a number of other sys-

tems that encode directional or spatial information,

including head direction cells in thalamus and basal ganglia

[46] and place cells in the hippocampus [38].

Prior to John’s study [48], almost all analyses of bumps

had been restricted to 1D networks. Wilson and Cowan

established the existence of 1D bumps numerically [53,

54], and Amari subsequently constructed an exact bump

solution for a 1D scalar neural field equation with a

Heaviside firing rate function [1]. He also showed how the

stability of the bump depends on whether or not pertur-

bations of the bump boundary (threshold crossing points)

grow or decay. Interestingly, Amari also developed an

analysis of 2D bumps. However, this work only appeared

in a 1978 book that was never translated from the Japanese

[3] and has only just been summarised in English [5]. John

generalised Amari’s 1D analysis by deriving conditions for

the existence of radially symmetric 2D bumps and by

determining the stability of the bumps with respect to

radially symmetric perturbations of the circular bump

boundary [48], see also [50]. This analysis was later

extended to the case of nonradially symmetric perturba-

tions using Fourier methods and properties of Bessel

functions [16, 20, 21, 25, 39]. In related work, Laing and

Troy [32] introduced PDE methods to study symmetry

breaking of rotationally symmetric bumps and the forma-

tion of multiple bump solutions. However, such PDE

methods can only be applied to specific forms of weight

distribution. In particular, they break down if the weight

distribution has compact support.

In section ‘Dynamics of a ‘Bubble’ Boundary’, we review

the work of John (in an appropriately revised notation) on 2D

bumps, as well as describe how to treat azimuthal instabili-

ties, and the generation of breathing bumps in neural field

models with adaptation and external drive. Next in section

‘Self-Organising Neural Field Theory’ we cover John’s

work on how 2D bump activity can drive topographic map

formation in self-organising neural networks, also presented

in [48], and describe a further set of techniques for treating

nonradially symmetric perturbations. We end with a brief

discussion in section ‘Discussion’.

Dynamics of a ‘Bubble’ Boundary

Consider the following neural field equation for a 2D sheet

of neural tissue
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s
ouðr; tÞ

ot
¼ �uðr; tÞ þ

Z

R
2

wðjr� r0jÞf ðuðr0; tÞÞdr0 ð1Þ

where r = (r, h) and r0 = (r0, h0). The neural field

u(r, t) represents the local activity of a population of

neurons at position r, s is a synaptic or membrane time

constant (which we set to unity), w is the distribution of

synaptic weights, and f denotes an output firing rate func-

tion. The weight distribution is assumed to depend on the

Euclidean distance |r - r0| between interacting neurons at

r and r0. A common choice for the firing rate function is a

bounded, monotonic function such as a sigmoid. Here we

follow Amari [1] and Taylor [48] and take this to be

Heaviside function with threshold j such that

f(u) = H(u - j). Below we review John’s extension of

Amari’s 1D analysis to radially symmetric localised solu-

tions in 2D. For a more detailed discussion of methods for

analysing the existence and stability of bumps in neural

fields, see recent reviews by the authors [9, 14].

First let us rewrite the original model (1) in the form

ut = -u ? w, where

wðr; tÞ ¼
Z

Bðr0;tÞ

dr0wðjr� r0jÞ; ð2Þ

and Bðr; tÞ ¼ frjuðr; tÞ� jg (which defines the ‘bubble’).

For radially symmetric spot solutions of radius DðtÞ then

we have that w(r, t) = w(r, t) with

wðr; tÞ ¼
Z2p

0

dh
ZDðtÞ

0

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos h

p� �
r0dr0: ð3Þ

Here DðtÞ is defined by the level set condition

uðDðtÞ; tÞ ¼ j. Time-independent spot solutions such that

DðtÞ ¼ D (namely with a constant radius) such that

u(r, t) = U(r) with limr!1 UðrÞ ¼ 0 and UðrÞ?j for

r7D are given by

UðrÞ ¼ wðr; tÞjDðtÞ¼D: ð4Þ

Differentiating the level set condition with respect to time

gives an equation for the velocity of the spot boundary in

the form

dD
dt
¼ �ouðr; tÞ=ot

ouðr; tÞ=or

����
r¼D

: ð5Þ

Using (1) we may derive an ODE for v ¼ ouðr; tÞ=orjr¼D as

dv

dt
¼ �vþ ow

or

����
r¼D

: ð6Þ

Hence, we may generate a system of two exact nonlinear

ODEs for ðD; vÞ to describe the evolution of the (radially

symmetric) spot:

dD
dt
¼ ��jþWðDÞ

v
;

dv

dt
¼ �vþW0ðDÞ; ð7Þ

where

WðDÞ ¼
Z2p

0

dh
ZD

0

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ r2 � 2Dr cos h

p� �
rdr: ð8Þ

The steady state of (7) is determined by the solution of

WðDÞ ¼ j and v ¼ W0ðDÞ. A linear stability analysis

around the steady-state solution shows that there are two

eigenvalues, one with value -1 (that can not lead to any

instability) and the other with a value k, where

k ¼ �W0ðDÞ=v: ð9Þ

Hence, only the solution with W0ðDÞ\0 is stable (after

realising that v is the gradient of the spot at its boundary

and is negative).

In the ‘Appendix’, we show that U(r) can be written in

the computationally useful form

UðrÞ ¼ 2pD
Z 1

0

bwðqÞJ0ðqrÞJ1ðqDÞdq; ð10Þ

where bw is the 2D Fourier transform of w. For the sake of

illustration, consider a wizard hat weight distribution given by

a combination of modified Bessel functions of the second kind

wðrÞ ¼ 2

3p
K0ðrÞ � K0ð2rÞ � AðK0ðr=rÞ � K0ð2r=rÞÞð Þ:

ð11Þ

As shown in Fig. 1, this can generate a weight distribution

with short-range excitation and long-range inhibition.

Using the fact that the corresponding 2D Fourier

transform of K0(s r) is Hðq; sÞ ¼ ðq2 þ s2Þ�1
, we have

bwðqÞ ¼ 2

3p
ðHðq; 1Þ � Hðq; 2Þ � AðHðq; 1=rÞ

� Hðq; 2=rÞÞÞ: ð12Þ

Thus, the integral (10) can be evaluated explicitly using the

identity

Z1

0

J0ðqrÞJ1ðqDÞ
q2 þ s2

dq � IðD; r; sÞ

¼
1
s
I1ðsDÞK0ðsrÞ r [ D

1
s2D� 1

s
I0ðsrÞK1ðsDÞ r\D;

�

ð13Þ

where Im is the modified Bessel function of the first kind of

order m. Thus, the stationary bump U(r) has the form

UðrÞ ¼ 4D
3
IðD; r; 1Þ � IðD; r; 2Þ � AðIðD; r; 1=rÞ½

� IðD; r; 2=rÞÞ�: ð14Þ
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The bump radius may then be computed by finding the

roots D of the equation j ¼ WðDÞ with

WðDÞ ¼ 4D
3

I1ðDÞK0ðDÞ �
1

2
I1ð2DÞK0ð2DÞ

�

�AðrI1ðD=rÞK0ðD=rÞ �
r
2

I1ð2D=rÞK0ð2DrÞÞ
�
:

ð15Þ
Note that the threshold condition is a necessary but not

sufficient condition for proving existence of a 2D bump.

One also has to check that there are no other threshold

crossing points. In the case of a Mexican or wizard hat

weight distribution, there is typically a maximum of two

spot solutions as illustrated in Fig. 2 for w given by

Eq. (11). Using (9), we find that the narrower spot is always

unstable as found in 1D. However, the stable upper branch

can develop instabilities as the threshold is decreased

leading to the formation of solutions that break the rota-

tional symmetry [32, 39], see below.

Azimuthal Instabilities

It can be misleading to extrapolate results about bumps in

1D to spots in 2D. For example, it was known to Amari [1]

in his seminal work on 1D models with Mexican hat weight

distribution that bump solutions come in pairs, and that it is

only the wider of the two that is stable. Extrapolating this

to 2D, and focusing on radially symmetric spots, one would

conclude a similar state of affairs for radial perturbations to

the stationary spot, as done by John [48]. However, in the

2D setting one must also pay careful attention to azimuthal

instabilities. This has been appreciated by a number of

authors in recent years [20, 32, 39], though anticipated

much earlier by Amari [3]. Indeed azimuthal instabilities

can destabilise spots on the wide branch (that are stable to

radial perturbations) and lead to the generation of intricate

labyrinthine structures [16, 39].

In order to determine linear stability of a bump solution

U(r), substitute u(r, t) = U(r) ? p (r)ekt into Eq. (1) and

expand to first order in p using equation (4). This gives the

eigenvalue equation

ðkþ 1ÞpðrÞ

¼
Z

wðjr� r0jÞdðUðr0Þ � jÞÞpðr0Þdr0

¼ 1

jU0ðDÞj

Z1

0

Z2p

0

wðjr� r0jÞdðr0 � aÞpðr0Þdh0r0dr0

¼ D
jU0ðDÞj

Z2p

0

wðjr� a0jÞpða;/0Þd/0;

ð16Þ

where a0 = (a, /0). We can now formulate the stability

problem in terms of finding the spectrum of a compact

linear operator acting on continuous, bounded functions

w(r, /) defined on the disc of radius r�D. One class of

solution to Eq. (16) consists of functions p(r) that vanish on

the boundary, w(a,/) = 0 for all /, such that k = -1.

This belongs to the essential spectrum, which does not

contribute to any instabilities. The discrete spectrum is

determined by setting r ¼ a � ðD;/Þ in Eq. (16):

ðkþ 1ÞpðD;/Þ

¼ D
jU0ðDÞj

Z2p

0

w 2D sin
/� /0

2

� �� �
pðD;/0Þd/0;

ð17Þ

where we have simplified the argument of w(r) using

Fig. 1 A plot of the weight distribution describing short-range

excitation and long-range inhibition. The form of w(r) given by (11)

with A = 3/4 and r = 4 generates a two-dimensional wizard hat

function
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Fig. 2 The bump width D as a function of threshold j, for the wizard

hat weight distribution (11) with A = 1/4 and r = 2, is shown by the

continuous dark blue line. According to the linear radial instability

analysis, the solid (dashed) line indicates a stable (unstable) branch of

solutions. The azimuthal instability analysis predicts that solutions on

the upper branch can also develop instabilities as the threshold is

decreased leading to the formation of solutions exhibiting Dn

symmetry. The points of azimuthal instability are marked by glyphs

in the shape of the corresponding mode (Color figure online)
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ja� a0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 � 2D2 cosð/� /0Þ

q
¼ 2D sin

/� /0

2

� �
:

ð18Þ

Equation (17) can be solved in terms of Fourier

eigenmodes, that is, pðD;/Þ ¼ Pnð/Þ ¼ cnein/ þ cne�in/

with corresponding eigenvalue kn satisfying

kn ¼ �1þ D
jU0ðDÞj

Z2p

0

wð2D sinð/=2ÞÞe�in/d/: ð19Þ

Note that kn is real since (after rescaling /)

Imfkng ¼ �
2D
jU0ðDÞj

Zp

0

wð2D sinð/ÞÞ sinð2n/Þd/ ¼ 0;

ð20Þ

i.e., the integrand is odd-symmetric about p/2. Hence,

kn ¼ Refkng

¼ �1þ D
jU0ðDÞj

Z2p

0

wð2D sinð/=2ÞÞ cosðn/Þd/; ð21Þ

with the integrand even-symmetric about p/2. The Fourier

eigenmodes Pn(/) can be related to perturbations of the

bump boundary. That is, if u(r, t) = U(r) ? e p(r, t) = 0

at r � ðr;/Þ ¼ ðDþ eað/; tÞ;/Þ, where e a(/, t) with e�
1 denotes a small perturbation of the circular bump

boundary at polar coordinate ðD;/Þ at time t, then

j ¼ uðDþ eað/; tÞ;/; tÞ ¼ UðDþ eað/; tÞÞ
þ epðDþ eað/; tÞ;/; tÞ;
	 UðDÞ þ eU0ðDÞað/; tÞ þ epðD;/; tÞ:

ð22Þ

Since UðDÞ ¼ j, it follows that

að/; tÞ 	 pðD;/; tÞ
jU0ðDÞj : ð23Þ

Thus, one can decompose time-dependent perturbations of

the circular boundary in terms of the Fourier modes

[cnein/ ? cne-in/]ek t. Some examples of perturbations of

the bump boundary are shown as insets in Fig. 2. It can be

seen that the nth-order boundary perturbation has Dn

symmetry, meaning the resulting solution has the n

reflectional and rotational symmetries of the dihedral group

Dn. The perturbations also have a simple geometric inter-

pretation. For example, n = 0 corresponds to a uniform

expansion or contraction of the spot, whereas n = 1 cor-

responds to a uniform shift of the spot.

Since the n = 1 mode represents pure shifts of the spot

solution, we expect k1 = 0 from translation symmetry. In

order to verify this, we evaluate the integral appearing in

equation (21) using Bessel functions, along similar lines to

the evaluation of U(r), Eq. (10). That is,

Z2p

0

wðja� a0jÞ cosðn/0Þd/0

¼
Z2p

0

Z1

0

bwðqÞJ0ðqja� a0jÞqdq

0
@

1
A cos /0d/0

¼ 2p
Z1

0

bwðqÞJnðqDÞJnðqDÞqdq:

ð24Þ

Moreover, differentiating Eq. (10) with respect to r gives

U0ðDÞ ¼ �2pD
Z1

0

bwðqÞJ1ðDqÞJ1ðDqÞqdq: ð25Þ

Hence, the eigenvalue (21) can be rewritten as

kn ¼ �1þ
R1

0
bwðqÞJnðqrÞJnðqDÞqdqR1

0
bwðqÞJ1ðqrÞJ1ðqDÞqdq

: ð26Þ

It immediately follows that k1 = 0. Hence, the 2D spot is

linearly stable if kn \ 0 for all n = 1. For the weight

distribution (11), the points of azimuthal stability as

determined by the conditionskn = 0 can be calculated as [16]:

1 ¼
P4

i¼1 AiKnðaiDÞInðaiDÞP4
i¼1 AiK1ðaiDÞI1ðaiDÞ

; ð27Þ

where (A1, A2, A3, A4, a1, a2, a3, a4) = (1, - 1, - A, A,

1, 2, 1/r, 2/r). In Fig. 2 we plot the set of points for

n = 0, 2 , …, 9 as determined by equation (27) to illustrate

how the upper branch of rotationally symmetric spots can

become unstable as the threshold is decreased, leading to the

formation of solutions that breaks continuous rotational

symmetry. The discrete rotational symmetry Dn of a bifur-

cating solution reflects the order n of the dominant eigen-

value kn at bifurcation. Interestingly, if linear adaptation is

included in the neural field model, then these nonrotationally

symmetric solutions can undergo a secondary instability

leading to the formation of a rotating wave [32, 39]. Suffi-

ciently strong adaptation can also destabilise a bump leading

to a travelling spot [15, 16]. An example of the shape of an

expanding labyrinthine structure that can emerge when a

spot destabilises to an n = 3 mode is shown in Fig. 3.

Stimulus-Induced Breathers

So far we have focused on activity bumps that persist in the

absence of external stimuli due to the combined action of

local recurrent excitation and lateral inhibition. We now

describe some interesting instabilities that arise in the case
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of nonpersistent bumps [20, 21]. For the sake of illustra-

tion, consider a 2D excitatory neural field with linear

adaptation and an external input I:

ouðr; tÞ
ot

¼ �uðr; tÞ þ
Z

R
2

wðjr� r0jÞHðuðr0; tÞ � jÞdr0

� bvðr; tÞ þ IðrÞ
1

�

ovðr; tÞ
ot

¼ �vðr; tÞ þ uðr; tÞ; ð28Þ

where v(r, t) represents a local negative feedback mecha-

nism, such as spike-rate adaptation, with e, b determining

the relative rate and strength of feedback [41]. Suppose that

the inhomogeneous input is a radially symmetric Gaussian

centred about the origin, IðrÞ ¼ I0e�r2=r2
s . In the absence of

an input, the resulting excitatory network supports travel-

ling waves rather than stationary bumps. On the other hand,

for sufficiently strong input amplitude I0, the network

supports a radially symmetric bump centred about the

input. Such a bump is not persistent, since if the input is

removed then the bump disappears as well. The basic

problem we want to address is what happens to the stability

of the bump as the input amplitude is slowly decreased.

The analysis of the existence and stability of radially

symmetric 2D bumps proceeds as above with minor

changes. First, the threshold condition for the existence of a

bump becomes

j ¼ UðDÞ ¼ 2pD
Z1

0

bwðqÞJ0ðqDÞJ1ðqDÞdqþ IðDÞ: ð29Þ

Second, the linear stability of the bump is determined by

the pair of eigenvalues k = kn
± associated with the

Fourier modes [cnein/ ? cne-in/]ek t, where [20]

k
n ¼
1

2
�Kn 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � 4�ð1þ bÞð1� CnÞ
q	 


; ð30Þ

Kn ¼ 1þ �� Cnð1þ bÞ; Cn ¼
lnðDÞ

jU0ðDÞjð1þ bÞ ; ð31Þ

and

lnðDÞ ¼ D
Z2p

0

wð2a sinð/=2ÞÞ cosðn/Þd/: ð32Þ

It follows that stability of a radially symmetric bump

require Kn [ 0 and Cn\1 for all n C 0. Given the form of

Kn, this reduces to the following stability conditions:

�[ b : Cn\1 for all n� 0

�\b : Cn\1þ�
1þb for all n� 0: ð33Þ

If the first condition is violated as some parameter is

varied, then there is a saddle–node bifurcation, whereas a

breakdown of the second condition signals a Hopf

bifurcation. In the latter case, the bump instability leads

to the formation of a breather. In the particular case of an

excitatory network (such as obtained by setting A = 0 in

Eq. (11)), with w(r) C 0 for all r C 0, we have

ln�D
Z2p

0

wð2D sinð/=2ÞÞj cosðn/Þjd/�D
Z2p

0

wð2D sinð/=2ÞÞd/;

ð34Þ

so that ln B l0 for all n. Since l1 = 0, it follows

that l0 C 0 and, hence, a purely excitatory neural field

cannot support stable radially symmetric bumps. In this

case, we expect any instability to involve the growth of

radially symmetric perturbations, and hence, the resulting

breather will be radially symmetric. On the other hand, if

there is a Mexican hat weight distribution, then nonra-

dially symmetric breather and rotating waves can occur

[21, 39]. One way to induce a Hopf instability of a bump

is to reduce the amplitude I0 of the Gaussian input; this

modifies both the pulse-width D and the slope of the

bump at threshold, jU0ðDÞj. Interestingly, as the input

amplitude is further reduced, the breather can undergo a

Fig. 3 Beyond the point of an azimuthal instability, direct numerical

simulations of the neural field model show the development of

intricate labyrinthine structures from an initial spot solution. Here we

show the shape of such a structure at a fixed moment in time. As the

pattern evolves, it fills more of the spatial domain. The black lines

denote the borders between high and low firing regions. This example

illustrates the type of pattern that one can expect to see beyond an

n = 3 azimuthal instability. For further examples and discussion, see

[16]
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secondary instability such that it now acts as an oscil-

lating core that emits circular target waves. An example

of such a periodic wave emitter is shown in Fig. 4. Thus,

a spatially localised stationary input provides a mecha-

nism for the formation of a network pacemaker oscillator.

For a recent discussion of breathers in the absence of

localised input, see [15].

Self-Organising Neural Field Theory

One of the striking features of the visual system is that the

visual world is mapped on to the cortical surface in a

topographic manner. This means that neighbouring points

in a visual image evoke activity in neighbouring regions of

visual cortex. Superimposed upon this topographic map are

additional maps reflecting the fact that neurons respond

preferentially to stimuli with particular features such as

ocular dominance and orientation [27]. In recent years,

much information has accumulated regarding the two-

dimensional distribution of both orientation preference and

ocular dominance columns using optical imaging tech-

niques [6, 7]. These experimental studies indicate that there

is an underlying periodicity in the microstructure of V1

with a period of approximately 1 mm (in cats and prima-

tes). The fundamental domain of this tiling of the cortical

plane is the hypercolumn, which contains two sets of ori-

entation preferences h [ [0,p) per eye, organised around a

pair of orientation singularities or pinwheels [37]. It is

generally accepted that the preference of cortical neurons

for particular stimulus features such as orientation and

ocular dominance arises primarily from the spatial

arrangement of convergent feedforward afferents from the

LGN (or from other layers of cortex). Although molecular

cues and axon guidance are involved in the initial stages of

cortical map formation, the resulting maps are rather crude

and some form of spontaneous or stimulus-driven activity

appears to be necessary for the subsequent refinement of

these maps through the pruning of initially exuberant

axonal arborisations.

A large number of models have been proposed that

describe activity–dependent development as a self-organ-

ising Hebbian process (see the review of Swindale [44]). In

the case of correlation–based developmental models [35],

the statistical structure of input correlations provides a

mechanism for spontaneously breaking some underlying

symmetry of the neuronal receptive fields leading to the

emergence of feature selectivity. When such correlations are

combined with intracortical interactions, there is a simulta-

neous breaking of translation symmetry across cortex lead-

ing to the formation of a spatially periodic cortical feature

map. Correlation-based models are essentially linear, so that

considerable insight into the developmental process can be

obtained by solving an associated eigenvalue problem [36].

One of the possible limitations of this class of model is that a

regular topographic map is assumed already to exist before

feature-based columns begin to develop. In order to model

the joint development of topography and cortical feature

maps, it appears necessary to introduce some form of non-

linear competition for activation [30, 52], neurotrophic

factors [17], or a combination of the two [51].

An alternative mathematical formulation of topographic

map formation has been developed by Amari using the

theory of self–organising neural fields [2, 4, 45]. At the

simplest level, this model can be formulated in terms of a

two-layer network corresponding respectively to the lateral

geniculate nucleus (LGN) of the thalamus and the primary

visual cortex (see Fig. 5). The cortical or output layer

behaves pretty much as in the single-layer model given by

equation (1). However, the inputs I are now determined by

activity in the LGN or input layer together with the strength

of the feedforward connections from the LGN to cortex.

These connections are modifiable by experience via Hebbian

learning. Initially, an activity pattern in the form of a bump

occurs at some random location within the LGN and elicits a

corresponding activity bump in cortex whose location

depends on the given pattern of feedforward connections.

Over timescales much slower than the relaxation time s for

cortical dynamics, inputs arising from many different loca-

tions within LGN (and hence the visual image) occur. The

resulting set of cortical responses to this set of inputs then

Fig. 4 Sequence of snapshots

of a 2D breather acting as a

periodic pulse emitter in the

case of a 2D excitatory neural

field with linear adaptation and

exponential weight function

w(r) = e-r/(2 p). Parameters

are b ¼ 4; j ¼ 0:2; � ¼ 0:1 and

I0 = 0.2. Lighter colours

indicate higher activity [20]
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determines how the feedforward weights are modified. In the

one-dimensional case, Amari [45] derived conditions for the

existence and stability of a continuous topographic map

between the two layers. Moreover, he showed that under

certain circumstances, the continuous topographic map can

undergo a pattern-forming instability that spontaneously

breaks continuous translation symmetry, and the map

becomes partitioned into discretised blocks; it has been

suggested that these blocks could be a precursor for the

columnar microstructure of cortex [45]. Given that cortical

columns tend to be associated with stimulus features such as

ocular dominance and orientation, this raises the interesting

question whether or not such features could also emerge

through the spontaneous symmetry breaking of self-organ-

ising neural fields. In the same paper on bubble dynamics

[48], John extended Amari’s theory to 2D networks, again

focusing on existence and stability with respect to radially

symmetric perturbations. Stability with respect to a more

general class of perturbations was subsequently analysed by

Bressloff [8], who showed that stimulus preference maps

could indeed emerge through the spontaneous symmetry

breaking of self-organising neural fields. This analytical

result was consistent with a number of numerical studies [19,

56]. In this section, we outline the basic steps in the analysis

of 2D self-organising neural fields.

Existence and Stability of Bumps

Let s 2 X2 denote a point in the LGN layer and r 2 X1 a

point in the cortical layer, as shown in Fig. 5. Each point s

labels a distinct input pattern which we denote by

IðrjsÞ; r 2 X1. Let u(r|s) denote the corresponding cortical

activity induced by the input I(r|s), which is assumed to

converge to a stable equilibrium given by the solution of

the integral equation

uðrjsÞ ¼
Z

X1

wðjr� r0jÞHðuðr0jsÞ � jÞdr0 þ IðrjsÞ: ð35Þ

Now suppose that once the network has reached

equilibrium, a new input pattern is presented to the

network from a different point s0, and that this process is

iterated multiple times so that the network samples over the

space of inputs. How the network responds to the given set

of input patterns then determines how these input patterns

are themselves modified by experience. Adaptation is

introduced into the model by assuming that the input

patterns evolve according to the dynamical equation

g
oI

ot
¼ �Iðrjs; tÞ þ

Z

X2

gðjs� s0jÞHðuðrjs0; tÞ � jÞds0:

ð36Þ

Here g � s where s is the relaxation time for cortical

dynamics. Hence, uðrjs; tÞ; r 2 X1 denotes the equilibrium

cortical state given by Eq. (35) in response to the input

pattern I(r|s, t) for fixed s, t. The integral kernel g

incorporates the effect of statistical correlations between

activity patterns at different points in LGN. Thus,

increasing the strength of an input from s also leads to an

increase in the strength of an input at s0 provided that s and

s0 are sufficiently close. Inputs from well-separated points

in LGN are anticorrelated. These features can be included

by taking g to be of the form

gðjrjÞ ¼ ce�r2=4r2 � ĉ ð37Þ

for constants c, ĉ.

Equations (35) and (36) are the basic neural field

equations for topographic map formation [2, 45]. Rescaling

the LGN and cortical coordinates appropriately, that is,

ignoring the effects of cortical magnification, one can then

look for homogeneous steady–state solutions of the form

u(r|s) = U(|r - s |) and IðrjsÞ ¼ Iðjr� sjÞ, where U is a

radially symmetric stationary pulse solution of width a

such that

Uðjr� sjÞ ¼
Z

X1

wðjr� r0jÞHðUðjr0 � sjÞ � jÞdr0

þ
Z

X2

gðjs� s0jÞHðUðjr� s0jÞ � jÞds0

¼
Z2p

0

Za

0

½wðjr� r0jÞ þ gðjr� r0jÞ�r0dr0dh;

ð38Þ

cortex
r'

I(r|s)

LGN
s

r

I(r'|s)

Fig. 5 Basic network architecture illustrating an input pattern I from

position s in the LGN layer that innervates the cortical layer at

different positions r, r0
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and

Iðjr� sjÞ ¼
Z

X2

gðjs� s0jÞHðUðjr� s0jÞ � jÞds0: ð39Þ

Such a solution represents a continuous topographic map in

which an input from s 2 X2 is mapped to the centre of

cortical output activity at the corresponding point s 2 X1.

Stability of the bump (on the fast time–scale of cortical

dynamics) can be analysed along identical lines to section

‘Azimuthal Instabilities’, after setting b = 0 and taking

w ? w ? g. The corresponding eigenvalues are kn ¼ �1þ
c�1mn with |U0(a)| = c and

mn ¼ a

Z2p

0

½wð2a sinðh=2ÞÞ þ gð2a sinðh=2ÞÞ� cosðnhÞdh:

ð40Þ

Differentiating Eq. (4) with respect to r and setting

r = a shows that m1 = c and, hence, k1 = 0. The existence

of a zero eigenvalue reflects the underlying translation

symmetry of the two-layer network, which implies that the

bump is marginally stable with respect to uniform shifts in

space. Thus, the bump will be stable provided that mn \ c
for all n = 1. In the following, we assume that there exists

a unique stable bump.

We now investigate the stability of the two–dimensional

topographic map (on the slow timescale of the input or

weights dynamics) by linearising Eqs. (35) and (36) about

the homogeneous radially symmetric solution given by

Eqs. (38) and (39). First, introducing the perturbations

uðrjs; tÞ ¼ Uðjr� sjÞ þ pðrjs; tÞ;
Iðrjs; tÞ ¼ Iðjr� sjÞ þ qðrjs; tÞ; ð41Þ

and expanding to first order in p, q leads to the linear

equations (on setting g = 1)

oq

ot
¼ �qðrjs; tÞ þ

Z

R2

gðjs� s0jÞH0ðUðjr� s0jÞpðrjs0; tÞds0;

ð42Þ

and

pðrjs; tÞ ¼ qðrjs; tÞ þ
Z

R2

wðjr� r0jÞH0ðUðjr0 � sjÞ

� pðr0js; tÞdr0:

ð43Þ

Using the identity

H0ðUðjr� sjÞ ¼ c�1dðjr� sj � aÞ; ð44Þ

we can reduce the above linear equations to the form

oq

ot
¼ �qðrjs; tÞ þ a

c

Z2p

0

gðjs� rþ ae/jÞpðrjr� ae/; tÞd/;

ð45Þ

and

pðrjs; tÞ ¼ qðrjs; tÞ þ a

c

Z2p

0

wðjr� s� ae/jÞp

� ðsþ ae/js; tÞd/;

ð46Þ

with eh ¼ ðcos h; sin hÞ. Defining

phðs; tÞ ¼ pðsþ aehjs; tÞ; qhðs; tÞ ¼ qðsþ aehjs; tÞ;
ð47Þ

and setting r = s ? aeh in Eq. (46), we find that

phðs; tÞ ¼ qhðs; tÞ þ
a

c

Z2p

0

wðajeh � e/jÞp/ðs; tÞd/

¼ qhðs; tÞ þ
a

c

Z2p

0

wð2a sinð½h� /�=2Þp/ðs; tÞd/:

ð48Þ

We have used the identity

jeh � e/j2 ¼ 2½1� cosðh� /Þ� ¼ 4 sin2ð½h� /�=2Þ: ð49Þ

Similarly, setting r = s ? aeh in Eq. (45) gives

oqh

ot
¼ �qhðs; tÞ þ

a

c

Z2p

0

gð2a sinð½h� /�=2Þp/

� ðsþ aðeh � e/Þ; tÞd/:

ð50Þ

The neural field perturbations ph(r, s) can be related to

perturbations of the circular boundary of the activity bump.

Let us write the perturbed threshold condition in the form

u(r|s, t) = j at r = s ? (a ? q(h, n, t))eh. This yields

j ¼ Uðaþ qðh; n; tÞÞ þ pðsþ ðaþ qðh; s; tÞÞehjs; tÞ
¼ UðaÞ þ U0ðaÞqðh; s; tÞ þ pðsþ aehjs; tÞ þ Oðq2Þ;

ð51Þ

which implies that

qðh; s; tÞ ¼ c�1phðs; tÞ; ð52Þ

since U(a) = j and U0(a) = -c. Here q(h, s) represents

the radial shift in the h direction of the circular bump

boundary centred at n and for fixed n corresponds directly
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to the boundary perturbation considered in section ‘Azi-

muthal Instabilities’.

Equations (48) and (50) have solutions of the form

phðs; tÞ ¼ ekteik�sPhðkÞ; qhðs; tÞ ¼ ekteik�sQhðkÞ; ð53Þ

with

PhðkÞ ¼ QhðkÞ þ
a

c

Z2p

0

wð2a sinð½h� /�=2ÞP/ðkÞd/;

ð54Þ

and

kQhðkÞ ¼ �QhðkÞ þ
a

c

Z2p

0

gð2a sinð½h� /�=2Þ

� eiak�ðeh�e/ÞP/ðkÞd/:

ð55Þ

Equations (54) and (55) can be analysed further by

introducing the Fourier series

PhðkÞ ¼
X
n2Z

PnðkÞeinh; QhðkÞ ¼
X
n2Z

QnðkÞeinh: ð56Þ

This leads to the discrete set of equations

ðkþ 1ÞQnðkÞ ¼ c�1
X
n2Z

Gnn0 ðkÞPn0 ðkÞ; ð57Þ

PnðkÞ ¼
QnðkÞ

1� c�1ln

; ð58Þ

with

Gnn0 ðkÞ ¼ a

Z2p

0

e�inh
Z2p

0

ein0/gð2a sinð½h� /�=2Þ

� eiak�ðeh�e/Þ d/dh
2p

;

ð59Þ

and

ln ¼ a

Z2p

0

wð2a sinðh=2ÞÞ cosðnhÞdh: ð60Þ

Calculation of Eigenmodes

Determining the stability of the two-dimensional topo-

graphic map has reduced to the problem of finding the

eigenvalues of the infinite-dimensional matrix Gnn0(k) for

n; n0 2 Z. It is not possible to do this analytically for gen-

eral input kernel g. However, an explicit solution can be

obtained in the limiting case of wide Gaussian inputs such

that r � a in Eq. (37). We can then carry out a pertur-

bation expansion in a2/r2 by writing

gð2a sinðh=2ÞÞ ¼ ce�a2 sin2ðh=2Þ=r2 � ĉ

	 c� ĉ� ca2

2r2
ð1� cosðhÞÞ þ Oða4=r4Þ:

ð61Þ

Keeping only lowest order terms, we find that

Gnn0 ðkÞ 	 aðc� ĉÞ
Z2p

0

e�inh
Z2p

0

ein0/eiakðcosðh�uÞ�cosð/�uÞÞ d/dh
2p

;

ð62Þ

where k ¼ ðk;uÞ in polar coordinates. The integrals over /
and h may now be evaluated using the following Bessel

function expansion:

eika cosðh�uÞ ¼
X
m2Z

ð�iÞmJmðkaÞeimðh�uÞ; ð63Þ

with J-m = Jm. This gives

Gnn0 ðkÞ 	 aðc� ĉÞ
Z2p

0

e�inh
Z2p

0

ein0/
X
m2Z

ð�iÞmJmðkaÞeimðh�uÞ

�
X
m02Z

ðiÞm
0
Jm0 ðkaÞe�im0ð/�uÞ d/dh

2p

¼ 2paðc� ĉÞð�iÞnðiÞn
0
JnðkaÞJn0 ðkaÞeiðn0�nÞu:

ð64Þ

Similarly, substituting Eq. (61) into (40) and gives to

lowest order

l0 	 m0 � 2paðc� ĉÞ; l1 	 m1 � pac
a2

2r2
; ln 	 mn;

n [ 1:

ð65Þ

Combining Eqs. (57), (58), and (64) yields a vector

equation of the form

b
ðkÞðbðkÞ � bPðkÞÞ ¼ ð1þ kÞbPðkÞ; ð66Þ

where * denotes complex conjugate, and

bPnðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� ln

p
PnðkÞ;

bnðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2paðc� ĉÞ

c� ln

s
ðiÞnJnðkaÞeinu:

ð67Þ

There are two classes of solution to Eq. (66). If b � bP ¼ 0

then k = -1 and the topographic map is stable with

respect to excitation of the corresponding eigenmodes. On

the other hand, if b � bP 6¼ 0 then bP ¼ b
 (up to a constant

multiplicative factor). Substituting into the Fourier series

(56), the resulting eigenmode is of the form PhðkÞ ¼
Pðk; h� uÞ with k ¼ ðk;uÞ,
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Pðk; hÞ ¼ C
J0ðkaÞ
c� l0

þ 2
X
n� 1

ð�1Þn J2nðkaÞ
c� l2n

cosð2nhÞ
"

� 2
X
n� 1

ð�1Þn J2n�1ðkaÞ
c� l2n�1

sinðð2n� 1ÞhÞ
#
;

ð68Þ

where C is an arbitrary amplitude. The corresponding

eigenvalue is k = k(k) with

kðkÞ ¼ �1þ jbj2 ¼ �1þ
X
n2Z

2paðc� ĉÞ
C� ln

JnðkaÞ2: ð69Þ

For the sake of illustration, suppose that ln \ c for all

n 2 Z. This is plausible given Eq. (65) and the conditions

on ln. Equation (69) implies that if c\ĉ then the

topographic map is stable since k(k) \ 0 for all k. On the

other hand, if c [ ĉ such that k(kc) = maxkk(k) [ 0 then

the topographic map is unstable and the fastest growing

eigenmodes have the critical wavenumber kc. Recall that

c = m1. It then follows from Eq. (65) that l1 & c and the

dominant contribution to the sum in Eq. (69) will arise from

the n = 1 term, at least away from the zeros of J1(ka). Hence,

kc is approximately given by the point at which the first-order

Bessel function attains its global maximum, that is,

|J1(akc)| = maxk |J1(ak)|. Numerically one finds that kc &
3/a. Note that the eigenvalues k(k), k = 0, have an infinite

degeneracy that reflects the additional rotation symmetry of

the system. That is, all eigenmodes Ph(k) with |k| = k have

the same eigenvalue. It follows that the pattern-forming

instability will be dominated by some linear combination of

eigenmodes lying on the critical circle |k| = kc:

phðrÞ ¼
XN

i¼1

zie
iki�r þ z
i eiki�r

� �
Pðkc; h� uiÞ; ð70Þ

where ki ¼ ðkc;uiÞ and zi is a complex amplitude. Suppose

that each eigenmode can be approximated by the first three

terms of Eq. (68) so that

Pðkc; hÞ 	 C
J0ðkcaÞ
c� l0

þ 2J1ðkcaÞ
c� l1

sinðhÞ � 2J2ðkcaÞ
c� l2

cosð2hÞ
	 


:

ð71Þ

The first term generates an expansion of the bump, the

second term generates a uniform shift of the bump, and the

third term generates an elongation of the bump (see Fig. 2).

In general, we expect the eigenmode (71) to be dominated

by the first harmonic term sinðhÞ, since l1 & c. However,

if l2 & c as well, then there could also be a significant

contribution from the term cosð2hÞ. Thus, the spontaneous

symmetry breaking mechanism has the potential for gen-

erating elongated or oriented bumps. Moreover, since each

eigenmode in the sum (70) then represents an elongation in

the direction ui or p=2þ ui (depending on the sign of its

associated coefficient zðrÞ ¼ zie
iki�r þ z
i eiki�r), it follows

that there is some complicated variation in the preferred

bump orientation as r varies across the cortex.

Euclidean Shift-Twist Symmetry and Orientation

Preference Maps

The two-dimensional isotropic and homogeneous neural

field Eqs. (35) and (36) are equivariant with respect to the

product Euclidean group E(2) 9 E(2) acting on the space

R2 9 R2 according to

Td;d0 � ðr; sÞ ¼ ðrþ d; sþ d0Þ;
Rn;n0 � ðr; sÞ ¼ ðRnr;Rn0sÞ;
Rj;j0 � ðr; sÞ ¼ ðRjr;Rj0sÞ;

ð72Þ

where Rnr denotes the planar rotation of r through an angle

n, and Rj = R ± with R ± (x, y) = (x, ± y). The

corresponding group action on the neural fields u, I is

Td;d0 ðuðrjsÞ; IðrjsÞÞ ¼ ðuðr� djs� d0Þ; Iðr� djs� d0ÞÞ;
Rn;n0 ðuðrjsÞ; IðrjsÞÞ ¼ ðuðR�nrjR�n0sÞ; IðR�nrjR�n0sÞÞ;
Rj;j0 ðuðrjsÞ; IðrjsÞÞ ¼ ðuðRjrjRj0sÞ; IðRjrjRj0sÞÞ:

ð73Þ

Equivariance means that if (u, v) is a solution of the neural

field equations then so is g � ðu; vÞ for all g 2 Eð2Þ � Eð2Þ.
In other words, the two-dimensional network has both

translation and rotation/reflection symmetries. An isotropic

and homogeneous equilibrium solution of the form

uðr2jrÞ ¼ Uðjr2 � rjÞ; Iðr2jrÞ ¼ Iðjr2 � rjÞ then explicitly

breaks the symmetry group from Eð2Þ � Eð2Þ ! Eð2Þ
with E(2) having the group elements Td = Td, d, Rn =

Rn,n and Rj = Rj,j. As we have shown above, the homo-

geneous equilibrium solution can undergo a pattern-form-

ing instability that spontaneously breaks the remaining

Euclidean symmetry.

The Euclidean symmetry of the full Eqs. (35) and (36)

also manifests itself in a reduced form after linearising

about the homogeneous solution. That is, the linear equa-

tions (48) and (50) are equivariant with respect to the so-

called shift-twist action of the Euclidean group E(2) on the

space R2 9 S1 [10, 11]:

Td � ðr; hÞ ¼ ðrþ d; hÞ;
Rn � ðr; hÞ ¼ ðRnr; hþ sÞ;
Rj � ðr; hÞ ¼ ðRjr;�hÞ;

ð74Þ

where Rj(x, y) = (x, -y). The corresponding action on

the fields ph(r) and qh(r) is

Td � ðphðrÞ; qhðrÞÞ ¼ ðphðr� dÞ; qhðr� dÞÞ;
Rn � ðphðrÞ; qhðrÞÞ ¼ ðph�nðR�nrÞ; qh�nðR�nrÞÞ;
Rj � ðphðrÞ; qhðrÞÞ ¼ ðp�hðRjrÞ; q�hðRjrÞÞ:

ð75Þ
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It can be seen that the rotation operation comprises a

translation or shift of the angle h to h ? s, together with a

rotation or twist of the position vector r by the angle s. This

is illustrated in Fig. 6. One of the consequences of the

underlying Euclidean symmetry is that the associated

eigenfunctions form irreducible representations of the

shift-twist group action [10, 11]. This explains why the

eigenmodes P
h
(k) have the basic structure given by equa-

tion (68), with the angular variable h coupled to the

direction of the wavevector k.

The emergence of elongated cortical activity bumps

reflects a corresponding elongation in the receptive field

properties of cortical cells. Hence, the spontaneous sym-

metry breaking of the topographic map between LGN and

visual cortex provides a possible mechanism for the

development of orientation preference columns in primary

visual cortex. The variation in orientation with cortical

position then determines the corresponding orientation

preference map. Interestingly, a recent statistical analysis

of orientation preference maps in primates indicates that

there are correlations between the direction of the topo-

graphic axis joining pairs of columns with similar orien-

tation preferences and their common orientation [34].

Thus, the orientation preference map exhibits a form of

rotational shift-twist symmetry as predicted from our

analysis of two-dimensional topographic maps. Numerical

simulations of a feature-based dynamical spin model has

led to the suggestion that such a symmetry could help to

stabilise the emerging orientation preference map with its

associated set of pinwheels [34]. As previously shown by

Wolf and Geisel [55], in the absence of such a coupling, the

pinwheels typically annihilate in pairs. Hence, in order to

maintain pinwheels, either development has to be stopped

or one has to introduce inhomogeneities that trap the

pinwheels.

Discussion

In this review, we have described John G Taylor’s work on

neural bubble dynamics [48], as well as various extensions

that have revealed a rich repertoire of 2D network dynamics,

including breathers [15, 20, 39], multiple bumps [32], lab-

yrinthine structures [16, 39], rotating waves [21], spiral

waves [26, 29, 31, 43], and travelling spots [15, 16]. Tradi-

tionally, in vitro methods for studying the generation and

propagation of electrical activity in networks of neurons

have involved removing a thin vertical slice of brain tissue

[13, 23, 40, 42], which makes it difficult to observe the

various forms of 2D dynamics predicted by neural field

theory. However, recent studies of tangential slices have

demonstrated that various phenomena predicted by neural

field theory are also observed in living tissue [26, 57].

Interestingly the type of neural field models discussed here

(and their localised solutions) has been adopted as a formal

framework for thinking about embodied cognitive dynamics

by Gregor Schöner and colleagues, see for example [28].

Initially, this work focused on developing a theory of how

eye movements are planned, though has since been expan-

ded to a variety of topics including motor planning and

visuospatial cognition. Moreover, the same style of con-

ceptual modelling has proven fruitful in developing a theory

of cognitive robotics [18]. There is clearly still much to be

gained by the mathematical study of neural field models

along the lines developed by John G Taylor and others.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix

The double integral in (3) can be calculated using Fourier

transforms and Bessel function identities [20]. First,

express w(r) as a 2D Fourier transform using polar

coordinates:

wðrÞ ¼ 1

2p

Z

R
2

eir�kbwðkÞdk

¼ 1

2p

Z1

0

Z2p

0

eirq cos hbwðqÞdh

0
@

1
Aqdq; ð76Þ

where bw denotes the Fourier transform of w and

k = (q, h). Using the integral representation

ξ

pθ

r
r'

'pθ

ξ

Fig. 6 Action of a rotation by n : phðrÞ ! ph0 ðr0Þ where

(r0, h0) = (Rnr, h ? n). Here r represents the position of the centre

of a two-dimensional bump and ph represents the perturbation of

steady-state activity at a point h on the boundary of the bump
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1

2p

Z2p

0

eirq cos hdh ¼ J0ðqrÞ; ð77Þ

where J0 is the Bessel function of the first kind, we express

w in terms of its Hankel transform of order zero,

wðrÞ ¼
Z1

0

bwðqÞJ0ðqrÞqdq; ð78Þ

which, when substituted into Eq. (4), gives

UðrÞ ¼
Z2p

0

ZD

0

Z1

0

bwðqÞJ0ðqjr� r0jÞqdq

0
@

1
Ar0dr0d/0: ð79Þ

Reversing the order of integration and using the addition

theorem

J0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos /0

q� �

¼
X1
m¼0

�mJmðqrÞJmðqr0Þ cos m/0; ð80Þ

where �0 ¼ 1 and �n ¼ 2 for n C 1, we thus obtain (10),

using the identity J1ðqDÞD ¼ q
R D

0
J0ðqr0Þr0dr0.
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