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Abstract Neurophysiological studies have shown that

parietal mirror neurons encode not only actions but also the

goal of these actions. Although some mirror neurons will

fire whenever a certain action is perceived (goal-indepen-

dently), most will only fire if the motion is perceived as part

of an action with a specific goal. This result is important

for the action-understanding hypothesis as it provides a

potential neurological basis for such a cognitive ability. It is

also relevant for the design of artificial cognitive systems,

in particular robotic systems that rely on computational

models of the mirror system in their interaction with other

agents. Yet, to date, no computational model has explicitly

addressed the mechanisms that give rise to both goal-spe-

cific and goal-independent parietal mirror neurons. In the

present paper, we present a computational model based on a

self-organizing map, which receives artificial inputs repre-

senting information about both the observed or executed

actions and the context in which they were executed. We

show that the map develops a biologically plausible orga-

nization in which goal-specific mirror neurons emerge. We

further show that the fundamental cause for both the

appearance and the number of goal-specific neurons can be

found in geometric relationships between the different

inputs to the map. The results are important to the action-

understanding hypothesis as they provide a mechanism for

the emergence of goal-specific parietal mirror neurons and

lead to a number of predictions: (1) Learning of new goals

may mostly reassign existing goal-specific neurons rather

than recruit new ones; (2) input differences between

executed and observed actions can explain observed

corresponding differences in the number of goal-specific

neurons; and (3) the percentage of goal-specific neurons

may differ between motion primitives.
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Introduction

Functional Roles of Mirror Neurons

Since the mid-90s, mirror neurons have received a con-

siderable and increasing amount of attention. Indeed, the

possibility that neurons that are active both when agents

observe a goal-directed action and when they execute the

same action [1] has lead to the hypothesis that they may be

the crucial link between perceiving and understanding

actions. Such a mechanism is attractive to many fields:

neurophysiologists, for instance, may be chiefly interested

in understanding the precise functioning of the underlying

neural mechanisms, while cognitive scientists are provided

with a possible pathway for social understanding and

interactions. The interest in mirror neurons also extends to

the fields of artificial intelligence and robotics [2–4], where

mechanisms that allow understanding and even learning

the intentions or actions of others (for instance, through

imitation) are a very active research topic.

Consequently, the literature is now swamped with

papers on mirror neurons. A recent review paper [5] lists no

less than 125 references even though it focuses only on one

aspect of mirror neuron research (their functional role).

Nevertheless, the debate over what cognitive functions
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mirror neurons actually underlie is still going strong. The

most important claim is the aforementioned linkage

between action perception and action-understanding [5–9]

but even that does not go without criticism. For example, it

has been pointed out that there is not actually any con-

clusive evidence that mirror neurons are necessary for

action understanding [10].

In terms of neurophysiological data to support the

action-understanding hypothesis, a large proportion of

recorded parietal mirror neurons in macaque monkeys, all

shown to encode grasping, only fire if the goal of the

overall observed action is either to eat the grasped object or

to place it in a container [6]. Moreover, only a small pro-

portion of neurons fire in both goal scenarios, whereas the

remaining neurons appear to be selective. There is evi-

dence that a similar mechanism may be at play in the

human brain [7]. Another study presented an experiment in

which monkeys grasped objects with pliers [8]. These

pliers were either ‘‘normal,’’ requiring a closing of the hand

to close them or ‘‘inverted,’’ requiring an opening of the

hand to close them. Mirror neurons in area F5 were found

to respond in a similar fashion to grasping irrespective of

the type of pliers used, indicating that the neurons were

encoding the ‘‘grasping’’ concept rather than the underly-

ing motor commands.

Action understanding aside, mirror neurons are also

thought to play a role in learning by imitation [11] as well

as in the sensorimotor grounding of language (see [12] for

a discussion). A more radical argument that mirror neurons

are essential for the evolution of language is made largely

by philosophical reasoning [13], supported by the hypoth-

esis that Broca’s area, involved in human language, may

have evolved from area F5 in monkeys [14]. Again, these

hypotheses do not go without criticism; it is for instance

repeatedly pointed out that macaque monkeys, from which

most of the currently existing neurophysiological data have

been obtained, neither use language nor imitate [11].

Mirror mechanisms are also thought to be a key to

understanding the close relationship between perception,

action and social cognition [15]. Further, there are indica-

tions that mirror mechanisms are also involved in under-

standing the emotions of others. For example, it was found

that observing facial expressions of disgust activated sim-

ilar brain areas (anterior insula and to some extent anterior

cingulate cortex) as when being exposed to different dis-

gusting odors [16]. Mirror mechanisms can also extend to

the sensation of, for instance, touch or pain [17, 18].

Hence, it is clear that the hypothesized functions of

mirror neurons are all fundamental to the interaction

between agents. It thus comes as no surprise that mirror

neurons are also of high interest to the field of robotics [19,

20], in particular humanoid robotics, as they may hold the

key to solving current challenges in designing robots that

can interact robustly with humans and use, for instance

imitation learning to survive in unknown environments.

Robots may even be able to learn rudimentary forms of

language based on computational mirror system models

[21].

Mirror Neuron Models

In a recent review of computational mirror neuron models

[11], a taxonomy based on the methodology underlying

such models has been proposed, identifying four main

categories: ‘‘data driven,’’ ‘‘reason for existence,’’ ‘‘assume

existence’’ and ‘‘evolutionary algorithm,’’ which are in

some cases further subdivided. The main motivation

underlying this division is that different methodologies can

investigate different aspects of mirror systems. For instance,

models in the ‘‘reason for existence’’ and ‘‘assume exis-

tence’’ categories try to, one way or another, determine the

functions of the mirror system and replicate this in artificial

agents to endow them with the same capability. Imitation is

the chief example of such a functionality [3, 22, 23], but

language understanding in robots [21] is another.

Data-driven models on the other hand attempt to collect

available information on mirror neurons into a general

model in order to produce new predictions. The chief

examples in this category are the MNS [24] and MNS2 [25]

models. For instance, although originally focusing more on

the anatomy of the mirror system (and thus primarily based

on monkey data), the MNS2 model has recently [26] been

used to model behavior observed in a cat, hypothesizing that

mirror neurons may be able to ‘‘reflect’’ on an agent’s own

actions and allow rapid reorganization of motor programs.

Based on the model, it is possible to propose several

mechanisms that may be underlying observed behaviors

even in humans, but it remains to be verified to what degree

these are actually biologically plausible. At the same time,

as briefly discussed before, uncertainty about biological

plausibility does not prevent the use of the proposed

mechanisms in robots.

It is particularly interesting to note that when the review

[11] was published, models driven specifically by physio-

logical data were still missing from the scene. This is

beginning to change; Chain models [4, 27, 28] for instance

build upon the previously mentioned neurophysiological

findings [6]. They have been used, for instance, to model

the development of intention understanding [4, 27] and to

explain conflicting data regarding facilitation and inter-

ference effects during sentence processing [12].

Developmental Models of Mirror Neurons

Relatively few models address the actual development of

the mirror system (but see, for instance, [4, 30] and to some
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extent [25]). However, from a robotics as well as an

embodied cognition perspective, this is a highly interesting

issue. In robotics, a developmental account removes, or at

least significantly reduces, the need for a hard-coded sys-

tem, opening instead the way for online, adaptive and

human-interactive implementations. Further, such an

account can increase our understanding of how the body, in

particular bodily differences (for example, between

humans and humanoid robots or between adults and chil-

dren) and bodily experience (both individual and social),

might shape the mirror system. Although Erlhagen et al.

[4] address this in part by providing an online mechanism

for learning chains of motion primitives, the use of a

Hebbian learning approach may ultimately be limiting.

Our previous developmental model [29] uses self-orga-

nizing maps to illustrate that those can organize into

region, or ‘‘pools’’ of nodes encoding specific motion

primitives, in a way that is hypothesized by the chain

models [28] based on the work of Fogassi et al. [6].

Although this model is able to learn new inputs during

runtime, it does not take into account the goal-specific

aspects of the neurophysiological data [6], nor does it

model the formation of chains previously addressed by, for

instance, [4].

Finally, a bio-robotic approach illustrating that mirror-

like representations, as observed in brain area F5, can

develop simply from the interaction of an agent with its

environment has been presented by Metta et al. [30].

Although the overall structure is similar and largely in

agreement with the MNS model, particular efforts were

made to use unsupervised learning algorithms and to

realize a partial robotic implementation.

Modeling the Development of Goal-Specificity

in Mirror Neurons

The main purpose of the model presented in this paper is to

provide an explanation of how a mirror system may

develop goal-specific neurons as described by [6], an

interesting feature of mirror neurons that has so far not

received much attention by computational modelers. Spe-

cifically, we investigate (1) whether such an organization

can develop without assumptions on the functional role of

mirror neurons and (2) which aspects of the inputs to the

mirror system may influence the development of such goal-

specific neurons. We build upon our previous work [29] to

detail how a ‘‘blank’’ structure (representing parietal mirror

neurons that have seen some previous attention by mod-

elers [28, 29]) can develop a representation of its inputs in

line with the finding that most but not all neurons encoding

a given motion primitive are also sensitive to the goal of

the overall action [6]. We show that these findings can be

reproduced without making any assumptions regarding

functional roles of mirror neurons. We are further able to

detail the mechanism underlying the emergence of goal-

specific neurons and determine which aspects of the model

input control their number. This has two important impli-

cations. First, it provides computational modelers and those

interested in biologically inspired robotics with a simple,

controllable way of reproducing and implementing the

firing patterns observed in biology, so that they may be

used in the implementation/development of an artificial

agent’s behavioral and cognitive capacities. Second, it

provides a testable hypothesis that similar mechanisms

might be at work in biological mirror systems, which in

turn may increase our understanding of the evolution of the

mirror system.

In terms of Oztop’s taxonomy [11] then, the present

paper spans several categories. It is data driven in the sense

that the main aim is to reproduce a biologically observed

firing pattern (albeit at a necessary level of abstraction). It

falls into the ‘‘reason of existence’’ category in the sense

that it aims to elucidate possible fundamental causes of this

firing pattern. Although not using an evolutionary algo-

rithm, the model does thus also address whether or not the

mirror system would necessarily have evolved to represent

goals and could, to some extent, be included in the ‘‘evo-

lutionary algorithms’’ category. On the other hand, the

model does not assume a particular cognitive role for the

mirror system, thus not falling into the ‘‘assume existence’’

category.

Assumptions Made in the Present Model

A computational model necessarily comes with some

assumptions and simplifications. It is therefore important

to discuss these before describing the model in detail.

First, we choose to model the mirror system using a self-

organizing map paradigm [31]. The idea that mirror

neurons can be seen as a form of associative network is

not new; it is supported by, for instance, the hypothesized

organization of mirror neurons into functional groups or

pools, each encoding a specific type of motion [6, 8, 28].

In computational models, associative networks are a

popular approach for reproducing at a minimum a certain

functionality (e.g., multimodal integration) of mirror

neurons (see [11] for a section reviewing a number of

such models). In particular, it has been argued that the

‘‘reason of existence’’ of mirror neurons in such models is

phenomenological rather than functional [11]. Since a

point of the present paper is precisely to illustrate that

goal-specific activity [6] can emerge even without

assuming a functional role of mirror neurons (which does

not preclude a functional use of the resulting activity later

on), this is a good modeling approach for the present

purposes.

Cogn Comput (2011) 3:525–538 527

123



It should also be noted that some associative network

models of mirror neurons have in fact specifically used

self-organizing maps [2, 21] and illustrated that they can

be used for endowing robots with certain cognitive

functions (in this particular case, a form of language

comprehension). The approach in the present paper is

somewhat different since, rather than a hierarchy of maps,

we simply use one.

The second assumption, or more precisely set of

assumptions, concerns the model inputs. The mirror system

is known [25] to receive input from, among other brain

areas, the superior temporal sulcus (STS) and the anterior

intraparietal area (AIP) and prefrontal cortex (PFC). The

former is thought to deliver information on observed

movements of others (whereas proprioceptive feedback

comes from the premotor areas, in particular the canonical

neurons), while the latter two transmit information about

the affordances of an object in view and the action goal if

the action is executed by the agent itself (see also [32] for a

more detailed modeling of affordances). These are of

course not the only inputs into the relevant parts of the

premotor areas, other information can come for instance

via area 7b [25] or the prefrontal cortex [28, 32]. For the

present purposes, however, we will limit ourselves to the

two inputs mentioned above: (1) an encoding of observed

or executed actions (obtained from the STS and canonical

neurons) and (2) an encoding of the affordances of an

object, which provide information on the context and likely

goal of the actions.

Our main concern is showing how modifying certain

aspects of the inputs affects a possible goal-specific activity

in the map. This is in a sense a theoretical argument and

requires the liberty to manipulate the inputs at will. It

would thus not be beneficial to implement the model in an

actual agent (robotic or simulated) in order to obtain the

inputs. At the same time, however, the inputs must retain

some relation to those that a sensorimotor system might

receive and generate. We thus limit our analysis to features

that are likely to hold true for any such implementation,

irrespective of the actual sensorimotor system and neural

circuitry. Aside from providing freely manipulable inputs,

this approach has the added advantage that it does not

accidentally tie the results to a specific implementation

only. Rather, the results will ideally be relevant for any

such system.

The main disadvantage of course is that the model does

not address in detail how inputs can be obtained. How-

ever, these are non-trivial but solvable problems that have

a strong research community behind them. In robotics, for

example, even the perception of human motion is a dif-

ficult challenge, often relying on motion capture systems

that may require the observed human to wear markers

[33, 34], although markerless approaches exist [35].

Generally, recognition and segmentation of motion have

been dealt with many times, both in the modeling of

mirror neurons and, generally, in the field of robotics [3,

24, 25, 33, 34, 36, 37]. The typical common ground (in

modeling terms) is that motion recognition is based on an

evolution of spatial coordinates over time. These can

simply be coordinates of the end-effector, whether

Cartesian [25] or joint angles [36]. Recently, it has been

shown that human action segmentation of object-centered

hand and arm movements is related to the kinematics of

the wrist, particularly its change in direction [38]. Other

approaches consider the body in its entirety [34], for

instance, demonstrated an online motion-segmentation

algorithm of whole-body motion based on hidden Markov

models.

Recognition of the context in which an action is

taking place is likewise a problem under heavy investi-

gation. Since mirror neurons only fire when an action

toward an certain object is executed or observed, this

recognition is likely to involve the processing of said

object’s affordances. Reviewing the literature on affor-

dances is beyond the scope of this paper, but a helpful

discussion can be found for instance in [39] and, more

recently, [32].

In humans and monkeys, several brain areas are

involved in the processing of affordances, including the

visual cortex (VC, for object edge detection), the AIP

(detection of object shape), the parietal reach region

(PRR, detection of object position) and, importantly, the

ventral occipitotemporal cortex (VOC, encoding the

object identity) [32]. In earlier work, the FARS model

[40] considers the AIP to determine different types of

grasps afforded by an object, of which area F5 (which

includes mirror neurons) then selects the most appropriate

one. Related work [24] extends this principle. From a

robotics point of view, for instance, [39] formulates a

psychologically motivated definition of affordances as,

broadly speaking, a relationship between an agent, an

object and the environment. The final encoding of context,

as relevant for the present work, can therefore be seen as

a set of affordances currently present in the environment.

Taking the setup by [6] as an example, this set could for

instance be ‘‘placeable’’ for a solid object and ‘‘eatable,

placeable’’ for food.

In sum, it is clear that the generation of the inputs may

involve non-trivial processing of sensory data which

depends on the agent under consideration, whether living

or artificial. However, our main concern in this paper is to

show how the processed data reaching the mirror neurons

may affect their organization. We therefore leave out a

detailed modeling of a neural pathway from sensory input

to mirror neurons and only make two assumptions: irre-

spective of the form (e.g., a vector of values, neural
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activation) or the detailed source (e.g., joint angles or

end-effector coordinates in the case of motion inputs),

both the motion and the context inputs can be represented

in a space that is (1) finite and (2) wherein different

motions (or contexts encodings involving objects with

different affordances) form distinct, mostly separable

subspaces.

Methods

Mirror Neurons as a SOM

The present work is based on modeling the mirror neuron

system as a self-organizing map (SOM, [31]). Using such

maps is appropriate here since the focus is on organiza-

tional principles of the modeled system. Although more

neurophysiologically plausible approaches exist [12], they

typically rely on hard-coding a large number of free

parameters in order to show the desired effect and thus lack

the autonomous self-organizing aspects that are important

when modeling developmental phenomena. In the present

case, it is preferable to have a modeling approach that can

address the developmental aspects even though it comes at

the expense of precise neurophysiological detail. The

qualitative nature of the results is, however, not affected by

such a lack of detail.

Generally, the viability of a SOM-based approach to

the modeling of mirror systems has also been shown

previously [21, 29]. The basic modeling approach pre-

sented here follows that of the latter paper. The total

input vector for the SOM is thus composed of two

parts—one part that encodes a motion primitive either

observed or executed by the agent in which the mirror

system is embedded and a second part encoding the

context in which this primitive is observed. As discussed

previously, it is simply assumed that vectors representing

motion primitives are sampled from clusters of data

points and that clusters for different primitives are dis-

tinct. There is thus some variability between different

vectors representing the same motion primitive. We fur-

ther postulate that data points representing motion prim-

itives executed by different types of limbs (e.g., arms and

legs) are also separated in the input space. Inputs defining

the context are likewise sampled from distinct clusters of

their own.

Thus, if m! m1; . . .;mnð Þ is a vector representing an

encoding of a motion primitive and c! c1; . . .; cmð Þ is sim-

ilarly a vector representing contextual encoding, then

the resulting input vector to the SOM is given by

i
!

m1; . . .;mn; c1; . . .; cmð Þ: We will show below that the

results presented here do not depend on specific lengths of

these vectors. In other words, the results are not affected by

the dimensionality of the input data.

SOM Initialization and Training

As in our previous paper [29], the SOM is initialized through

an infancy phase, roughly corresponding to a motor babbling

phase, in which it is merely exposed to points randomly

sampled from input spaces representing two limbs (e.g., arm

and leg), which ultimately results in two regions, each rep-

resenting one type of limb, within the map (see Fig. 1a).

During this phase, the neighborhood function nt and the

learning rate at decrease from their maximal values to low

(but nonzero) final values (here set to nmin = 1 and

amin = 0.2), according to the following equations:

nt ¼ nmin þ b s� nminð Þstc ð1Þ
at ¼ amin þ 1� aminð Þst ð2Þ

with s being the side length of the map, s0 = 1 and st ¼
max st�1 � 1=tinf ; 0ð Þ; where tinf = 5,000 defines the dura-

tion of the infancy phase. The SOM thus remains capable

of online learning (e.g., it can learn to represent novel

motion primitives) but will not dramatically change in

organization (see [29] for details). Following the infancy

phase, the network is specifically exposed to data points

representing five different motion primitives shown in two

different contexts for a period equal in length to the infancy

phase. During this phase, the map develops regions that

specifically represent these primitives in the area corre-

sponding to the related limb (see Fig. 1 for an example).

The overall nature of this layout mimics the hypothesized

organization of the corresponding premotor areas [6, 28,

29]. Here, the main focus is on the detailed organization of

these regions under different conditions. For the remainder

of the paper, we therefore only consider motion primitives

from one of the possible limbs.

Neural Activity in SOMs Based on Input Distance

In traditional SOMs [31], the weight vector of every node

is compared to the input vector and a winning node, which

with the shortest distance to the input vector, is determined.

Here, however, we are more interested in the behavior of

all nodes than the mere location of the winning node.

Conceptually, one could thus see the nodes in the SOM as

neurons whose activity is inversely correlated with the

distance d to the input vector. For the purposes of this

paper, the values of d for all SOM nodes are therefore the

main parameter of interest (see Fig. 1 for an example).

Although it might be tempting to translate d into proper

neural activity for all subsequent analysis, doing so would

merely introduce freely tunable parameters (e.g., in the
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usually non-linear neural response function or connectivity

weights). Since these parameters could in principle be

tuned to highlight any behavior of interest, it is preferable

to avoid these extra (but unnecessary for the present pur-

poses) parameters and focus on the neural inputs in the

form of d here.

Parameters Affecting the Distance

The immediate question is which input features determine

the distance d between input and weight vector. To answer

this, we identify the maximal value this distance can have

under the constraint that both the input and the weight

vector encode a given motion primitive in a given context.

Remembering that the input vector i
!

i1; . . .; inþmð Þ is really

a composition of two vectors (of length n and m, repre-

senting motion primitive and context, respectively) and

calling the corresponding parts of the weight vector

x! x1; . . .; xnð Þ and y! y1; . . .; ymð Þ; d is given by:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

mj � xj

� �2þ
X

m

j¼1

cj � yj

� �2

v

u

u

t ð3Þ

where maximal values for d are simply determined by the

argument to the square root. Thus:

max2 dð Þ ¼ max
X

n

j¼1

mj � xj

� �2þ
X

m

j¼1

cj � yj

� �2

 !

ð4Þ

where it should be noted that there is a slight abuse of

notation in that the argument to the max �ð Þ function

represents not a scalar function but a list of all possible

combinations of choices for m!; c!; x! and y!: Since all

terms are positive, this is equivalent to:

max2 dð Þ ¼ max
X

n

j¼1

mj � xj

� �2

 !

þmax
X

m

j¼1

cj � yj

� �2

 !

ð5Þ

Since both components of the input vector are sampled

from delimited clusters and assuming, since the present

model uses a SOM, that the weight vector of trained

neurons will also fall within these clusters, the highest

possible value for each term in Eq. 5 is simply the distance

between the two most distant points in the respective

cluster. It is always possible to surround the clusters by a

hypersphere whose diameter is given by those two points

(and whose center is given by their average coordinates).

Calling the radii of these hyperspheres rm and rc for the

motion primitive and context clusters, respectively, and

noting that rc ¼ rm=b for some b gives after simplification:

max dð Þ ¼ 2rm

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

b2

s

ð6Þ

The maximal possible distance d between an input

vector encoding a given motion in a given context and a

weight vector encoding the same motion and context is

thus given by Eq. 6 (while the minimal distance is of

course 0), which illustrates that the only input space

parameters determining d are the radii of the clusters from

which the input components are sampled (and their relative

lengths) but not the dimensionality or the location of other

clusters, which is expected given the mechanics of a SOM.

Fig. 1 SOM visualization emphasizing distance between input vector

and nodes in a trained map. The figure shows distance (in color-

coding) from a target vector for every node. In this case, the target

vector has been sampled from a region of the total input space that

represents a motion primitive related to the first trained limb.

a Distances for all neurons, separation of the map into two body part

regions is clearly visible, with roughly half the nodes (in blue) much

closer to the input vector than the other half (red). b Same distances

but recolored after limiting the visible nodes to those encoding the

first limb (i.e., whose weight vectors fall into the first limb’s cluster

within the input space, corresponding to the blue region from a).

Several regions stand out, but only one is characterized by small

distances. c Visible nodes now further restricted to those whose

weight vectors indicate an encoding of the motion primitive presented

in the input vector (corresponding to the blue region in b). Again, a

separation into two classes is clearly visible, this time based on the

neuron’s goal preference

530 Cogn Comput (2011) 3:525–538
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Determining Neural Preference

Once the SOM is trained, 100 data points per motion

primitive are generated. This input is presented to the SOM

with the context components sampled from the first pos-

sible cluster, and the average distances of all neurons in the

SOM to all inputs are calculated. This is then repeated for

the same primitive but with context components now

chosen from the second possible cluster. The entire pro-

cedure is repeated for other motion primitives. Of funda-

mental interest are neurons that react to one motion

primitive either (1) independently of context or (2) only if

the primitive is shown in one of the two possible contexts.

The latter class of neurons corresponds to the context-

specific neurons observed by [6], while the first class is

context unaware.

The neurons in each class are thus determined as fol-

lows: For every neuron reacting to a motion primitive, if

its mean distance to input vectors given in the context of

one goal is lower than the mean minus one standard

deviation of the distance to input vectors from the second

context, then the neuron is said to be specifically encod-

ing the first goal. In all other cases, the neuron is said to

have no goal-specific preference. The advantage of this

approach is that it ensures a clear separation between

what is and what is not considered a goal-specific neuron.

The disadvantage is that the separation is somewhat

arbitrary. However, explorations with differently defined

separations have shown that the qualitative nature of the

results in the present paper are not affected by this,

although the precise numerical values will of course vary.

As with any computational model, stable qualitative

results are more informative than precise numerical out-

puts, and thus, we do not discuss the effect of varying the

definition of goal-specific vs. non-goal-specific in more

detail here.

Formally, the definition above can be expressed in a

cumbersome but general way as follows: For all contexts j

in which a given motion primitive is observed and any

neuron n, we can compute the mean distance lj,n between n

and input vectors sampled from some j as well as the

associated standard deviation rj,n. For a specific context k,

we can then define a setMk;n containing all contexts j that

satisfy:

lj;n � rj;n\lk;n ð7Þ

The cardinality ofMk;n; written as Mk;n

�

�

�

�; determines how

preferentially n encodes k. If C is the number of tested

contexts, the preference prefn,k of the neuron n for context k

is given by:

prefn;k ¼ 1�
Mk;n

�

�

�

�� 1

C � 1
ð8Þ

In the case of two contexts (as used here), the preference

can only be 1 (high preference, Mk;n

�

�

�

� ¼ 1 and C = 2) or

0 (no preference at all, Mk;n

�

�

�

� ¼ 2 and C = 2). However,

if more contexts are used, this formulation implicitly

permits more graded evaluations. While there are, at

present, no neurophysiological data that define neural

preferences in more than two contexts, this definition of

preference may remain useful in future work.

Simulations

Initially, the two parameters affecting d, namely rm and b,

are varied across a range of values (discussed below) to

illustrate their effect on the goal-encoding within the SOM.

To obtain a representative dataset, the following is repeated

100 times for every choice of parameters: (1) An input space

(containing 5 subspaces encoding motion and two subspaces

encoding contextual information) is generated randomly; (2)

a map is initialized and trained on the five motion primitives

as discussed before; and (3) the map’s response to each

motion primitive in both possible contexts is measured by

presenting 100 randomly chosen input vectors per goal

context per primitive to the map and computing the distance

of every node to these vectors. Results are then calculated

from the entire dataset thus obtained.

Statistics

Most statistical tests reported have a standard 2-way layout.

However, unless indicated otherwise, a Jarque–Bera test

[41] rejected the null hypothesis that the data are normally

distributed, which prohibits the use of a 2-way ANOVA. In

these cases, we therefore use the nonparametric Friedman

test [42], which is an appropriate substitute if the data are

not normal.

Results

Model Parameter Effects

Given the mechanics of a SOM, one would not expect rm to

have a significant effect on the results, since the organization

of the map should merely depend on the relative distance

between the input vectors. On the other hand, b should affect

the organization of the SOM at least somehow since it reg-

ulates the relative size of the clusters from which the com-

ponents of the input vector are sampled. It will thus

determine how much of the total input variability can be

explained by variation in one component only. Whether or

not b will actually affect goal-specificity of neurons in the

SOM as defined in ‘‘Methods’’ is, however, less obvious.
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A quick exploration of SOM organization at a crude

granularity, varying rm from 10 to 150 in increments of 20

and b from 1 to 5 in increments of 1, confirms the above

expectations, showing that rm has no effect (df = 7,

v2 = 4.13, P [ .74) while, interestingly, b indeed affects

the goal-specificity of the neurons (df = 4, v2 = 3,711.57,

P = 0).

At this point, it is important to remember that b, as it is

used here, is the ratio between the radii of the clusters

representing one primitive and one goal. However, the

complete space from which the inputs for the SOM are

sampled contains several such clusters—five for the

primitives and two for the goals. One could therefore also

compute a ratio c between the radii of the clusters

encompassing all primitives and all goals. Due to the way

the input space is randomly generated here, there is no

strict 1:1 relationship between values for b and c in actual

data sets but the variability is small and the relationship

between the two is mostly linear. It is therefore possible

that the goal-specificity is really determined by c and that b
is merely a good indicator. Whether or not this is indeed

the case can be tested by increasing the minimum distance

between clusters representing individual primitives by

some factor f while not modifying the minimal distance

between clusters representing individual goals. This

increases c while keeping b constant. When varying b as

before and f from 1 to 20 in increments of 5 (4 in the first

step), we find that the f has no significant effect (df = 4,

v2 = 6.77, P [ 0.14) on the percentage of non-goal-spe-

cific neurons, even though it affects c as expected, while b
does (df = 4, v2 = 2,292.38, P = 0). This confirms b as

the parameter of interest here.

Overall, this is therefore an important result: It has been

shown that, in the context of this model, the main param-

eter with an effect on the behavior of interest is the relative

size of the clusters representing specific primitives and

goals. The detailed effects of b are investigated further in

the next subsection.

Goal-Specificity in the SOM and in Monkeys

The effect of b on goal-specific neurons Varying b, as

discovered, has a strong direct effect on the number of

goal-specific neurons. The larger the value of b, i.e., the

larger the diameter of the clusters encoding motion prim-

itives with respect to those encoding contextual informa-

tion, the smaller the percentage of goal-specific neurons.

(Fig. 2). To investigate this with a slightly finer granularity,

values were sampled at intervals between 0.1 and 1 in

increments of 0.3 as well as between 1 and 5 in increments

of 0.5, which, although chosen arbitrarily, can be seen to

cover the entire range from purely goal-specific neurons to

no goal-specific neurons in those responding to a motion

primitive in general (Fig. 2). Example SOM activations

illustrating the difference in goal-specificity of neurons

depending on b are shown in Fig. 3. It is also worth noting

that we found no significant differences between the

number of encoding the different primitives for b C 1

(lowest P [ 0.14 highest P [ 0.9) nor, as seen in Fig. 2,

any difference between neurons encoding different goals.

This is expected and merely serves as confirmation that the

results are not due to abnormalities in the model.

A comparison with neurophysiological data can provide

a rough estimate of possible b values in macaque

monkeys The neurophysiological results [6], which

showed that about a third of the measured neurons were not

goal-specific, are thus also reproduced by our model. To

determine the b value most likely to lead to a SOM

reproducing those results, we calculate the probability

density functions (PDFs) for the raw data underlying Fig. 2

for every value of b. This is done using a standard kernel

smoothing density estimate [43], with a window of 2%.

Figure 4 shows the value of every b’s PDF at the points

P = 24.4% and P = 35.8%, which are the percentages of

non-goal-specific neurons observed by [6] when the mon-

key was, respectively, observing or executing an action.

We find that the probability of obtaining P = 24.4% is

highest for b = 3, while that for obtaining P = 35.8% is

highest for b = 3.5. However, it has to be kept in mind that

b is technically a continuous parameter which we only

sampled at a few intervals and that, likewise, the PDFs are
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Fig. 2 Effect of b on the specificity of neurons. Black increasing line
indicates percentage of non-goal-specific neurons, solid (dashed) red
decreasing line is percentage of neurons preferring first (second) goal.

Dotted lines indicate ±1 SD. Solid (dashed) gray straight line
indicated the percentage of non-goal-specific neurons measured

during action execution (observation) by [6]. Varying b from 0.1 to

5 can be seen to cover almost the entire percentage range. There is no

significant difference between the percentage of neurons preferring

the first goal compared to those preferring the second goal (Color

figure online)
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continuous. This makes strong statements about ‘‘realistic’’

b values very difficult, and the present results should

therefore rather be seen as a good initial indication,

excluding merely the bs whose PDFs are near zero at the

points of interest.

Preferential encoding of some goals can be explained

through overrepresentation in training A second

interesting aspect of the neurophysiological results [6] was

a difference in percentage of neurons encoding each of the

goals. Specifically, more neurons encoded ‘‘eating’’ than

‘‘placing.’’ This is in all likelihood due to the fact that the

monkeys were exposed to the first goal more often in their

life than the second (placing is not an action that comes

naturally to monkeys). In a SOM, one would expect an

overrepresentation of inputs from a specific region of the

total input space to affect the resulting organization of the

map. Whether or not this would actually affect goal-spec-

ificity of the neurons as defined here is less obvious though.

To test this, we vary b again at a higher granularity from 1

to 5 in increments of 1.0, while the proportion P of motor

primitives shown in the context of the first goal (as opposed

to the second one) is given by:

P ¼ n

nþ 1
ð9Þ

where n is varied from 1 to 5, also in increments of 1. The

results show that P indeed affects the proportions of goal-

specific neurons and the percentage of neurons preferen-

tially encoding the first goal is correlated with the over-

representation during training of the SOM (Fig. 5).

Theoretical reasons for the b effect The main mech-

anism underlying SOMs is the organization of the neurons

so that similar inputs activate neighbouring neurons. Since

Fig. 3 Goal-dependent activity in neurons encoding one primitive for

different b. All plots show the distance between neurons encoding a

primitive and an input vector chosen from that primitive (as in

Fig. 1c). For the same value of b, the primitive component of the

input vector is kept identical and only the goal context component is

varied, to clearly isolate the effect of different goal contexts. A small

value for b (top row) results in markedly different activation patterns

for both goals, with neurons clearly separated into two groups, each

preferentially encoding one goal. A large value (bottom row) causes a

slight variation in activation but no clear goal preferences

Fig. 4 Best b values for reproducing observations in monkeys. Left
axis: percentage of non-goal-specific neurons as in 2, shown for easy

reference. Red (green) dashed line indicates corresponding percent-

age value of 35.8% (24.4%) found by [6] for monkeys executing

(observing) an action. Right axis: For every b, the value at points

P = 24.4% and P = 35.8% of PDFs generated on the dataset used to

obtain a mean value for the percentage of non-goal-specific neurons.

Observations in monkeys are most likely to be reproduced for

b 2 3; 3:5½ �
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Fig. 5 Overrepresenting the first goal during training. Stacked bars
show mean proportion of neurons representing the first and the second

goal, respectively, for different values of n (top axis, as defined in

Eq. 9) and b (bottom axis). Standard deviations are omitted for

clarity. It can be seen that varying n has no effect on the overall

proportion of goal-specific neurons but does affect their distribution

over both goals
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the input vector in this case is a concatenation of two

vectors, the relative importance of the individual compo-

nents for the organization of the SOM is a function of

how much of the maximal distance between two input

vectors (Eq. 6) can be explained by these components

individually.

Since the b values of interest are larger than 1, the

maximally possible distance between two input vectors

composed of vectors encoding the same motion primitive

but different contextual information is larger than the same

distance between input vectors composed of vectors

encoding the same contextual information but different

motion primitives. This leads to the organization of the

SOM into areas encoding a given motion primitive, as also

shown previously [29].

Within the area encoding a certain motion primitive,

whether or not goal-specific neurons emerge is then

dependent on how necessary the contextual information is

in representing the input data. In other words, the critical

question is how much of the maximal distance between two

input vectors can be explained solely by the maximal dis-

tance between the two motion-encoding components. In

general terms, we can answer this by considering the ratio

qm between the diameter of the cluster from which a given

motion primitive is sampled and the maximal distance

between input vectors:

qm ¼
2rm

max dð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
b2

q ð10Þ

For the sake of completeness, we can also calculate qc,

which is the equivalent ratio for the contextual information

cluster:

qc ¼
2rc

max dð Þ ¼
2rm

b max dð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p ð11Þ

From Eq. 11, we find qm [ 0.92 for a b value of 2.5 (for

which Fig. 2 begins to show a steady decrease in goal-

specific neurons). Thus, goal-specific neurons begin to

disappear when around 92% of the possible distance

between two input vectors can be explained from the

motion component alone.

As previously stated in the ‘‘Methods’’ section, the

assumption in this paper is not that the mirror system can be

equalled to a SOM, but merely that some of the principles

that govern plasticity in a SOM may also apply to the mirror

system. The effect of interest here is therefore the funda-

mental cause of the emergence of goal-specific neurons

within the SOM. We have shown that this cause is the fact

that the action encoding inputs can explain most of the

possible variability in the overall input (leading to primitive-

encoding areas) but not all of it (leading to goal-specific

neurons within these areas).

Model Predictions

b Regulates the proportion of goal-specific neurons but

not their organization An important question related to

overrepresenting one goal in the training data is whether

this affects the number of goal-specific neurons or merely

their organization. This is tested, as before, using the

nonparametric Friedman test on the newly generated data,

and it is found that P has no significant effect (df = 4,

v2 = 8.1, P [ 0.08, also seen in Fig. 5) on the percentage

of goal-specific neurons while b, of course, still does

(df = 4, v2 = 2,312.61, P = 0). This is a rather interesting

result since it indicates that, although b regulates the pro-

portion of goal-specific neurons, it does not by itself

determine how these neurons are then further organized. In

the present model, the proportion of neurons and their use

are therefore determined by separate parameters: The

proportion is defined by characteristics of the input (spe-

cifically the difference in maximal variability of both

components of the input vector), while the use of this

proportion is determined during training. This leads to the

prediction that, as the monkey learns a new goal to a level

sufficient to cause its representation in parietal mirror

neurons, some of the existing goal-specific neurons are

reassigned to encoding this new goal (as opposed to new

neurons being recruited to this effect). A possible way to

verify this would be through the recording of parietal

mirror neurons as a monkey learns a new goal (for instance,

placing rather than eating [6]) for an action.

Differences in firing patterns when monkeys were exe-

cuting actions (compared to observing them) may be

caused by different input encodings Slightly different

percentages of goal-specific neurons were reported,

depending on whether the monkey was executing or

observing the action [6]. It is hard to judge whether this

difference is a real difference in encoding or merely an

artifact due to the limited number of neurons that were

measured (see Fig. 4), and more experimental data would

be needed to resolve this. However, if it was confirmed that

the difference is real, the cause would need to be investi-

gated. The present model allows us to hypothesize that

there is in fact a difference in the variability in input

depending on whether an own movement or that by another

agent is observed. Rather interestingly, if the difference is

real, it would, in terms of the present model, indicate a

smaller value of b for inputs resulting from the observation

of the actions of others.

The model presented here predicts two possible causes

for such a difference in b: (1) There may be a higher

variability in the encoding of the proprioceptive informa-

tion about one’s own movement than in the encoding of

observed motions and/or (2) the variability in the context-
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encoding input might be smaller in the first case. Both of

these predictions should be testable through brain imaging

studies.

The first prediction implies that one’s neural encoding of

movements in STS during the observation of another’s

movement should show lower variability than the corre-

sponding encoding within canonical neurons when exe-

cuting the action oneself. Although not trivial to test, since

it requires the ability to measure such a variability from

neurophysiological recordings or perhaps imaging studies,

the prediction should in principle be verifiable.

The most likely cause for a smaller variability in con-

textual encoding when executing own actions, on the other

hand, is that the PFC may play a more prominent role in the

case of own actions, for instance by providing accurate and

certain knowledge of the goal of the action. One would

therefore expect less variability in the contextual input

(potentially accompanied by a weaker influence of the AIP)

when executing own actions. Additionally, said input

should remain similar for actions that have the same goal

but may involve different objects when executing own

actions (for example, coconuts and bananas are different

objects that are both likely to turn up in actions whose goal

is eating). On the other hand, observing actions would be

accompanied by inputs, likely involving the AIP to a

higher degree, which show higher variability during the

observation of one action and between actions, particularly

when the objects could also afford other actions with dif-

fering goals (for example, a coconut but not a banana could

be used as a weapon).

The value of b may vary between actions Finally, a

related observation (implicit in the model but not explored in

detail here) is that it may be possible that b values are dif-

ferent for different actions (e.g., reaching vs grasping) as a

consequence of the fact that b is defined based on the radius

of a cluster within the input space representing one motion

primitive. Clusters for different movements may have dif-

ferent sizes, which would affect b. This leads to the pre-

diction that, if such a difference in encoding really exists in,

for instance the STS (for observed actions), then neuro-

physiological recordings such as those presented by [6]

should find different proportions of goal-specific vs goal-

independent neurons for the same goal but different actions.

Discussion

A Developmental Model of Mirror Neuron

Organization

The present paper has presented a model of a developmental

process that can result in a SOM whose organization mimics

that found in mirror neuron systems [6, 28]. The model

builds on earlier approaches [4, 28, 29] that have addressed

different aspects of the mirror system. It goes beyond the

previous work by extending the modeled aspects to the

origin of goal-specific firing in mirror neurons [6]. At the

same time, it is a developmental model in the sense that the

organization of the SOM only emerges after repeated

exposure to the different inputs.

The model in the present paper thus presents the first

developmental account of how a simple SOM can organize

into a structure that reproduces features of (parietal) mirror

systems to a remarkable degree. It additionally provides a

grounded hypothesis of the reason that goal-specific neu-

rons may exist in the first place. Specifically, it has been

possible to show in this paper, through a systematic vari-

ation of model parameters, that the relation between geo-

metric features of sensory inputs encoding observed or

executed motion and inputs encoding an observed context

is a key factor affecting not only the existence of goal-

specific neurons but also their proportion.

In real-world terms, the values of b for which goal-

specific neurons were found (i.e., values above 1) imply

that a specific motion primitive can be encoded in more

diverse ways than a specific context. It is important to note

that this does not affect the number of ‘‘features’’ taken into

account as the b effect has been proven to be independent

of the dimensionality of the data. It merely implies, for

example, that the variability in the encoding of ‘‘grasps’’

(executed or observed) is larger than the variability in the

encoding of contexts that imply an overall ‘‘eating’’ goal.

A putative explanation for this difference in variability

can be obtained by considering the possible encodings

involved. Information about executed grasps is fed back

via proprioception, while observed action information is

relayed via the STS. Further, the action recognition

hypothesis implies that the action is only identified within

the mirror neurons. The information reaching these neurons

is thus not likely to be a consistent abstraction representing

the action, and one would therefore expect some variability

in the encodings of different instances of, for instance, a

grasp. This variability would be caused partly by the nature

of the grasp (observed or executed) and partly by the

details of the motion. Contextual information on the other

hand, provided mainly through the AIP, has likely been

heavily processed already [25, 32, 40], which may cause it

to be more consistent between instances of the same goal.

It also is interesting to note that the model has been able

to produce the goal-specific neurons without explicitly

implementing a hypothesized cognitive function of the

mirror neurons. That this was possible does not invalidate,

for instance, the action-understanding hypothesis (which

sees goal-specific neurons as important supporting evi-

dence) but it does provide a developmental account in
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which the emergence of such neurons is possible without a

specific cognitive requirement driving the evolution.

Rather, it appears plausible that goal-specific neurons are,

in fact, merely picking up on specific properties of the

encoding of information received by, for instance, the AIP

and PFC as well as STS and canonical neurons. Thus, the

cognitive ability to infer the goals of actions based on this

mirror neuron activity, should such a mechanism exists,

may have evolved on top of a mirror system organization

which already ‘‘accidentally’’ produced apparent goal-

specific firing patterns.

These findings further have implications in the design of

artificial systems endowed with mirror systems. It is likely,

as argued above, that the goal-specific mirror neurons play

a significant supporting role in aspects of higher-level

embodied cognition and social interactions. As such, it may

be desirable to include such a mechanism in artificial

systems, even though this has not been explicitly addressed

by previous models. The important consequence of the

work presented here is that this can be achieved simply

through an appropriate modeling of information delivered

to the mirror system rather than via an explicit mechanism

to represent goals.

Relevance to Embodied Cognition

In the present paper, we have illustrated a modeling

approach that, rather than tying the model to a specific

embodiment, systematically modifies relevant parameters

affecting the artificial sensory inputs received by the

model. While the current model is disembodied, except in

the minimal sense of being physically implemented on a

computer, it can nonetheless provide insights to situated

and embodied cognition by providing a model that is able

to mimic aspects of the neurophysiological properties

observed in mirror systems. In particular, it provides a

meaningful approach to studying processes of abstraction

from an embodied cognition perspective.

According to [44], most categorization is automatic and

unconscious, and it is part of what makes up our conscious

experience. Concepts, such as color concepts, are neural

structures that allow us to mentally characterize categories

and reason about them. Every conceptual structure is real-

ized as a neural structure. The very structure of human

reason, the way it is encoded in the underlying neural cir-

cuitry, comes from the properties of the embodiment and

situatedness of humans: ‘‘Our abilities to move in the ways

we do and to track the motion of other things give motion a

major role in our conceptual system. The fact that we have

muscles and use them to apply force in certain ways leads to

the structure of our system of causal concepts’’ [44, p. 19].

Barsalou [45, 46] argued that several misunderstand-

ings of embodied/grounded cognition have arisen because

of a lack of computational models for these kind of

cognitive processes, e.g., grounded theories being viewed

as ‘‘recording systems that only capture images (e.g.

cameras) and are unable to interpret these images con-

ceptually’’ [45, p. 620]. The type of model put forward in

this paper might provide a less problematic way of

explaining how the sensorimotor system (especially within

the premotor areas) organizes itself to represent more

abstract aspects of an action, e.g., the goal of the action.

Although the current model does not explain how a

system acquires conceptual content or tests the theories of

Barsalou [45, 46], it provides a mechanism for developing

a multimodal ‘‘representation’’ (e.g., goal-specific coding

of movements), beyond simple recordings, in a self-

organizing fashion in the course of agent–environment

interaction. Two aspects of the model are of particular

interest in the context of grounding embodied cognition.

Firstly, the resulting goal-specific ‘‘representations’’ are

the result of dynamic interactions between specific model

inputs. Although the main point here was to investigate

the b-effect rather than model the input provenance, these

inputs provide, via the STS and AIP [25], both sensory

and proprioceptive information. The ‘‘representation’’ of

actions and their contexts are thus a joint property of the

input characteristics, ultimately defined by sensory as well

as motor information, and the organization of the SOM.

Secondly, the model, although itself disembodied, sug-

gests that the development of goal-specificity is dependent

on the particular embodiment of the body part involved

(in the sense that the nature of the limbs may influence

the encoding of observed or executed actions involving

it).

Further, as discussed above, the model is able to predict

how simple features of affordance and observed/executed

motion processing may give rise to the observed neural

structure. In other words, rather than detailing which cog-

nitive features arise from a specific embodiment, the model

is able to suggest which embodiment is required for a

specific feature to arise. If one subscribes to the idea that

the organization of neural structures is an important aspect

of the cognitive and behavioral capacities they underlie

plus that the body and sensorimotor perceptions affect the

neural organization, then an account such as the one pre-

sented in this paper is highly desirable as it provides a clear

description of the required ‘‘format’’ of sensory inputs for a

desired neural structure. In robotics, such knowledge can

for instance be used in the design of a robot’s sensorimotor

mechanisms based on a specification of the desired cog-

nitive capabilities.
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Summary of Predictions

The model presented here has led to several predictions

that need to be investigated in further work. Here, we

summarize them briefly. We have shown that goal-specific

neurons can emerge in a SOM if the inputs have certain

properties (discussed in more detail above). The theoretical

reason for this, discussed in ‘‘Goal-Specificity in the SOM

and in Monkeys’’, was found to be that under these con-

ditions, the motion-encoding inputs alone were almost, but

not quite, sufficient for an adequate explanation of the

distances (and thus similarities) between different inputs.

Consequently, the predictions of the model center around

the relative properties of the inputs to the mirror system in

different conditions. These include the following: (1)

Learning a new goal reassigns existing goal-specific neu-

rons rather than recruiting new ones; (2) differences in

percentages of goal-specific neurons when responding to

executed and observed actions respectively can be due to

either lower variability in input from the STS compared to

that from canonical neurons and/or the involvement of the

PFC in defining contextual information to a higher degree

when executing own actions; and (3) pools of neurons

encoding different actions may show different b values.

Suggestions for testing these predictions were given in

‘‘Model Predictions’’.

In terms of mirror neuron research in general, the

importance of the model presented here is the emphasis

placed on the role that the model inputs have on the final

organization within the SOM. This has led to the pre-

viously discussed predictions of how mirror neurons may

be integrating the inputs they receive as well as how

motion- and context-encoding inputs may relate to each

other. Hypotheses regarding the roles that such mirror

neurons might play in, for instance, action understanding

[5, 6] need to take into account corresponding influences

of brain areas such as STS, AIP, PFC and canonical

neurons on the development of mirror neurons rather

than solely considering the ‘‘finished product.’’ For this

reason, developmental models in general are useful in

furthering our understanding of the emergence of the

mirror system. The present work adds to previous models

[4, 25, 30] by addressing the goal-specificity in parietal

mirror neurons.

Conclusion

We have presented a computational model detailing a

developmental process that results in pools of neurons in a

SOM encoding specific motion primitives as postulated by

the chain model [28]. We have shown that the neurons

within these pools can self-organize/develop into goal-

specific neurons as discovered by [6], and we were further

able to detail the precise mechanisms underlying the

emergence of such an organization and provide empirically

testable predictions of the model. This work thus provides

further support for the hypothesis that goal-specific mirror

neurons (in parietal areas) may not have specifically

evolved to support action understanding. Later cognitive

processes may well have evolved to make use of the firing

patterns which can facilitate action understanding, in what

could be an instance of neural reuse [47]. A similar argu-

ment has been presented previously for the development of

social roles of prefrontal mirror neurons [24]. Furthermore,

the work presented here extends previous modeling work on

premotor mirror neurons [30] and can be used in the design

of robotic systems dealing with the initial processing of

affordances and observed/executed motions in order to

facilitate a natural emergence (rather than a hard-coded

design) of a parietal mirror system complete with goal-

specificity within the agent’s controller.
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