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Abstract A close coupling of perception and action

processes is assumed to play an important role in basic

capabilities of social interaction, such as guiding attention

and observation of others’ behavior, coordinating the form

and functions of behavior, or grounding the understanding

of others’ behavior in one’s own experiences. In the

attempt to endow artificial embodied agents with similar

abilities, we present a probabilistic model for the integra-

tion of perception and generation of hand-arm gestures via

a hierarchy of shared motor representations, allowing for

combined bottom-up and top-down processing. Results

from human-agent interactions are reported demonstrating

the model’s performance in learning, observation, imita-

tion, and generation of gestures.

Keywords Computational model � Interactive artificial

agents � Nonverbal communication � Gestures �
Perception-action links

Introduction

In social interactions, one is continuously confronted with

an intricate complexity of verbal and nonverbal behavior,

including hand-arm gestures, body movements or facial

expressions. All of these behaviors can be indicative of the

other’s referential, communicative, or social intentions [1].

In this paper, we focus on hand-arm gestures. Interlocutors

in social interaction incessantly and concurrently produce

and perceive a variety of gestures. The generation of a hand-

arm gesture, coarsely, consists of two steps. First, finding

the proper gesture for an intention that is to be realized

under current context constraints. Second, performing the

gesture using one’s motor repertoire. Similarly, the reci-

pient perceives and analyzes the other’s movement both at

motor and at intention levels. Cumulating evidence suggests

that these two processes are not separate, but that recog-

nizing and understanding a gesture is grounded in the per-

ceiver’s own motor repertoire [2, 3]. In other words, a hand

movement is understood, at least partially, by evoking the

motor system of the observer. This is evidenced by so-

called motor resonances showing that the motor and action

(premotor) systems become activated during both perfor-

mance and observation of bodily behavior [4–6]. One

hypothesis is that these neural resonances reflect the

involvement of the motor system in deriving predictions

and evaluating hypotheses about the incoming observations.

This integration of perception and action enables imitating

or mimicking the observed behavior, either overtly or

covertly, and thus forms an embodied basis for under-

standing other embodied agents [7], and for communication

and intersubjectivity of intentional agents more generally

(cf. simulation theory [8]). Hence, perception-action links

(and resulting resonances) are assumed to be effective at

various levels of a hierarchical perceptual-motor system,

from kinematic features to motor commands to goals and

intentions [9], whereas these levels interact bi-directionally;

bottom-up and top-down [10]. Further, a close perception-

action integration can be assumed to support two important

ingredients of social interaction: First, fast and often sub-

conscious inter-personal coordinations (e.g., alignment,

mimicry, interactional synchrony) that lead to rapport [11]
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and social resonance [12] between interactants. Second,

social learning of behavior by means of imitation, which

helps to acquire and interactively establish behavior

through connected perceiving, processing, and reproducing

of their pertinent features. All of these aforementioned

effects may also apply—at least to a certain extent—to the

interaction between humans and embodied agents, be it

physical robots or virtual characters (see [12] for a detailed

discussion). For example, brain imaging studies [13, 14]

showed that artificial agents with sufficiently natural

appearance and movements can evoke motor resonances in

human observers.

Against this background, we aim for interactive

embodied systems ultimately able to engage in social

interactions, in a human-like manner, based on cognitively

plausible mechanisms. A central ingredient is a computa-

tional model for integrated perception and generation of

hand-arm gestures. This model has to fulfill a number of

requirements: (1) perceiving and generating behavior in a

fast, robust, and incremental manner, (2) concurrent and

mutually interacting perception and generation, (3) con-

current processing at different levels of motor abstraction,

from movement trajectories to intentions; (4) incremental

construction of hierarchical knowledge structures through

learning from observation and imitation.

In this paper, we present a cognitive computational

model that has been devised and developed to meet the

above-mentioned requirements for the domain of hand-arm

gestures. Focusing on the motor aspect of gestures, it

should also serve as a basis for future modeling of higher

cognitive levels of social intentions. In the section ‘‘Shared

Motor Knowledge Model’’, we introduce the Shared Motor

Knowledge Model that serves as a basis for integrating

perception and action, both of which operate upon these

knowledge structures by means of forward/inverse models.

In ‘‘A Probabilistic Model of Motor Resonances’’ we

present a probabilistic approach to simulate fast, incre-

mental and concurrent resonances and their exploitation of

these structures in both perceiving and generating behavior.

Section ‘‘Perception-Action Integration’’ details how the

integration of perception and action is achieved in this

model and how this helps to model and cope with char-

acteristics of nonverbal human social interaction. Results

of applying this model to real-world data (marker-free

gesture tracking) from a human-agent interaction scenario

are reported in ‘‘Results’’. In the final section we discuss

our work in comparison to other related work.

Shared Motor Knowledge Model

In previous work [15], we have presented a cognitive

model for hierarchical representations of motor knowledge

for hand-arm gestures, and we proposed how these struc-

tures can be utilized for probabilistic ‘‘embodied’’ behavior

perception. Here, we present an extended version of this

model that serves as a unified basis for both perception and

generation of hand-arm movements (wrist position trajec-

tories, to be specific) as they occur in natural gesturing by

human users in interaction with a humanoid virtual agent.

Overall, the model consists of three main modules (see

Fig. 1): shared motor knowledge, perception and genera-

tion. This model allows for parallel gesture generation and

perception processes grounded in shared motor knowledge.

Further, the hierarchical model enables bottom-up pro-

cessing (mainly for perceptual tasks) interacting bidirec-

tionally with top-down processing (for action production as

well as attention and perception guidance). In the remain-

der of this section, we describe each module separately.

Shared Motor Knowledge

The central shared motor knowledge module (see Fig. 2 for

a detailed view) consists of a hierarchical representation of

hand-arm gestural movements, and a pair of forward and

inverse model submodules, interacting with the movement

representation.

Shared Representation of Motor Knowledge

The representation of motor knowledge for hand-arm

gestures is a hierarchical structure comprising different

levels of abstraction, starting from the form of single

gesture performances in terms of movement trajectories

and leading into less contextualized motor levels, toward

meaning. As illustrated in Fig. 2, the representation

Fig. 1 Overall model for

cognitive processes of

embodied perception and

generation, integrated in a

shared motor knowledge
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hierarchy consists of three levels: motor commands, motor

programs and motor schemas.

At the lowest level, a directed graph is used to store

motor knowledge about gestural movements for each hand.

Nodes represent spatial positions of the wrists and edges

represent trajectories of movement segments. Edges are

referred to here as motor commands (MC). These are

extracted from the trajectories of observed movements,

regarding their velocity profiles. The resulting motor

commands encode one of the three basic forms of move-

ment segments: straight, curved or s-shaped trajectories.

These motor commands only parametrize the significant

spatiotemporal features of movement trajectories (e.g.

extent, shape, timing) as needed by our motor control

engine ACE [16]. In this way, a movement corresponds to

a sequence of motor commands, i.e., a path through the

graph. Neurobiological studies showed that motor systems

use a similar principle of decomposing complex move-

ments into simpler elements, called motor primitives, and

performs them in parallel or sequence [17, 18].

The next level consists of nodes associated with motor

programs (MP), each of which represents a whole perfor-

mance of a gesture. That is, a motor program is associated

with a sequence of motor commands for each hand. For

example, the representation of a waving gesture could

consist of four motor commands: raising the right hand

(mc1), moving it to the right (mc2), moving it to the left

(mc3) and retracting it back to the rest position (mc4). This

performance of a waving gesture with the right hand can be

represented by a motor program (mp1), which sequentially

connects mc1, mc2 and mc3 repeatedly to represent the

swinging movement, and finally mc4. A different gesture,

like drawing a circle at the same height as waving, can also

encompass some of these motor commands in its motor

program (e.g., mc1 and mc4 for raising and lowering the

right hand). That way, the agent has a compact represen-

tation of various gesture performances stored in its motor

program repertoire.

However, in general, gestures are neither limited to a

specific performance nor exhibit only invariant spatiotem-

poral features. The variant features are the performance

parameters that, when varied, do not change the meaning

and intention of the gesture but the way of performing it.

Consequently, understanding a gesture might not only

involve a direct matching, but also needs inference of

intended function. For example, seeing a demonstrator

waving should be recognized as waving, the symbolic

meaning of which is independent of the absolute spatial

position of the hands, the swinging frequency, the per-

forming hand or to some degree the velocity of the

movement. Although different persons have different styles

of waving and different ways of modulating its meaning

(e.g. cheerful vs. hesitant), those performances can still be

recognized by an observer as instances of waving. And,

when reciprocating, the observer likewise performs it in an

individual manner. Thus, the motor representation must be

able to cluster numerous variants of a gestural movement

into one ‘‘schema’’. Therefore, we define motor schema

(MS) as a generalized representation that groups different

possible performances (motor programs) together. Such a

generalization process is an important capability and can

foster the understanding and imitation of behavior in two

ways. First, it forwards the problem of inferring the

intention behind a gesture from a specific performance to a

more abstract, yet less complex level, namely schema

interpretation. Second, an agent can retain its own personal

form of performing a gesture while being able to relate

other performances of the same gesture to the same

schema.

Forward and Inverse Models

The motor system employs two internal models for pre-

diction and motor control. These internal models have been

hypothesized to exist in the human cerebellum [19].

A forward model implements causal and temporal

Fig. 2 Modules of

‘‘perception’’ and ‘‘shared

motor knowledge’’ in detail.

Shared motor knowledge

comprises three different levels

of abstraction representing

motor knowledge as a

hierarchical graph. The

representation of a sample

waving gesture is highlighted

in bold lines
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predictions of a movement, providing likely next movement

states, given the current state and possible efferent control

signals. In other words, forward models are able to predict

the continuation of movements during both perception and

generation processes, using sensory and/or proprioceptive

feedback. In contrast, an inverse model provides motor

commands that are likely to achieve a desired movement

state. That means learning a movement skill is largely

equivalent to acquiring corresponding inverse and forward

models. On this basis, our motor knowledge model is

endowed with a pair of generic inverse and forward models,

which can operate on the hierarchical motor representation

at all levels. Many computational models assume a multi-

tude of pairings of such internal models, containing the

necessary motor knowledge for prediction and control of

individual movements [20]. In contrast, our model is geared

to the flexibility and generativity of gestural communica-

tion. Motor knowledge is thus integrated in the shared

motor representation as an expandable graph and the for-

ward and inverse submodules are seen as generic processors

that perform the corresponding tasks on arbitrary elements

of the graph representation.

Perception Process

The perception module receives visual stimuli about

movements of relevant body parts of a demonstrator

(positions of the wrists in this case). First, these are pre-

processed such that they can be directly operated upon for

recognizing familiar gestures or learning new ones. The

preprocessing pipeline, illustrated in Fig. 2, consists of four

submodules: (1) the observations are first transformed

(rotated and scaled) by a body correspondence solver from

external coordinate system to egocentric space of the vir-

tual agent, which stays face-to-face to the human inter-

locutor, (2) the sensory memory is an ultra short-term

memory that receives the transformed positions and buffers

them in chronological order; (3) the working memory holds

a continuous trajectory for each hand through agent-centric

space and, (4) the segmenter submodule decomposes the

received trajectory into movement segments called guiding

strokes [16], based on their spatial and kinematic features

(velocity drops, changes of movement direction). A guid-

ing stroke represents a simple and short movement segment

in 3D space and describes the movement path as well as

kinematics along this segment in terms of a few parameters

(see [21] for similar preprocessing steps). Since the focus

of this paper is on intransitive (i.e., not object-directed)

movements, all parameters attributed to the segments refer

only to their morphological features and are not defined

relative to an object. Such parametrized segments are the

atomic movement components that form the motor com-

mands in the shared motor knowledge representation.

While perceiving hand movements, the perception

module employs the shared motor knowledge as follows:

Candidates of known gestures that might correspond to the

movement currently being observed are passed on to the

forward models which derive predictions of the corre-

sponding likely continuation of the movement. This prin-

ciple is applied at all levels of motor knowledge in parallel.

At the lowest level, predictions are evaluated against the

positions of the wrist received at each time step from the

working memory; at higher levels (programs, schemas),

predictions are derived and evaluated against the corre-

sponding structures at lower levels. The results of these

evaluations are fed back into the shared motor knowledge

as ‘‘motor resonances’’ in the graph. Those resonances and

the evaluation processes that spawn them are modeled

probabilistically and described in ‘‘A Probabilistic Model

of Motor Resonances’’ in detail. Here we note that strong

motor resonance of a motor component (motor command,

program or schema) indicates a successful prediction of the

observed movement by the corresponding forward model at

that level. Strong motor resonance corresponds to high

confidence of the virtual agent in recognizing the corre-

sponding movement, grounded in its own motor experi-

ence. In contrast, if none of the motor components at one

level resonated sufficiently, i.e., no sufficiently similar

motor representation exists at that level, an unfamiliar

movement segment or gesture performance is likely being

observed. In this case, the analyses switch from the forward

model to the inverse model at the corresponding level.

As aforementioned, inverse models capture motor

specifications to achieve a desired state. For this purpose,

inverse models receive movement segments from the seg-

menter and augment the motor representation graph with

new components, which represent the new movement at the

proper level of abstraction (for more details about inverse

models at the motor command level see [22]). In this way,

the virtual agent learns new gestures by extending its motor

repertoire. Inverse models could insert new segments as

motor commands, create a new motor program or associate

an old one with a new sequence of motor commands, and

create a new motor schema or associate a new motor

program with a known schema. However, a new associa-

tion between a motor program (performance of a gesture)

and a schema (core meaning of a gesture) cannot be

determined only with the help of the spatiotemporal fea-

tures available in working memory. Concerning those

features, totally different gestures can signal the same

social intention, and therefore, they have to be clustered

together as one schema. However, as intention recognition

is beyond the scope of the present study, we utilize explicit

feedback to cluster different performances of a gesture

schema: the human interlocutor labels each new gesture

with a name, e.g. ‘‘waving’’, which is then used by the

422 Cogn Comput (2011) 3:419–435
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inverse model at motor schema level to associate the cur-

rent performance of waving with the respective schema.

Generation Process

Generation of a gesture is a top-down process that is

invoked by the prior decision to express an intention

through a gesture. In our framework, the performance of a

hand-arm movement by the virtual agent is built on a motor

control engine described in previous work [16]. Here, we

focus on the processes in shared motor knowledge which

result in movement commands to be performed by this

engine. The first step is to select a proper motor schema to

be generated. This decision has to be made by higher

cognitive levels, concerning referential, communicative

and social intentions, which are beyond the scope of this

paper. Therefore, the proper motor schema is currently

directly given in each social situation to the virtual agent.

At the next step, the agent has to select a motor program,

i.e., a possible performance of the selected gesture schema.

This choice is modeled to depend on two criteria: obser-

vation frequency, and previously perceived or self-gener-

ated gestures. The latter refers to the mutual effects of

perception and action handled in ‘‘Perception-Action

Integration’’. The former refers to the agent’s tendency to

perform a gesture in the way it has observed (and recog-

nized) it most often. The corresponding motor program is

referred to as the prototype of that motor schema. Hence,

the prototype gesture of each schema emerges from the

way the majority of human interlocutors with whom the

agent has interacted have performed that gesture. After

choosing a motor program to perform, the next generation

step is simply to follow the unambiguous association

between the selected motor program and the motor com-

mands for both wrists.

A Probabilistic Model of Motor Resonances

As described earlier, motor resonances result from com-

paring predictions with observations. This basic mecha-

nism is employed at all three levels (using different kinds

of forward models to derive the predictions) and the

resulting resonances indicate the agent’s confidence in a

correspondence between what it sees someone doing and

what it knows from own experience.

Motor resonances are modeled probabilistically and are

computed for each motor candidate at each level during

observation. The general approach is to apply Bayesian

inference and is the same for all levels. Given the evidence

e (e.g. visual stimuli of moving hands), we define this

confidence in recognizing a certain motor candidate

(referred to as h for hypothesis) as the mean over time of its

conditional probabilities until the current time T:

PTðhjeÞ :¼ 1
T

PT
t¼t1

PðhjetÞ. At each time step, we employ

Bayes’ law and compute the probability P(h|et) as a nor-

malized product of the likelihood and the prior probability

of the same motor candidate: aposteriori ¼ a � likelihood�
apriori. To compute the apriori term, we apply the prior

feedback approach [23] to accumulate probabilities up to

each time step. That means apriori at each time step is the

aposteriori from the previous time step. This affords

incremental processing. In other words, the more positive

evidence we have, the higher the recognition confidence

will be. The likelihood term (i.e., P(e|h)) is modeled spe-

cially for the motor candidates at each level (see ‘‘Bottom-

Up Perception’’).

Furthermore, the probabilities of motor candidates at the

three levels influence each other mutually. A Bayesian

network models how the levels of the hierarchy of motor

representation interact (see Fig. 3). This approach allows

motor resonances to percolate bottom-up and top-down

across adjacent levels, to find (possibly a variant of) a known

gesture quickly, effectively and robustly. In the following

section, we first focus on the bottom-up perception process,

from motor commands, to motor programs, to motor sche-

mas. After that we consider the top-down guidance of the

perception process.

Bottom-Up Perception

Level 1: Resonating Motor Commands

At this level, the spatial position of a wrist at each time step

t is our evidence and motor commands in the correspond-

ing graph are the hypotheses. That means, the agent

updates its beliefs in observing each motor command as a

candidate. In order to have a fast and cost-efficient algo-

rithm, we need not consider all motor commands, but only

the subset of the most probable ones, referred to as the set

of active motor command hypotheses Hc. The criterion to

add a motor command to this set is as follows: As soon as

the first evidence, here the observation ot1 , is perceived, its

Fig. 3 Bayesian network for the relations between different levels of

the motor hierarchy
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probability to represent a node in the graph of motor

commands is computed with the aid of Gaussian densities

centered at the position of each node in three-dimensional

space. Comparing it with a predefined threshold yields the

most likely candidate nodes for the starting point of a

gesture. All outgoing motor commands from these nodes

are added to Hc. At the next time steps, the probability of

each of these hypotheses is computed from the new

observation (Eq. 1). If the probability of a hypothesis is

smaller than a predefined threshold, it will be omitted from

Hc, and if a new node becomes likely to be the start of a

new hypothesis, the corresponding hypothesis will be

inserted to Hc. Furthermore, the active hypotheses can

change dynamically and be split into new hypotheses by a

branching node, whereas one of those hypotheses indicates

the belief in stopping the movement at the end of the

passed motor command, and the other hypotheses refer to

the beliefs in possible continuation of the movement

observation.

Employing Bayes’ law, the probability of a motor

command hypothesis c (this equals the resonance) is

updated at each time step on the basis of perceived evi-

dence up to the current time step, T: (o ¼ fot1 ; ot2 ; :::; oTg).

PTðc 2 HcÞ ¼ PTðcjoÞ :¼ 1

T

XT

t¼t1

PðcjotÞ

¼ 1

T

XT

t¼t1

aPT�1ðcÞPðotjcÞ ð1Þ

The Bayesian normalizing constant is referred to as a.

The term PT-1(c) is the prior probability of the hypothesis

c and indicates the previous knowledge about the motor

command c, which is equal to the posterior probability of

c at the previous time step, T - 1. The likelihood term

P(ot|c) refers to the probability of passing the coordinate

ot ¼ fxt; yt; ztg with motor command c and, now,

represents a probabilistic prediction of the forward

model. In other words, it represents the probability of

where the hand would be if the agent performed this motor

command c. We model this as a four-dimensional Gaussian

probability density function of {x, y, z, t} (PDF, in short),

formed for each possible motor command, i.e., each

possible continuing movement segment of the wrist in

space (see Fig. 4a). This likelihood term reaches its

maximum value if the observed performance exactly

matches the agent’s own motor execution.

Level 2: Resonating Motor Programs

Resonance of a motor program depends on the probabilities

of its components (i.e., motor commands of each wrist) and

thus, indirectly, on the wrist observations. Similar to motor

commands, we compute the posterior probability of the

hypothesis p considering evidence from both hands (ol and

or) until the current time step, T. The hypothesis with the

highest posterior probability indicates the agent’s belief in

observing that specific program being executed.

PTðp 2 HpÞ ¼ PTðpjHc; ol; orÞ :¼ 1

T

XT

t¼t1

PðpjHc; ol; orÞ

¼ 1

T

XT

t¼t1

aPT�1ðpÞ
Y

i2fr;lg

X

c2Hc;i

Pðoi;tjcÞPtðcjpÞ

ð2Þ

The set of motor programs considered as active

hypotheses Hp contains all programs with at least one

active motor command hypothesis in Hc. At each time step,

the computed probability for each active motor program

hypothesis corresponds to the confidence of the agent in

recognizing that motor program for which, in contrast to

(a)

(b)

Fig. 4 a Likelihood of motor

command hypotheses at these

successive time steps, modeled

as four-dimensional Gaussian

density functions that change in

accord with the motor

command. b Likelihood of a

motor program hypothesis,

modeled as one-dimensional

discrete Gaussian density

function, stretched over

associated motor commands.

The density function moves

over time along the sequentially

connected motor commands
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the commands, the morphological properties of the whole

gesture performance are considered. Motor programs with

too small probabilities will be removed from Hp.

Same as motor commands (Eq. 1), the prior probability

is equal to the posterior probability from the previous time

step and a indicates the Bayesian normalization constant.

Most of the gestures which are performed with only one

hand should be recognized regardless of the hand they are

performed with. Since a motor program comprises a

sequence of motor commands for both hands, it can specify

how their probabilities affect the probability of the asso-

ciated motor program. In Eq. 2 both wrists are assumed to

have their own task during performance (therefore, an

AND relation:
Q

i2fr;lg). For example, in referring to a

round shape with a symmetrical gesture, each hand draws

half of a circle. Alternatively, the hands may also be

combined using an OR relation (
P

i [ {r,l}). For instance, a

waving gesture as a motor program can be performed by

the right ‘‘or’’ left hand. The choice whether AND or OR is

used depends on the particular gesture and is determined by

the corresponding schema.

The likelihood term Pt(c|p) indicates the probability of

performing the command c at time t, if the demonstrator

were to perform the program p. This probability is time-

dependent and is modeled using a PDF as a function of

t and the motor commands c. The mean of the Gaussian

moves through the commands of a motor program,

according to the velocity of each motor command

(Fig. 4b). Thus, this term along with P(ot|c) yields the

highest likelihood when observing a gesture performance

with exactly the same movement trajectory and velocity as

the one represented in the own motor repertoire.

Note, however, that these probabilities are incrementally

computed and adjusted from the evidence at hand, also

during perception where only parts of the gesture have been

observed. That is, the agent does not need to specify the

start and end point of gestures, but can recognize gestures

that were started at a later point of a trajectory, e.g., in the

case of several successive gestures without intermediate

rest position, or when observing a gesture partially.

As mentioned in ‘‘Shared Motor Knowledge’’, in the

case of observing an unfamiliar gesture, which cannot be

predicted confidently, the performance will be learned

through the inverse models. However, the decision between

observing a new gesture performance or a familiar one

cannot be made only on the basis of the posterior proba-

bilities of all hypotheses, i.e., all familiar gestures, whose

sum at each time step is 1. Observing an unfamiliar gesture

will assign the highest probability to the most similar motor

program, despite of high deviations in performance.

Therefore, the confidence in recognizing a familiar gesture

depends on the likelihood average over the whole

performance which should be above a predefined rejection

threshold. If this is not the case, the model switches to

acquire the new performance

Level 3: Resonating Motor Schemas

Motor schemas group different motor program hypotheses

into a single one. The probability of each motor schema

hypothesis thus depends on the probabilities of the asso-

ciated motor program hypotheses, and indirectly on the

related motor commands and evidence about each wrist.

Figure 3 illustrates these causal influences between the

graph nodes in a Bayesian network.

In detail, the probability of each schema hypothesis s is

computed as:

PTðs2HsÞ ¼ PTðsjHp;Hc;ol;orÞ :¼
1

T

XT

t¼t1

PðsjHp;Hc;ol;orÞ

¼ 1

T

XT

t¼t1

aPT�1ðsÞ
X

p2Hp

PðpjsÞ
Y

i2fr;lg

X

c2Hc;i

Pðoi;tjcÞPtðcjpÞ ð3Þ

The likelihood P(p|s) is taken to be uniformly

distributed among the associated motor programs p with

the active motor schema hypothesis s, and 0 otherwise.

Since a schema can be performed by any of the associated

performances, there is an OR relation among the connected

motor programs (
P

p2Hp
) and the probability of a schema

s is the sum of the probabilities of its possible

performances.

Top-Down Guidance

The described probabilistic model simulates the bottom-up

emergence of resonances in the hierarchical representation,

where probabilistic motor resonances at each level induce

resonances at higher levels. The other way around, higher

levels can also affect the perception process at lower levels

by way of priming. For instance, having recognized a

motor schema unequivocally should yield expectations to

perceive the remaining part of the motor program over the

next time steps. Similarly, recognizing a motor program

should increase the expectation of the associated sub-

sequent motor commands. This top-down information

processing and attention guidance may also directly be

extended into higher social cognitive levels. For instance,

expecting the closing of a dialog could prime an agent to

observe a waving schema.

To achieve this capability, we extend our model by

basically running two update processes for each time step,

Cogn Comput (2011) 3:419–435 425
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one bottom-up and one top-down. The first one acts as

described above and calculates posterior probabilities of all

motor structures given bottom-up evidence using a

Bayesian update. The second one also performs a Bayesian

update but now on the probability of each motor unit

conditioned on the higher-level hypotheses. For example,

consider the probability of each hypothesis at the motor

command level: First, the posterior probability P(c|o) is

determined bottom-up as given in Eq. 1. Then, this pos-

terior probability is used as prior probability P(c) for a

second, top-down update which determines the posterior

probability P(c|p) = a P(p|c)P(c), where the likelihood

term P(p|c) is the current probability of the motor program

p. The resulting probability P(c|p) represents the posterior

probability for the motor command c and is, in turn, taken

as prior probability in the first update process at the next

time step. That way, bottom-up and top-down processing

are connected and contribute both to the emergence of

motor resonances. Likewise, a resonating motor schema

affects the expectation of its comprised motor programs by

applying the top-down update Bayes’ law P(p|s) = a
P(s|p)P(p). Overall, we do not only percolate probabilities

of active hypotheses upward, but also adjust the prior

probabilities of current or future hypotheses top-down in a

context-dependent way. Section ‘‘Results’’ presents results

obtained with this approach applied to real gesture data.

Perception-Action Integration

As discussed in ‘‘Introduction’’, humans employ their

motor expertise for both perception and generation [24].

Similarly, in our model the basic idea is to allow an

embodied virtual agent to create and augment its motor

knowledge by observing others’ gestural movements, and

then to use that knowledge for both perceiving others and

generating movements. This sharing of motor knowledge

directly enables an interaction of both processes in ways

that are observable in humans: on the one hand, behavioral

tendencies of humans are influenced by their perception

and resulting motor resonances [25, 26]; on the other hand,

self-generation of behavior guides attention and increase

sensitivity for subsequent perception of similar movements

(called perceptual resonance [27]). Both resonance phe-

nomena are assumed to play important roles for the con-

tingent processing and coordination of social signals.

In the previous sections, we have presented a hierar-

chical model of motor knowledge and we have shown how

bottom-up and top-down processes probabilistically oper-

ate upon these structures, for perception and generation of

social behavior. To model how perception and action

influence each other, we define a notion of motor neural

activation: neural activation of the motor system is evoked

during both generation and perception processes, it is

assumed to persist in shared knowledge structure, and to

cease slowly over time such that subsequent processing is

affected. Each motor component (motor command, pro-

gram or schema) is assigned a value between 0 and 1

indicating its relative activation. At each time step, this

value is either updated by a generation or perception pro-

cess or, if not, will decay following a sigmoidal decrease

function toward 0. For a motor component m we have:

activationðm; tÞ ¼
1; m is beingperformed at t

PtðmÞ; m isbeing observed with probability P at t

decreaseðmÞ; otherwise

8
><

>:

ð4Þ

The time needed for an activation to cease is set to

depend on the abstraction level: motor command

activations live shortest, while motor schema activations

last longest. Note that these neural activations arise from

perception and generation processes and influence them in

turn. Basically, the activations serve as a ‘‘bridge’’ between

perception and generation processes.

The perception process results in probabilistic motor

resonances at each level, updated at each time step, with the

prior probability of motor candidates set to its previous

posterior probability (see ‘‘A Probabilistic Model of Motor

Resonances’’). At the first time step t1 the prior probabilities

of the active hypotheses at each level are set to their current

activation values normalized by the sum of the activations

of all other active hypotheses at the same level. In this way,

a highly active motor candidate attains a relatively higher

prior probability which corresponds to stronger priming. At

the level of motor commands, the hypotheses can be split

into several child hypotheses at each node. The prior

probability of each child hypothesis is set to a fraction of its

parent posterior probability that is proportional to its rela-

tive activation with respect to other child hypotheses.

During movement generation, the neural activations are

currently only taken into account at the level of motor

programs, since the decision to choose a motor schema is

made by higher levels and motor commands have unam-

biguous relations to the associated motor programs.

Selecting a motor program for a given schema, i.e.,

selecting a specific performance of a gesture, is done

probabilistically according to two criteria: observation

frequency (as explained in ‘‘Generation Process’’) and the

given activations of the candidate motor programs. We

again employ Bayes’ law and select the motor program

p with the highest posterior probability P(p|s). The likeli-

hood term P(s|p) is thereby set to the observation frequency

value of p, relative to other performances of the schema

s. The prior term P(p), similar to the perception case, is
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assigned to the current neural motor activation of p, nor-

malized by the sum of activations among all other candi-

date performances. In this way, we consider a combination

of two criteria: (1) how strong the agent is accustomed to

its own individual prototype performance of a schema, and

(2) how high the current neural activations of the corre-

sponding motor components are.

As a result, this use of neural motor activations realizes

perception-action integration by way of probabilistically

biased decision-making. The next section shows simulation

results of this.

Results

The presented model of embodied social signal processing

has been implemented and evaluated against real-world

hand-arm gesture data. In our setup with a 3D time-of-

flight camera (a SwissRangerTM SR40001) and the marker-

free tracking software iisu,2 our humanoid virtual embod-

ied agent Vince observes the wrist trajectories of a human

demonstrator freely performing gestures (see Fig. 5). We

demonstrate the capabilities of the presented model in an

interaction scenario between Vince and the human

interlocutor.

The interaction scenario consists of a game between the

human and the agent. To this end, Vince has been equipped

with a dialog manager component that manages the inter-

action and controls corresponding verbal behavior. The

overall course of the interaction is as follows:

(1) Vince greets the human interlocutor and explains the

game

(2) Human’s turn: The human interlocutor performs a

gesture while Vince observes

(3) If Vince recognizes the gesture as familiar:

(3.1) Recognition: Vince says the name of the recog-

nized gesture schema

(3.2) Vince imitates the gesture by performing the

gesture schema prototype and asks for

confirmation

(3.3) If the interlocutor rejects the imitation: go to (4.2)

learning
(3.4) Otherwise, if the interlocutor confirms the guess:

go to (5) Vince’s turn

(4) Otherwise, if Vince detects an unfamiliar gesture:

(4.1) Vince states the performed gesture was unknown

to him

(4.2) Learning: Vince asks for the label of the gesture

(4.3) Human interlocutor gives a label for the gesture

(4.4) Vince acquires the observed gesture and labels the

schema accordingly

(4.5) Vince re-produces the newly learned gesture

(5) Vince’s turn: Vince randomly performs a gesture

from his own repertoire and asks for its name

(6) The interlocutor guesses the label of the performed

gesture

(7) If the label matches, Vince confirms the guess; if not,

Vince corrects the interlocutor

(8) If the interlocutor does not end the game: go to (2)

Human’s turn

(9) Vince says goodbye.

This scenario imposes a number of challenges of pro-

cessing and using social signals, which are prevalent also in

natural human face-to-face interaction. The following

sections report how our model accomplishes them:

‘‘Detecting and Learning New Gestures’’ discusses how the

Fig. 5 Setup: the virtual agent Vince (left) and the perceived body posture augmented with wrist positions (middle), while a human user

performs a waving gesture (right)

1 http://www.mesa-imaging.ch.
2 http://www.softkinetic.net.
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virtual agent detects and acquires new gestures from

observation. Section ‘‘Recognizing Familiar Gestures’’

describes how Vince recognizes familiar gestures in a fast,

incremental, and robust manner. Furthermore, top-down

and bottom-up resonances in this process are illustrated and

discussed. Finally, ‘‘Perception-Action Integration’’ shows

how the perception-action integration improves the inter-

action through behavior coordination and attention guid-

ance on the part of the agent.

Detecting and Learning New Gestures

At the beginning of the interaction, Vince has an empty

motor knowledge and is ready to observe new gestures.

The following analysis refers to steps (2–4) of our scenario.

As first gesture, we presented Vince a waving gesture,

performed with the right hand at about the height of the

head (wave1 in Fig. 7; see Fig. 6 (left) for the trajectory).

Since the motor knowledge does not possess any candidate

at either level, the model switches immediately to inverse

models. Preprocessing and motor command inverse models

yield movement segments and guiding strokes (shown in

Fig. 6) which are added as motor commands at the lowest

level of motor knowledge. At the next level, this motor

command sequence is acquired as a new motor program,

referred to as wave1. Afterward, Vince asks for a label and

recognizes the word ‘‘waving’’ which is then assigned to a

newly created motor schema waving, associated with the

motor program wave1. The resulting structures is shown in

Fig. 8a.

In the next round, we presented Vince another waving

gesture wave2, performed with a more outstretched right

arm (see Fig. 7). Since there is only one motor hypothesis

at each level, all hypotheses attain a probability of 1.

However, the likelihood average, shown in Fig. 6 (right), is

too low to push Vince’s confidence in observing the ges-

ture wave1 above the threshold (see ‘‘Bottom-Up Percep-

tion’’ for further details about this issue). Vince hence

detects another new gesture (step 4) in the interaction) and

creates new motor commands (shown in Fig. 6) as well as a

new motor program wave2. However, since the user

labeled the new performance ‘‘waving’’, the motor program

is associated with the same motor schema waving (Fig. 8a).

Figure 11 shows the learned gesture performed by Vince.

In two further rounds the interlocutor performed two

other gestures (see Fig. 7): shaping a flat surface by

Fig. 6 From left to right the observed trajectory of the wave1

gesture; the created guiding strokes for wave1; guiding strokes after

learning a second waving performance, wave2; the likelihood average

of wave1 while observing gesture wave2 (the horizontal line indicates

the recognition threshold of 0.7 for the average likelihood)

Fig. 7 Snapshots from a human

interlocutor performing four

different gestures, labeled as the

corresponding motor programs:

wave1, wave2, surface1 and

circle1
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moving the right hand horizontally in front of himself, and

a circle gesture. In the former case, at the end of the per-

formance, the motor program hypothesis of wave2 attains

stronger motor resonance because of a greater similarity to

the starting movement of the demonstrated gesture. How-

ever, the average likelihood value for that hypothesis is

29% of the maximum likelihood which is clearly lower

than the rejection threshold, empirically set to 70%.

Therefore, the surface gesture is determined as unfamiliar;

it is learned and inserted as a new motor program (sur-

face1) into the motor knowledge and a new schema (sur-

face) is created. Likewise, in the case of the circle gesture,

Vince’s motor knowledge is augmented with further motor

commands, a motor program and a motor schema. Fig-

ure 8a shows the shared motor knowledge of Vince after

these four rounds of interaction.

Recognizing Familiar Gestures

After the previous interaction, we meet Vince as an

embodied agent with some motor expertise on his own.

Thus, we can investigate the case of recognizing familiar

gestures based on resonances in the own repertoire (steps

(2–3) in the our scenario). We analyze this for two cases:

First, we turn off top-down motor guidance and focus on

the bottom-up perception process. Afterward, we compare

this with combined both bottom-up and top-down pro-

cessing applied to exactly the same recognition scenario.

Simulation of Bottom-Up Perception

We presented Vince a waving gesture similar to the first

performance wave1. Figure 9 (top) shows how motor res-

onances in Vince’s motor system (viz. confidences in

hypotheses) evolve during the course of perceiving this

gesture. The forward model at motor program level creates

one hypothesis for each of the four known gesture per-

formances. Overall, there are three known gesture sche-

mas: waving, circle and surface. Since the demonstrated

gesture starts similarly to the known circle gesture, Vince

at first ‘‘thinks’’ that the interlocutor is going to draw a

circle. However, after 3.5 s, the resonance of motor pro-

gram wave1 is stronger than that of circle1, and from about

second 4.0 on Vince recognizes the wave1 performance

reliably. Note also that right from the beginning of the

performance Vince is quite sure he is observing a waving

schema. The reason is that he has experienced twice as

many waving gestures as other gestures in his short life.

This effect is wanted and emphasizes a developmental

perspective of our approach to learning social signal pro-

cessing. This ‘‘assimilation bias’’ will wash out as Vince

sees more and more different performances (in fact, when

(a) (b)

Fig. 8 a The acquired hierarchical motor knowledge after observing

four gestures within the scenario; b observed trajectories (dashed)

overlaid on the space of guiding strokes (solid). Top-left: trajectory

for the surface1 gesture and waving guiding strokes; top-right learned

surface1 motor commands; bottom-left: trajectory of gesture circle1;

bottom-right: guiding stroke space containing learned motor com-

mands for all four gestures
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presenting this gesture to Vince after he has learned not

two but only one waving gesture, the motor schemas

confidences evolve identically to those at the motor pro-

gram level). When we now present Vince another perfor-

mance of circle1 (Fig. 9, bottom), the agent again

recognizes this motor program already 1.5 s after the onset

of the demonstration. The bias toward waving gestures, as

evidenced by the early resonances of the wave schema,

diminishes after about 3 s and the circle schema prevails.

Simulation of Integrated Bottom-Up and Top-Down Motor

Guidances

Now, consider the resulting motor resonances when the

agent, employing the same motor knowledge and being

demonstrated exactly the same waving gesture, uses both

bottom-up and top-down processing. Figure 10 compares

the emerging motor resonances, with and without top-down

guidance. Since hypotheses are now confirmed or rejected

by both higher and lower levels, the motor resonances are

more stable and respond faster, such that Vince determines

likely hypotheses earlier. In this case, the motor program

wave1 is also activated by the more probable waving

schema and is recognized about 2.5 s earlier than in the

sole bottom-up processing case. Likewise, associated

motor commands are also more expected to be observed.

Note that both bottom-up and top-down processes

update the probabilistic motor resonances ‘‘at each time

step’’. That means, the gradient of belief variation depends

on the frequency with which these update methods are

applied: the more frequently the hypotheses are updated,

the steeper their belief variations are. In the results pre-

sented here, we have applied both processes with fre-

quencies of 10 Hz which have to be set empirically as

parameters according to two criteria: (1) how fast the

beliefs should be updated given the frame rate of the

Fig. 9 Bottom-up motor resonances at all three levels (MC motor commands, MP motor programs, MS motor schemas) while observing wave1

gesture (top) and while observing gesture circle1 (bottom)

Fig. 10 Comparison of motor resonances at all three levels while observing wave1 with only bottom-up percolation (dashed lines) or top-down

guidance integrated (solid lines)
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tracking system and, (2) how strong the relative effects of

top-down and bottom-up processes should be. This means,

for example, performing bottom-up process more fre-

quently than top-down process simulates a virtual agent

who relies primarily on his sensory input when recognizing

a movement, rather than his higher-level beliefs and

speculations.

Perception-Action Integration

In our interaction scenario, there are situations which

demonstrate, and benefit from, the interaction between

perception and generation of gestural behavior. Next, we

analyze an example of how perception affects the follow-

ing generation process. Then we show how generating a

gesture primes the agent’s attention in the following per-

ception process.

Generation after Observation

After conducting the same training session as above in

which Vince has learned three schemas (see Fig. 8), we

presented the agent three further performances of wave1

during further rounds of the game (i.e. step 3). Therefore,

the corresponding motor program wave1 has been

encountered four times overall and the alternative waving

performance wave2 has been seen once. If Vince now

decided to wave (i.e., it selects the schema waving at

scenario step 5), he would perform wave1 as the

prototypical performance. Now, in the next round of the

game at step (2), we performed a gesture similar to wave2.

This performance is recognized by Vince as a familiar

gesture and increases the observation frequency of wave2,

which however is still half of the frequency of wave1. That

is, the generation likelihood P(s|p) is 0.5 (cf. ‘‘Perception-

Action Integration’’). Now, it is Vince’s turn (step 5) to

generate a gesture and he decides to wave. The previous

perception of the wave2 gesture has evoked an according

motor activation, which remains active for a while (here,

set to 2 s for motor commands, 4 s for motor programs and

6 s for motor schemas). Since Vince intends to wave before

the motor activation of wave2 decreases to a value lower

than its likelihood (equal to 0.5, in this case), the agent

chooses the same waving performance as the one it has

recently observed, i.e. wave2, and not its individually

preferred way of waving, namely wave1 (see Fig. 11).

Observation After Generation

The effect of the generation process on perception is seen

at step (2) when the human user performs a gesture after

Vince has generated one himself (5–8). We simulate two

recognition cases: First, when Vince did perform wave1

previously and, second, when Vince did not generate any

gesture previously (recognition case described in ‘‘Recog-

nizing Familiar Gestures’’). Figure 12 shows the resulting

motor resonances at the motor program level during

observation of wave1 in both cases. When Vince has

PerformingObserving

wave1

surface1 & circle1

wave2

Fig. 11 Left Vince performing

the wave2 gesture, after

observing the same gesture

performed by the human user;

right motor activations while

observing and performing

waving gestures; high

activations of the wave2 motor

program prime the performance

of the same gesture, albeit

wave1 is generally preferred

Fig. 12 Left Vince while

performing wave1 gesture; right
motor resonances at motor

program level during

observation of wave1 with

(solid lines) or without (dashed
lines) previous self-performance

of the same gesture
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previously performed wave1 himself, the corresponding

motor components are activated and his sensitivity is

primed toward the same behavior. In result, Vince imme-

diately recognizes the demonstrated wave1 gesture right

after the interlocutor has started to move, and the following

observations confirm this expectation. He thus responds

about 2 s earlier to the human’s demonstration (step 3).

Related Work

Coupling of perception and generation for transitive and

intransitive actions is a hot topic in computational model-

ing, from both the engineering view of robotics [28–31]

and from the (social) cognitive science perspective [21, 32–

37]. In almost all of these studies, the main focus is on

imitation as a learning mechanism which links perception

to action in an artificial agent. The applied methods for this

aim to fulfill a continuum of requirements, from (neuro)

biologically inspired ones, to more technical and task-ori-

ented approaches.

Hidden Markov Models (HMMs), which are commonly

used for automatic speech recognition [38], are the most

popular modeling tool used for analyzing movements in

technical robotics [28, 30, 31, 39]. Although HMMs have

become established in movement recognition and even

generation [30], they are bounded to some methodological

restrictions, which arise especially in social interaction

between humans and artificial agents. In order to apply

HMMs as movement classifiers, the number of HMM states

needs to be found empirically [28, 31] or by applying

additional criteria to ‘‘available’’ data [40, 41]. Hence, such

a model cannot guarantee its flexibility in classifying new

unpredicted movements. Furthermore, HMMs as move-

ment recognizers need to be fed with the whole movement

sequence to compute the corresponding generation proba-

bility (usually by applying the Viterbi algorithm [38]). This

is due to the necessary preprocessing step which maps

observed data to clusters, as inputs of the corresponding

HMM states (e.g., Calinon and Billard [41] have applied

principle component analysis (PCA); Aleotti and Caselli

[28] have used distance-based geometric clustering).

Therefore, although those HMMs are also applied as online

and incremental learning methods [30, 42], and they sim-

ulate human recognition ability better than many classical

off-line and batch-learning approaches employed by

robotic studies [36, 41], they are still not fast enough for

human social interaction. In many cases, humans need to

recognize a communicative movement already during its

performance to (re)act fast and in a social manner. Our

probabilistic method updates the agent’s belief in observ-

ing familiar movements at each time step during observa-

tion. Furthermore, in recognition mode there is no

restriction on the length of the given observation sequence.

Hence, the model is robust against duration variability of

movements to any extent.

Besides other probabilistic methods (such as Dynamic

Bayesian Networks [29], or Gaussian Mixture Models

[42]), connectionist algorithms are neurobiologically

inspired approaches, which are mostly applied to model

mirror neurons as links between visual perception of

movement and motor commands [21, 43, 44]. The disad-

vantage of such connectionist algorithms, on the one hand,

is the fact that they need a high number of training data to

converge and be applied as classifiers (which make them

suitable for developmental modeling). On the other hand,

their parameters and subprocesses are not analyzable with

respect to the given problem. In contrast, applying sym-

bolic probabilistic algorithms allows further interpretation

of single terms and components of the method concerning

modeled cognitive processes. For example, in the present

model, the terms likelihood, prior and posterior probabili-

ties also indicate their role in the corresponding cognitive

processes, similar to their mathematical denotations.

Modular architectures of forward and inverse models

were initially proposed for motor control as the MOSAIC

architecture [19, 45]. In the following work [32, 33] this

architecture has shown its capability in action recognition

by applying forward models as predictors, which can be

employed to assess their corresponding movement

hypotheses against observation. The MOSAIC architecture

represents movements through related predictors and con-

trollers in a modular system. However, in our model, we

have applied these internal models as generic processors

performing their tasks on a central representation of motor

knowledge. In this context, the forward and inverse models

are functionally similar to the concept of simulators as in

the perceptual symbol system theory [46]. These simulators

perform forward and inverse simulations by applying the

shared hierarchical motor knowledge. Haruno et al. [47]

have extended MOSAIC to a hierarchical architecture

(HMOSAIC), which can perform bidirectional information

processing (top-down and bottom-up) between different

levels of motor knowledge. The hierarchical representation

is similar to our shared motor knowledge and consists of

three different levels of abstraction: kinematics move-

ments, sequences of actions, and goals and intentions of

actions. Hierarchical representation of actions has been

applied by many other studies, for instance, in order to

solve correspondence problem of transitive actions [48], or

to use motor primitives as building blocks for more com-

plex actions [30, 36]. Alternatively, in recent work [49]

Krüger et al. have applied parametric HMMs (PHMMs) for

recognizing and synthesizing transitive movements. In this

way, different HMMs representing different movements

that vary due to different parametrizations can be collapsed
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into a single HMM. However, except for the HMOSAIC

architecture in [47], none of the aforementioned approaches

so far have considered the top-down aspect of recognition as

a cognitive process, in form of information propagation

coming from more abstract motor representations. Con-

cerning the probability propagation in terms of bidirectional

interaction between levels of motor knowledge, the

approach employed in [47] is close to our work: the input of

higher-level modules is the bottom-up posterior probability

and the output is a set of top-down probabilities, acting to

prioritize lower-level module selection.

Conclusion

In this paper, we have proposed an approach for realizing

social artificial agents, based on principles of embodied

cognition. We assume two key components for this: First,

‘‘horizontal integration’’ between perception and action

such that own motor knowledge is utilized for a better

recognition and understanding of others’ behavior. This

can be achieved by prediction-evaluation schemes, which

are likely to reside on various levels of the sensorimotor

hierarchy. Second, ‘‘vertical integration’’ which refers to a

combination of bottom-up and top-down flow of informa-

tion in this hierarchy. Bottom-up resonance amounts to

attributing an intention to a gesture performed by the

interaction partner, whereas top-down guidance informs

and guides this process with hypotheses derived from prior

and context-dependent knowledge.

We have presented, for the case of natural hand-arm

gestures, a model that accounts for both kinds of integra-

tion. The main components of our model are (1) a hierar-

chy of shared motor knowledge from kinematic features of

movement segments (modeled through motor commands)

to complete movements (motor programs) to more general

prototype representations (motor schemas); (2) a probabi-

listic approach to create resonances in these structures

when applied for predicting and evaluating movement

hypotheses against incoming observations; (3) inverse

models to build up and augment these motor knowledge

structures from observing and imitating novel gestures; (4)

generation processes that exploit these structures for

behavior production. With these components, an interac-

tion of perception and generation could easily be modeled

by imposing dynamic activation upon the shared structures,

and by devising ways to evoke and respond to such acti-

vations in behavior perception and production.

While a growing interest in cognitively and (neuro)bio-

logically inspired modeling could be observed over the last

years, tenets of embodied cognition like perception-action

links are mainly adopted in technical approaches to imi-

tation learning. We, however, argue that the integration of

perception and action, both horizontally and vertically, is

still not sufficiently considered in computational modeling

of social behavior. Imitation has been treated mostly as a

one-way interaction, from a human demonstrator to an

artificial agent as imitator. In this context, further bi-

directional social phenomena, resulting from perception-

action links, are ignored. For instance, the direct effect of

perception on action, and action on perception (which lead

to phenomena like priming, alignment and mimicry) are

highly relevant topics in social cognitive science and

should be considered as requirements for modeling social

interaction. In the present work, we have tried to fulfill

these requirements to some extent, while further refine-

ments are required to position the model more clearly with

respect to such cognitive phenomena. However, we have

shown that the proposed computational model has the

potential to capture and simulate such cognitive require-

ments. We have evaluated our model with real-world data

(noisy gesture trajectories obtained with marker-free,

camera-based body tracking). The results we have obtained

are promising. Future work will have to scale this model up

in terms of the number of gestures, further significant

gesture features like hand shape, as well as higher levels of

social and referential meaning. Nevertheless, we are con-

fident that an integrated model as presented here is an

important step, not only in investigating cognitively plau-

sible computational models of social interaction, but also in

building interactive artificial agents that can engage with

their users in reciprocal interactions in a more adaptive,

human-like and sociable way.
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